JP3099352B2 - Optical transmitter - Google Patents
Optical transmitterInfo
- Publication number
- JP3099352B2 JP3099352B2 JP02234994A JP23499490A JP3099352B2 JP 3099352 B2 JP3099352 B2 JP 3099352B2 JP 02234994 A JP02234994 A JP 02234994A JP 23499490 A JP23499490 A JP 23499490A JP 3099352 B2 JP3099352 B2 JP 3099352B2
- Authority
- JP
- Japan
- Prior art keywords
- transmission
- optical
- signal
- light
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Semiconductor Lasers (AREA)
- Optical Communication System (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信等に用いられる光送信装置に関す
る。Description: TECHNICAL FIELD The present invention relates to an optical transmission device used for optical communication and the like.
(従来の技術) 光通信においては、半導体レーザへの注入電流を変化
させることによって光の強度変調信号を得、該強度変調
信号を伝送路である光ファイバを介して伝送し、PINダ
イオード等の光電変換素子を用いた光受信器で受信する
強度変調−直接検波通信装置が主に用いられている。こ
の通信装置では、光ファイバの損失が最小となる波長帯
である1.5μm帯伝送においてギガビット以上の伝送速
度で通信を行うと、光ファイバの分散の影響を受け、伝
送後に大きな品質劣化を生じることが知られている(M.
Shikada et al.,“Long−distance Gigabit−Range Opt
ical Fiber Transmission Experiments Employing DFB
−LD's and InGaAs−APD's"IEEE,Journal of Lightwave
Technology,Vol.LT−5,No.10,pp.1488−1497)。(Prior Art) In optical communication, an intensity modulation signal of light is obtained by changing an injection current to a semiconductor laser, and the intensity modulation signal is transmitted through an optical fiber which is a transmission line, and is used for a PIN diode or the like. An intensity modulation-direct detection communication device that receives light with an optical receiver using a photoelectric conversion element is mainly used. In this communication device, if communication is performed at a transmission speed of gigabit or more in 1.5 μm band transmission, which is the wavelength band where the loss of optical fiber is minimized, dispersion of the optical fiber causes the quality degradation after transmission. Is known (M.
Shikada et al., “Long-distance Gigabit-Range Opt
ical Fiber Transmission Experiments Employing DFB
−LD's and InGaAs−APD's "IEEE, Journal of Lightwave
Technology, Vol. LT-5, No. 10, pp. 1488-1497).
また、光の周波数、位相、振幅に情報をのせ、受信側
で局発光とのビートを受信して情報を得る光ヘテロダイ
ン通信装置では、半導体レーザを直接変調した際に生じ
るチャーピングによるスペクトル拡がりの影響がないか
ら、強度変調−直接検波通信装置に比較して光ファイバ
の分散の影響は小さい。しかし、超高速・長距離伝送に
おいては劣化が起こることも報告されている(N.Takach
io et al.,“Chromatic Dispersion Equalization in a
n 8Gb/s 202km CPFSK Transmission Experiment"17th C
onference on Integrated Optics and Optical Fiber C
ommunication,Post−deadline Papers 20 PDA−13)。In addition, in an optical heterodyne communication device that obtains information by receiving information on the frequency, phase, and amplitude of light and receiving a beat with local light on the receiving side, the spectrum spread due to chirping that occurs when the semiconductor laser is directly modulated is reduced. Since there is no influence, the influence of the dispersion of the optical fiber is smaller than that of the intensity modulation-direct detection communication device. However, it has been reported that degradation occurs in ultra-high-speed and long-distance transmissions (N. Takach
io et al., “Chromatic Dispersion Equalization in a
n 8Gb / s 202km CPFSK Transmission Experiment "17th C
onference on Integrated Optics and Optical Fiber C
ommunication, Post-deadline Papers 20 PDA-13).
一方、近年光増幅器の研究が行われ、光増幅器による
直接増幅中継系の検討も盛んになってきている(S.Yama
moto et al.,“516km 2.4Gb/s Optical Fiber Transmis
son Experiment using 10 Semiconductor Laser Amplif
iers and Measurement of Jitter Accumulatiom"17th C
onference on Integrated Optics and Optical Fiber C
ommunication,Post−deadline Papers 20 PDA−9)。
このような直接増幅中継系では、損失を補償して伝送可
能距離を延長することができるから、超長距離の伝送の
可能性が期待されている。On the other hand, in recent years, research on optical amplifiers has been carried out, and studies on direct amplification relay systems using optical amplifiers have also been actively conducted (S. Yamada).
moto et al., “516km 2.4Gb / s Optical Fiber Transmis
son Experiment using 10 Semiconductor Laser Amplif
iers and Measurement of Jitter Accumulatiom "17th C
onference on Integrated Optics and Optical Fiber C
ommunication, Post-deadline Papers 20 PDA-9).
In such a direct amplification relay system, the possibility of extending the transmission distance by compensating for the loss can be expected, so that the possibility of ultra-long distance transmission is expected.
このように、信号光は、光ファイバにおいて、パワー
損失を受けるとともに分散の影響で波形歪を生じる。こ
のパワー損失と分散の影響の2つで光通信の伝送可能距
離は制限される。数ギカビット以上の高速伝送では、信
号光に変調による大きなスペクトル拡がりが存在し、分
散の影響が大きくなり、光ファイバの損失制限を受ける
前に分散の制限を先に受ける。また、光増幅器を増幅中
継器として用いるような超長距離伝送では、光増幅器に
よって損失の制限が補償されるから、分散の影響によっ
て伝送距離が制限される。As described above, the signal light receives power loss in the optical fiber and generates waveform distortion due to the influence of dispersion. The transmittable distance of the optical communication is limited by the two effects of the power loss and the dispersion. In high-speed transmission of several gigabits or more, there is a large spectrum spread due to modulation in signal light, and the influence of dispersion increases, and dispersion is restricted before loss of an optical fiber is restricted. In ultra-long distance transmission using an optical amplifier as an amplifying repeater, the optical amplifier compensates for the loss, so that the transmission distance is limited by the influence of dispersion.
光ファイバの分散は、光ファイバに入力された光の周
波数に応じて伝搬に必要な時間が異なることに起因す
る。よって、信号光に変調によるスペクトル拡がりが存
在すると、このスペクトル拡がりにより伝送後に波形が
歪む。例えば、1.3μm帯零分散ファイバで1.5μm帯の
光を伝送する場合、信号光内の短波長側成分(周波数の
高い信号成分)の伝搬速度は速く、長波長成分(周波数
の低い信号成分)の伝搬速度は遅い。よって、伝送後に
は周波数の高い信号がパルスの前方に集中し、周波数の
低い信号がパルスの後方に集中する。その結果、伝送後
のパルスには波形歪が生じて、マーク、スペースの符号
判別が不可能となる。The dispersion of an optical fiber is caused by the fact that the time required for propagation varies depending on the frequency of light input to the optical fiber. Therefore, if spectrum spread due to modulation exists in the signal light, the waveform is distorted after transmission due to the spectrum spread. For example, when transmitting light in the 1.5 μm band through a 1.3 μm band zero-dispersion fiber, the propagation speed of the short wavelength side component (high frequency signal component) in the signal light is high, and the long wavelength component (low frequency signal component). Has a slow propagation speed. Therefore, after transmission, high-frequency signals are concentrated in front of the pulse, and low-frequency signals are concentrated in the rear of the pulse. As a result, waveform distortion occurs in the transmitted pulse, making it impossible to determine the sign of the mark or space.
このような分散による波形歪を補償する方法として、
半導体レーザの出力光に適切な周波数変調を施し、外部
変調器でその周波数変調光を強度変調することによって
送信信号の1パルスの前方が低周波となり後方が高周波
となるように設定するものがあり、該方法による波形歪
の低減および伝送可能距離の延長が既に報告されている
(N.Henmi et al.,“A Novel Dispersion Compensation
Technique for Multigigabit Transmission with Norm
al Optical Fiber at 1.5μm Wavelength"Optical Fibe
r Communication Conference‘90,Post−deadline Pape
rs PD−8)。この分散補償法はプリチャーブ法と呼ば
れているが、この方法により、10Gb/sの伝送システムに
おいて、伝送可能距離を20kmから50kmに拡大することが
できる。As a method of compensating for waveform distortion due to such dispersion,
In some cases, an appropriate frequency modulation is applied to the output light of the semiconductor laser, and the external modulator modulates the intensity of the frequency-modulated light so that one pulse of the transmission signal has a low frequency in front and a high frequency in the back. It has already been reported that the method reduces the waveform distortion and extends the transmittable distance (N. Henmi et al., “A Novel Dispersion Compensation”.
Technique for Multigigabit Transmission with Norm
al Optical Fiber at 1.5μm Wavelength "Optical Fiber
r Communication Conference '90, Post-deadline Pape
rs PD-8). This dispersion compensation method is called a pre-charging method, and by this method, in a 10 Gb / s transmission system, the transmittable distance can be increased from 20 km to 50 km.
(発明が解決しようとする課題) 上述のプリチャーブ法においては、1つのパルスのパ
ルス幅を1タイムスロット以上に拡げ、そのパルス内で
適切に光周波数を変化させると、理論的には伝送距離を
一層拡大することができる。しかしながら、1パルスの
パルス幅を1タイムスロット以上にすると、隣のパルス
と重なる部分の光周波数の変化を適切に設定することは
できない。(Problems to be Solved by the Invention) In the above-described pre-charging method, if the pulse width of one pulse is extended to one time slot or more and the optical frequency is appropriately changed within the pulse, the transmission distance theoretically becomes longer. It can be further expanded. However, if the pulse width of one pulse is set to one time slot or more, it is not possible to appropriately set a change in the optical frequency in a portion overlapping with an adjacent pulse.
よって、上述のプリチャーブ法を用いた伝送可能距離
は、理論的に制限され、通常の外部変調方式を用いた伝
送可能距離の2.5倍程度である。Therefore, the transmittable distance using the above-mentioned pre-charging method is theoretically limited, and is about 2.5 times the transmittable distance using a normal external modulation method.
本発明の目的は、補償できる分散劣化量をさらに拡大
することができる光送信装置を提供することにある。An object of the present invention is to provide an optical transmission device that can further increase the amount of dispersion degradation that can be compensated.
(課題を解決するための手段) 本発明の光送信装置は、n個(nは正の整数)の半導
体レーザ光源と、互いに所定の位相関係にあるクロック
信号をそれぞれ生成し、それぞれのクロック信号で対応
する前記n個の半導体レーザ光源の注入電流を変調する
n個のクロック信号源と、前記クロック信号に同期した
送信信号をそれぞれ生成するn個の送信信号源と、前記
n個の半導体レーザ光源の出力光を対応する送信信号で
それぞれ強度変調して強度変調光を生成するn個の外部
変調器と、該n個の外部変調器からそれぞれ出力される
n個の強度変調光を合波し伝送路に送出する光合波器と
を含み、前記n個のクロック信号源でそれぞれ生成され
るn個のクロック信号の位相は互いに異なることを特徴
とする。(Means for Solving the Problems) An optical transmission device according to the present invention generates n (n is a positive integer) semiconductor laser light sources and clock signals having a predetermined phase relationship with each other, and generates each clock signal. N clock signal sources for modulating injection currents of the n semiconductor laser light sources corresponding to the above, n transmission signal sources for respectively generating transmission signals synchronized with the clock signal, and the n semiconductor lasers N external modulators that generate intensity-modulated light by intensity-modulating the output light of the light source with corresponding transmission signals, and multiplex the n intensity-modulated light output from each of the n external modulators And an optical multiplexer for transmitting to the transmission line, wherein the n clock signals generated by the n clock signal sources have different phases from each other.
(作用) 本発明では、送信信号を複数の系列に分け、各系列の
1タイムスロットを元の送信信号の1タイムスロットよ
り長くした状態で最適な光周波変化状態に設定し、その
後に各系列を加え合わせる。例えば、1つの送信信号を
2系列に分けると、各系列の1タイムスロットは2倍の
長さまでになるから、その2倍のタイムスロットの中で
パルス幅を拡げ、光周波数変化を加えた後再び加え合わ
せれば良い。(Operation) In the present invention, the transmission signal is divided into a plurality of streams, and an optimal optical frequency change state is set in a state where one time slot of each stream is longer than one time slot of the original transmission signal. And add. For example, if one transmission signal is divided into two sequences, one time slot of each sequence will be up to twice as long, so after expanding the pulse width in the double time slot and adding an optical frequency change, Just add them again.
(実施例) 第1図は本発明の光送信装置の一実施例を示す構成図
である。本実施例では、信号源が2個であり、送信信号
光が2多重の場合を示す。(Embodiment) FIG. 1 is a configuration diagram showing an embodiment of the optical transmission apparatus of the present invention. This embodiment shows a case where the number of signal sources is two and the transmission signal light is two-multiplexed.
第1図においてまず光送信装置31の構成を説明する。
2つの半導体レーザ光源1,2は、1.5μm帯で単一縦モー
ド発振する。半導体レーザ光源1には、周波数変調信号
202と直流バイアス源4から供給される直流バイアス電
流とが加算器6で足し合わされて印加される。半導体レ
ーザ光源2には、半導体レーザ光源1と同様に周波数変
調信号203と直流バイアス源5からの直流バイアス電流
とが加算器7で足し合わされて印加される。周波数変調
信号202は5GHzのクロック周波数で正弦派を発生するク
ロック発生器8からのクロック信号201を可変減衰器9
および可変遅延器10で処理することによって得られる。
周波数変調信号203は、クロック信号201を可変減衰器11
および可変遅延器12で処理することによって得られる。
半導体レーザ光源1は周波数変調信号202で周波数変調
された光101を出力し、半導体レーザ光源2は周波数変
調信号203で周波数変調された光102を出力する。First, the configuration of the optical transmission device 31 will be described with reference to FIG.
The two semiconductor laser light sources 1 and 2 oscillate in a single longitudinal mode in the 1.5 μm band. A frequency modulation signal is applied to the semiconductor laser light source 1.
202 and the DC bias current supplied from the DC bias source 4 are added by the adder 6 and applied. Like the semiconductor laser light source 1, the frequency modulation signal 203 and the DC bias current from the DC bias source 5 are added to the semiconductor laser light source 2 by the adder 7 and applied. The frequency modulation signal 202 is obtained by converting the clock signal 201 from the clock generator 8 which generates a sine wave at a clock frequency of 5 GHz into a variable attenuator 9.
And a variable delay unit 10 for processing.
The frequency modulation signal 203 converts the clock signal 201 into a variable attenuator 11
And processing by the variable delay unit 12.
The semiconductor laser light source 1 outputs light 101 frequency-modulated by the frequency modulation signal 202, and the semiconductor laser light source 2 outputs light 102 frequency-modulated by the frequency modulation signal 203.
2つの信号原13,14はクロック発生器8に同期し、5Gb
/sのRZ信号204,205をそれぞれ発生する。RZ信号204はパ
ルス幅可変回路15を経て強度変調信号206としてLiNbO3
の外部変調器17に与えられる。RZ信号205は、RZ信号204
と同様に、パルス幅可変回路16を経て強度変調信号207
としてLiNbO3外部変調器18に与えられる。The two signal sources 13 and 14 are synchronized with the clock generator 8 and 5 Gb
/ s RZ signals 204 and 205 are generated, respectively. The RZ signal 204 passes through the pulse width variable circuit 15 and becomes LiNbO 3
Are provided to an external modulator 17. The RZ signal 205 is the RZ signal 204
Similarly, the intensity modulated signal 207
To the LiNbO 3 external modulator 18 as
外部変調器17は強度変調信号206を用いて半導体レー
ザ光源1からの出力光101を強度変調し、該出力光101を
送信信号光103として出力する。外部変調器18は強度変
調信号207を用いて半導体レーザ光源2からの出力光102
を強度変調し、該出力光102を送信信号光104として出力
する。The external modulator 17 intensity-modulates the output light 101 from the semiconductor laser light source 1 using the intensity modulation signal 206, and outputs the output light 101 as a transmission signal light 103. The external modulator 18 uses the intensity modulation signal 207 to output light 102 from the semiconductor laser light source 2.
Is intensity-modulated, and the output light 102 is output as a transmission signal light 104.
送信信号光103と送信信号光104とは光カプラ19で時間
多重され、合波送信信号光105が得られる。合波送信信
号光105は、それが1.3μm帯に零分散波長を有する光フ
ァイバ3を介して伝送された後、受信信号光106とな
る。受信信号光106は光受信器32で検出される。光受信
器32では光電変換素子としてアバランシェフォトダイオ
ード20を用い、受信信号光106から変換された電気信号
を電気増幅器21で増幅して信号を得ている。The transmission signal light 103 and the transmission signal light 104 are time-multiplexed by the optical coupler 19 to obtain a combined transmission signal light 105. The multiplexed transmission signal light 105 becomes a reception signal light 106 after being transmitted through the optical fiber 3 having a zero dispersion wavelength in the 1.3 μm band. The received signal light 106 is detected by the optical receiver 32. In the optical receiver 32, the avalanche photodiode 20 is used as a photoelectric conversion element, and the electric signal converted from the received signal light 106 is amplified by the electric amplifier 21 to obtain a signal.
次に、この光送信装置31の主要な部分の動作について
更に詳しく説明する。第2図にクロック信号と信号光と
の位相関係をタンミングチャートで示す。Next, the operation of the main part of the optical transmission device 31 will be described in more detail. FIG. 2 is a timing chart showing the phase relationship between the clock signal and the signal light.
強度変調信号204と強度変調信号205との位相差は1/2
タイムスロットとし、パルスのパルス幅はパルス幅可変
回路15,16を用いて元のパルス幅の2倍に設定されてい
る。可変遅延器10,12を用いて、周波数変調信号202と強
度変調信号206との位相差、周波数変調信号203と強度変
調信号207との位相差をそれぞれ調整することによっ
て、各送信信号光103,104はマーク信号の立ち上がり部
で光周波数が低くなりかつ立ち下がり部で光周波数が高
くなるように設定される。The phase difference between the intensity modulation signal 204 and the intensity modulation signal 205 is 1/2
The pulse width of the pulse is set to twice the original pulse width using the pulse width variable circuits 15 and 16. By using the variable delay devices 10 and 12 to adjust the phase difference between the frequency modulation signal 202 and the intensity modulation signal 206 and the phase difference between the frequency modulation signal 203 and the intensity modulation signal 207, respectively, each transmission signal light 103 and 104 is The optical frequency is set so that the optical frequency becomes lower at the rising portion of the mark signal and becomes higher at the falling portion.
その結果、従来のブリチャーブ方を用いた場合、10Gb
/sのとき伝送可能距離は約50kmであったのに対し、本装
置で伝送した場合、100km伝送後にも波形歪の小さい受
信波形が得られ、符号誤りの生じない良好な伝送を実現
することができた。As a result, when using the conventional bleaching method, 10 Gb
At / s, the transmittable distance was about 50 km, but when transmitted with this device, a received waveform with small waveform distortion was obtained even after 100 km transmission, and good transmission without code errors was realized. Was completed.
本発明にはこの他にも様々な変形例がある。光源とし
ては1.5μm帯の光源に限ることなく1.3μm帯でもその
他の波長でも良い。時間多重の数も2個に限ることなく
3個でもまたこれ以上でも良い。外部変調器としてはLi
NbO3の変調器の代わりに半導体の外部変調器を用いても
よい。またビットレートは5Gb/sに限ることなく2Gb/sで
も10Gb/sとすることもできる。半導体レーザを周波数変
調する波形としては、正弦波に限ることなく鋸波でも三
角波でもよい。伝送路は途中に光増幅器を増幅中継器と
して含む伝送路でも良い。伝送路の光ファイバの零分散
波長も1.3μm帯に限ることはない。また受信器の構成
も直接検波に限ることなく、ヘテロダイン検波を用いる
こともできる。The present invention has various other modifications. The light source is not limited to the 1.5 μm band light source, but may be a 1.3 μm band or another wavelength. The number of time multiplexing is not limited to two, but may be three or more. Li as external modulator
A semiconductor external modulator may be used instead of the NbO 3 modulator. The bit rate is not limited to 5 Gb / s, but can be 2 Gb / s or 10 Gb / s. The waveform for frequency-modulating the semiconductor laser is not limited to a sine wave but may be a sawtooth wave or a triangular wave. The transmission path may be a transmission path including an optical amplifier as an amplification repeater in the middle. The zero-dispersion wavelength of the optical fiber in the transmission path is not limited to the 1.3 μm band. The configuration of the receiver is not limited to direct detection, and heterodyne detection can be used.
(発明の効果) 本発明によれば、伝送路の分散の影響が大きい高速・
長距離伝送においても、分散の影響を低減あるいは補償
した伝送を可能とする光送信装置を得ることができる。(Effects of the Invention) According to the present invention, high-speed and
Even in long-distance transmission, it is possible to obtain an optical transmission device that enables transmission in which the influence of dispersion is reduced or compensated.
第1図は本発明の光送信装置の一実施例を示す構成図、
第2図は動作時における各信号と各信号光との位相関係
を示すタイミングチャートである。 1,2……半導体レーザ光源、3……光ファイバ、4,5……
直流バイアス源、6,7……加算器、8……クロック発生
器、9,11……可変減衰器、10,12……可変遅延器、13,14
……信号源、15,16……パルス幅可変回路、17,18……外
部変調器、19……光カプラ、20……アバランシェ・フォ
ト・ダイオード、21……電気増幅器、31……光送信装
置、32……光受信器。FIG. 1 is a configuration diagram showing one embodiment of an optical transmission device of the present invention,
FIG. 2 is a timing chart showing the phase relationship between each signal and each signal light during operation. 1,2 ... semiconductor laser light source, 3 ... optical fiber, 4,5 ...
DC bias source, 6,7 Adder, 8 Clock generator, 9,11 Variable attenuator, 10,12 Variable delayer 13,14
………………………………………………………………………………………………………………………………………………………………………………………………………………. Device, 32 ... optical receiver.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H04B 10/142 H04J 14/08 (56)参考文献 特開 平2−107034(JP,A) 特開 平2−167524(JP,A) 特開 昭63−248234(JP,A) 特開 昭64−51834(JP,A) 特開 平1−195428(JP,A) (58)調査した分野(Int.Cl.7,DB名) H04B 10/00 G02F 1/01 H01S 5/06 H04J 14/08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI H04B 10/142 H04J 14/08 (56) References JP-A-2-107704 (JP, A) JP-A-2-167524 (JP) JP-A-63-248234 (JP, A) JP-A-64-51834 (JP, A) JP-A-1-195428 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) H04B 10/00 G02F 1/01 H01S 5/06 H04J 14/08
Claims (1)
と、互いに所定の位相関係にあるクロック信号をそれぞ
れ生成し、それぞれのクロック信号で対応する前記n個
の半導体レーザ光源の注入電流を変調するn個のクロッ
ク信号源と、前記クロック信号に同期した送信信号をそ
れぞれ生成するn個の送信信号源と、前記n個の半導体
レーザ光源の出力光を対応する送信信号でそれぞれ強度
変調して強度変調光を生成するn個の外部変調器と、該
n個の外部変調器からそれぞれ出力されるn個の強度変
調光を合波し伝送路に送出する光合波器とを含み、前記
n個のクロック信号源でそれぞれ生成されるn個のクロ
ック信号の位相は互いに異なることを特徴とする光送信
装置。1. A method of generating n (n is a positive integer) semiconductor laser light sources and clock signals having a predetermined phase relationship with each other, and injecting the n semiconductor laser light sources corresponding to the respective clock signals. N clock signal sources for modulating current, n transmission signal sources for generating transmission signals synchronized with the clock signal, and output light of the n semiconductor laser light sources with corresponding transmission signals for respective intensities. And n optical modulators for modulating to generate intensity-modulated light, and an optical multiplexer for multiplexing n intensity-modulated lights output from the n external modulators and sending the multiplexed light to a transmission path. An optical transmitter, wherein the n clock signals generated by the n clock signal sources have different phases.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02234994A JP3099352B2 (en) | 1990-09-05 | 1990-09-05 | Optical transmitter |
EP90122834A EP0430230B1 (en) | 1989-11-30 | 1990-11-29 | Optical transmitting apparatus |
DE69017848T DE69017848T2 (en) | 1989-11-30 | 1990-11-29 | Optical transmission device. |
US07/620,111 US5184243A (en) | 1989-11-30 | 1990-11-30 | Optical transmitting apparatus for minimal dispersion along an optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02234994A JP3099352B2 (en) | 1990-09-05 | 1990-09-05 | Optical transmitter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04115732A JPH04115732A (en) | 1992-04-16 |
JP3099352B2 true JP3099352B2 (en) | 2000-10-16 |
Family
ID=16979486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02234994A Expired - Fee Related JP3099352B2 (en) | 1989-11-30 | 1990-09-05 | Optical transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3099352B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5285468A (en) * | 1992-07-17 | 1994-02-08 | At&T Bell Laboratories | Analog optical fiber communication system, and laser adapted for use in such a system |
JP3042605B2 (en) * | 1997-02-14 | 2000-05-15 | 日本電気株式会社 | Optical transmitter |
-
1990
- 1990-09-05 JP JP02234994A patent/JP3099352B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH04115732A (en) | 1992-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5184243A (en) | Optical transmitting apparatus for minimal dispersion along an optical fiber | |
JP3028906B2 (en) | Soliton optical communication system and optical transmitting device and optical receiving device thereof | |
US5940196A (en) | Optical communications system with wavelength division multiplexing | |
US5392147A (en) | Optical trunk transmission system and an optical repeater circuit | |
US8320779B2 (en) | Light receiver, optical communication system and method | |
US7181097B2 (en) | Methods of achieving optimal communications performance | |
US4991975A (en) | Division multiplexing and demultiplexing means lightwave communication system comprising optical time | |
JPH11506226A (en) | Optical signal transmitter, system, and transmission method | |
US7796897B2 (en) | WDM optical transmission system and WDM optical transmission method | |
JPH0764131A (en) | Optical communication device | |
US7239440B2 (en) | Wavelength conversion apparatus | |
EP1482662A1 (en) | System and method for alternate mark inversion and duobinary optical transmission | |
JP2705291B2 (en) | Optical transmitter | |
GB2240683A (en) | Long-distance high-speed optical communication scheme | |
JP3099352B2 (en) | Optical transmitter | |
JP2705293B2 (en) | Optical transmitter | |
JP7164092B2 (en) | Polarization division multiplexed intensity modulation system and method of using same | |
JPH0795721B2 (en) | Optical communication device | |
JP3322653B2 (en) | Optical receiving device used for dark soliton optical communication system | |
JP2671524B2 (en) | Optical communication device | |
JP2734715B2 (en) | Optical communication device | |
JP2001308792A (en) | Optical communication device, optical transmitter and optical receiver | |
JP2658678B2 (en) | Optical repeater circuit | |
JP3006498B2 (en) | Optical repeater transmission system and optical repeater circuit | |
JPH039624A (en) | Modem system for optical communication system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070818 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080818 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080818 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090818 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090818 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100818 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |