JPH04116821A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04116821A
JPH04116821A JP23631690A JP23631690A JPH04116821A JP H04116821 A JPH04116821 A JP H04116821A JP 23631690 A JP23631690 A JP 23631690A JP 23631690 A JP23631690 A JP 23631690A JP H04116821 A JPH04116821 A JP H04116821A
Authority
JP
Japan
Prior art keywords
film
sputtering
temperature
substrate
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23631690A
Other languages
Japanese (ja)
Inventor
Hiroaki Sekine
関根 弘昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23631690A priority Critical patent/JPH04116821A/en
Publication of JPH04116821A publication Critical patent/JPH04116821A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the generation of a disconnection due to migration of Al in a fine Al wiring by a method wherein an insulating film is formed on a semiconductor substrate, the substrate is heated to form a first thin film and after a second film is laminated and formed in a state that a substrate temperature is maintained in the vicinity of the first thin film, the substrate is made to cool down, this laminated film of the first and second films is patterned en bloc and the electrode wiring is formed. CONSTITUTION:A lower insulating film 2 is formed on a semiconductor substrate 1. A Ti film (a contact metal film) 3 and a TiN film (a barrier metal film) 4 are formed on the film 2. Then, a lower Al alloy film 5 is formed on the film 4 by a high-temperature sputtering method, in which a substrate temperature is heated in the range of 400 to 550 deg.C, and after a Ti film 6, which is thinner than the film 5 and consists of a high-melting point metal, is formed in a state that the substrate temperature is successively maintained, the substrate to be treated is cooled to normal temperatures. Then, a laminated film of the films 5 and 6 and the films 4 and 3 under the lower part of the laminated film are patterned en bloc by reactive ion etching using a resist pattern of a form, which corresponds to the form of a wiring pattern on the laminated film, as a mask and a low layer Al wiring 5L, which is constituted using the film 5 as its main conductive layer, is formed.

Description

【発明の詳細な説明】 〔概 要〕 半導体装置の製造方法、特に微細化された際にも信較性
が維持されるAI若しくはその合金からなる配線の形成
方法に関し、 主たる導電層となるAI若しくはA1合金膜を、ステッ
プカバレージ性に優れた高温スパッタ法或いは高温バイ
アススパッタ法により形成する際に、AIグレインの成
長を抑えてその上面の平滑化を図る方法を提供して、こ
のA1若しくはA1合金膜を主たる導電層として形成さ
れる微細電極配線のA1のマイグレーションに起因する
断線の発生を防止することを目的とし、 A1若しくはその合金からなる第1の膜を主たる導電層
とする半導体装置内部の電極配線を形成するに際し、絶
縁膜が形成された半導体基板上に、該半導体基板を40
0〜550℃に加熱して行う高温スパッタ法若しくは高
温バイアススパッタ法により前記第1の膜を形成する第
1のスバツタ工程と、少なくとも基板温度を前記第1の
スバツタ工程と同等若しくはその近傍に連続して維持し
た状態で、前記第1の膜上に、スパッタ法若しくはバイ
アススパッタ法により、前記第1の膜よりも薄い高融点
金属若しくはそのシリサイドからなる第2の膜を積層形
成する第2のスバツタ工程と、該第2のスバツタ工程が
終わった後該半導体基板を降温セしめ、次いで前記第1
の膜と第2の膜との積層膜を一括パターニングして電極
配線を形成する工程を有し構成される。
[Detailed Description of the Invention] [Summary] A method of manufacturing a semiconductor device, particularly a method of forming a wiring made of AI or an alloy thereof that maintains reliability even when miniaturized. Alternatively, when forming an A1 alloy film by a high temperature sputtering method or a high temperature bias sputtering method with excellent step coverage, there is provided a method for suppressing the growth of AI grains and smoothing the upper surface of the A1 or A1 alloy film. The purpose is to prevent the occurrence of disconnection due to the migration of A1 in fine electrode wiring formed using an alloy film as the main conductive layer, and to prevent the occurrence of disconnection due to the migration of A1 in the inside of a semiconductor device in which the first film made of A1 or its alloy is the main conductive layer. When forming the electrode wiring, the semiconductor substrate is placed on the semiconductor substrate on which the insulating film is formed for 40 minutes.
A first sputtering step in which the first film is formed by a high-temperature sputtering method or a high-temperature bias sputtering method performed by heating to 0 to 550° C., and a continuous sputtering step in which the substrate temperature is at least equal to or near the first sputtering step. a second film made of a high-melting point metal or its silicide, which is thinner than the first film, is laminated on the first film by sputtering or bias sputtering while maintaining the same temperature. After the sputtering process and the second sputtering process are completed, the semiconductor substrate is cooled and set, and then the first
The method includes a step of collectively patterning a laminated film of the film and the second film to form electrode wiring.

〔産業上の利用分野〕 本発明は半導体装置の製造方法、特に微細化された際に
も信較性が維持されるアルミニウム若しくはその合金か
らなる配線の形成方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming wiring made of aluminum or an alloy thereof that maintains reliability even when miniaturized.

半導体装置の内部配線には、低抵抗を有し、形成が容易
で、且つ低コストである等の理由から、アルミニウム(
AI)、若しくは八1−1%Si、 Al−1%5i−
0,1%Cu、  Al−0,15%Ti−0,1%C
u等のAIを主成分とするA1合金の薄膜が多く用いら
れている。
Aluminum (
AI), or 81-1%Si, Al-1%5i-
0,1%Cu, Al-0,15%Ti-0,1%C
Thin films of A1 alloys mainly composed of AI such as u are often used.

一方、LSI等の高集積化される半導体装置においては
、上記AI若しくはA1合金からなる内部配線の幅も極
度に微細化されてきており、それに伴ってエレクトロマ
イグレーションやストレスマイグレーションによる配線
の断線が増大し、半導体装置の信較性が低下する傾向に
ある。
On the other hand, in highly integrated semiconductor devices such as LSIs, the width of internal wiring made of the above-mentioned AI or A1 alloy has become extremely fine, and as a result, the number of wiring breaks due to electromigration and stress migration has increased. However, the reliability of semiconductor devices tends to decrease.

そこで、上記AIのストレスマイグレーション或いはエ
レクトロマイグレーションによる断線を防止するために
、ステップカバレージ性に優れていて段差部における膜
厚の減少がなく、且つ上面が平滑になり均一な膜厚が得
られるA1若しくはA1合金の内部配線を形成する方法
が望まれている。
Therefore, in order to prevent wire breakage due to stress migration or electromigration of the above-mentioned AI, we used A1 or A1, which has excellent step coverage, does not reduce the film thickness at stepped portions, and has a smooth upper surface to obtain a uniform film thickness. A method of forming internal wiring of A1 alloy is desired.

〔従来の技術〕[Conventional technology]

従来、半導体装置内部のAI配線に用いられるA1若し
くはA1合金の薄膜は基板温度を250℃程度の低温に
加熱した状態で堆積させる通常のスパッタリング方法に
よって形成されていた。しかし半導体装置の高集積化に
より、半導体素子及び、各種パターンの幅及び間隔が縮
小され、これに伴いコンタクトホール、スルーホール、
及び素子表面の凹凸段差等のアスペクト比が増大するに
つれて、上記A1若しくは51合金膜の形成に通常のス
パッタリング法を用いた際には、そのステップカバレー
ジ性の不足から上記凹凸段差部における膜厚の減少が著
しく、その部分でA1配線にAIのマイグレーションに
起因する断線が発生し易くなって、半導体装置の信顧性
が低下するという問題を生じていた。
Conventionally, thin films of A1 or A1 alloy used for AI wiring inside semiconductor devices have been formed by a normal sputtering method in which they are deposited while the substrate temperature is heated to a low temperature of about 250°C. However, as semiconductor devices become more highly integrated, the width and spacing of semiconductor elements and various patterns are reduced, and as a result contact holes, through holes,
As the aspect ratio of uneven steps on the element surface increases, when a normal sputtering method is used to form the A1 or 51 alloy film, the film thickness at the uneven steps increases due to insufficient step coverage. The decrease was significant, and disconnection due to AI migration was likely to occur in the A1 wiring at that portion, resulting in a problem of lowering the reliability of the semiconductor device.

そこで近時、基板をAIの融点に近い400〜550℃
に昇温させた状態で堆積を行う高温スパッタ或いは高温
バイアススパッタによりAI若しくはA1合金膜を堆積
させることにより、堆積膜のステップカバレージ性を向
上せしめる方法が提案されている。
Therefore, recently, the temperature of the substrate is 400-550℃, which is close to the melting point of AI.
A method has been proposed in which the step coverage of the deposited film is improved by depositing an AI or A1 alloy film by high-temperature sputtering or high-temperature bias sputtering in which deposition is performed at elevated temperatures.

しかし上記高温スパッタ性成いは高温バイアススパッタ
法においては、ステップカバレージ性の向上は認められ
るものの、スパッタを終わった後、スパッタ時の高温か
ら常温に冷却される時点で、AIのグレインの成長が進
み(例えばグレインサイズ10am程度に及ぶこともあ
る)、第3図番二模式的に示すように大きく成長したA
1グレイン51A、51B 、51C等の境界部に凹部
52が生じ、AI若しくはA1合金薄膜の表面に凹凸が
形成される。
However, although step coverage is improved in the high-temperature sputtering and high-temperature bias sputtering methods described above, the growth of AI grains is slowed down after sputtering, when the temperature is cooled from the high temperature during sputtering to room temperature. (for example, the grain size may reach about 10 am) and has grown large as shown schematically in Figure 3, No. 2.
Recesses 52 are formed at the boundaries of 1 grains 51A, 51B, 51C, etc., and unevenness is formed on the surface of the AI or A1 alloy thin film.

(図中、50は下層絶縁膜) そのため、上記AI若しくはA1合金の薄膜をバターニ
ングして形成した配線は、その上面に形成される凹凸に
よって、各部の断面積が均一にならず、半導体装置の高
集積化が進み、内部配線の幅の微細化が極度に進んだ際
には、局所的に配線の断面積が極端に減少する領域を生
じ、この領域にエレクトロマイグレーションやストレス
マイグレーションに起因して断線が発生するという問題
を生ずる。
(In the figure, 50 is the lower insulating film.) Therefore, in the wiring formed by patterning the thin film of AI or A1 alloy, the cross-sectional area of each part is not uniform due to the unevenness formed on the upper surface, and the semiconductor device As devices become more highly integrated and the width of internal interconnects becomes extremely fine, regions where the cross-sectional area of interconnects locally decreases drastically occur, and electromigration and stress migration occur in these regions. This results in the problem of wire breakage.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そこで本発明は、主たる導電層となるA1若しくはA1
合金薄膜を、ステップカバレージ性に優れた高温スパッ
タ法或いは高温バイアススパッタ法により形成する際に
、AIグレインの成長を抑えてその上面の平滑化を図る
方法を提供し、このAI若しくはA1合金の薄膜を主た
る導電層として形成される微細A1配線のA1のマイグ
レーションに起因する断線の発生を防止することを目的
とする。
Therefore, the present invention provides A1 or A1 as the main conductive layer.
Provided is a method for suppressing the growth of AI grains and smoothing the upper surface when forming an alloy thin film using a high temperature sputtering method or a high temperature bias sputtering method with excellent step coverage. The purpose of this invention is to prevent the occurrence of disconnection due to the migration of A1 in fine A1 wiring formed as a main conductive layer.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、アルミニウム若しくはその合金からなる第
1の膜を主たる導電層とする半導体装置内部の電極配線
を形成するに際し、絶縁膜が形成された半導体基板上に
、該半導体基板を400〜550℃に加熱して行う高温
スパッタ法若しくは高温バイアススパッタ法により前記
第1の薄膜を形成する第1のスバツタ工程と、少なくと
も基板温度を前記第1のスバツタ工程と同等若しくはそ
の近傍に連続して維持した状態で、前記第1の膜上に、
スパッタ法若しくはバイアススパッタ法により、前記第
1の膜よりも薄い高融点金属若しくはそのシリサイドか
らなる第2の膜を積層形成する第2のスバツタ工程と、
該第2のスバ・ノタ工程を終わった後練半導体基板を降
温せしめ、次いで前記第1の膜と第2の膜との積層膜を
一括パターニングして電極配線を形成する工程を有する
本発明による半導体装置の製造方法により解決される。
The above-mentioned problem is that when forming electrode wiring inside a semiconductor device having a first film made of aluminum or its alloy as a main conductive layer, the semiconductor substrate is heated at 400 to 550°C on a semiconductor substrate on which an insulating film is formed. a first sputtering step in which the first thin film is formed by a high-temperature sputtering method or a high-temperature bias sputtering method performed by heating the substrate to a temperature of at least the same as or in the vicinity of the first sputtering step; on the first film in the state,
a second sputtering step of laminating a second film made of a high melting point metal or its silicide thinner than the first film by a sputtering method or a bias sputtering method;
According to the present invention, the method includes the step of cooling down the processed semiconductor substrate after the second suba-nota step, and then collectively patterning the laminated film of the first film and the second film to form electrode wiring. The problem is solved by a method for manufacturing a semiconductor device.

〔作 用〕[For production]

即ち本発明の方法においては、内部配線の主たる導電層
となるAI若しくはその合金の薄膜をステップカバレー
ジ性が高められる400〜550℃における高温スパッ
タ法或いは高温バイアススパッタ法により形成した後、
基板温度を下げず上記スパッタ時の温度或いはその近傍
温度に引続いて基板温度を維持した状態で、前記スパッ
タにより形成されたAI若しくはその合金股上に連続し
て、前記スパッタ温6度に比べ融点が極端に高い高融点
金属若しくはそのシリサイドの薄い膜をスパッタ形成し
、その後に基板の室温への冷却を行う。
That is, in the method of the present invention, after forming a thin film of AI or its alloy, which becomes the main conductive layer of the internal wiring, by high-temperature sputtering or high-temperature bias sputtering at 400 to 550°C, which improves step coverage,
While maintaining the substrate temperature at or near the temperature during the sputtering without lowering the substrate temperature, the melting point of the AI or its alloy formed by the sputtering is continuously increased to 6 degrees compared to the sputtering temperature. A thin film of a metal with an extremely high melting point or its silicide is formed by sputtering, and then the substrate is cooled to room temperature.

このようにすることにより、融点に近いスパッタ温度に
加熱されていることによってマイグレートし易くなって
いるAI原子が、冷却に伴って集合して大きなグレイン
に成長するのが、極端に融点が高<400〜550℃の
高温でその剛性が充分に維持される高融点金属若しくは
そのシリサイドの薄膜に押さえ込まれ、AI若しくはそ
の合金薄膜の表面はほぼ平滑に形成される。
By doing this, the AI atoms, which are heated to a sputtering temperature close to the melting point and thus tend to migrate, will aggregate and grow into large grains as they cool down, while the melting point is extremely high. It is held down by a thin film of a high melting point metal or its silicide, which maintains its rigidity sufficiently at high temperatures of <400 to 550° C., and the surface of the thin film of AI or its alloy is formed to be substantially smooth.

従って、この高融点金属若しくはそのシリサイドの薄膜
を含むAI若しくはその合金薄膜をパターニングして形
成されるAI配線の断面積は各部でほぼ均一になって、
局所的な電流密度の増大あるいは局所的な強度低下は回
避され、エレクトロマイグレーションやストレスマイグ
レーションによる断線は防止される。
Therefore, the cross-sectional area of the AI wiring formed by patterning the thin film of AI or its alloy containing the thin film of this high-melting point metal or its silicide is approximately uniform in each part,
A local increase in current density or a local decrease in strength is avoided, and wire breakage due to electromigration or stress migration is prevented.

〔実施例〕〔Example〕

以下本発明を、図を参照し実施例により具体的に説明す
る。
Hereinafter, the present invention will be specifically explained by examples with reference to the drawings.

第1図(a)〜げ)は本発明の方法の一実施例の工程断
面図、第2図はターレット式高温スパッタ装置の概略構
成図である。全図を通じ同一対象物は同一符合で示す。
FIGS. 1(a) to 1) are cross-sectional views of an embodiment of the method of the present invention, and FIG. 2 is a schematic diagram of a turret-type high-temperature sputtering apparatus. Identical objects are indicated by the same reference numerals throughout the figures.

第1図(a)参照 本発明の方法を用いて多層配線構造の半導体装置を製造
するに際しては、図示されない半導体素子が形成された
半導体基板1上に、通常通りCVD法によりSing、
PSG 、 BPSG等からなる厚さ1μm程度の下層
絶縁膜2を形成し、この下層絶縁膜2の図示されない領
域に半導体基板lの図示されない半導体素子の機能領域
を表出するコンタクトホール(図示せず)を形成した後
、前記図示されないコンタクトホールの内面及び下層絶
縁膜2上にコンタクトメタルとなる厚さ200人程0の
Ti膜3とバリアメタルとなる厚さ1000人程度0T
iN膜4とを順次通常のArスパッタ法により形成する
Refer to FIG. 1(a) When manufacturing a semiconductor device with a multilayer wiring structure using the method of the present invention, Sing,
A lower insulating film 2 of about 1 μm thick made of PSG, BPSG, etc. is formed, and a contact hole (not shown) is formed in a region (not shown) of the lower insulating film 2 to expose a functional region of a semiconductor element (not shown) of the semiconductor substrate l. ), on the inner surface of the contact hole (not shown) and on the lower insulating film 2, a Ti film 3 with a thickness of about 200 mm becomes a contact metal and a Ti film 3 with a thickness of about 1000 mm becomes a barrier metal.
An iN film 4 is sequentially formed by ordinary Ar sputtering.

第1図Φ)参照 次いで、上記基板のバリアメタルとなるTiN膜4上に
、基板温度をAIの融点に近い400〜550℃の範囲
の例えば500’Cに加熱する高温スパッタ法により例
えば例えばA1−1%5i−0,1%Cu組成を有する
厚さ0.5μm程度のA1合金膜5を形成し、次いで基
板温度を500℃に引続き維持した状態で、上記A1合
金膜5上に厚さ300人程度のTi膜6を形成した後、
被処理基板を常温まで冷却する。
Refer to FIG. 1 Φ) Next, for example, Al An A1 alloy film 5 having a thickness of about 0.5 μm having a composition of -1%5i-0.1% Cu is formed, and then a thickness of about 0.5 μm is formed on the A1 alloy film 5 while the substrate temperature is continuously maintained at 500°C. After forming the Ti film 6 of about 300 people,
Cool the substrate to be processed to room temperature.

なお、上記A1合金膜5及びTi膜6の連続高温スパッ
タは、例えば第2図に概略構成を示すようなターレット
式の高温スパッタ装置を用いて、以下に説明するような
方法で行われる。
The continuous high-temperature sputtering of the A1 alloy film 5 and the Ti film 6 is performed in the following manner using, for example, a turret-type high-temperature sputtering apparatus whose schematic configuration is shown in FIG. 2.

即ち、ターレット式高温スパッタ装置の、Arガスが流
入されその圧力が例えば5〜10 anTorrに制御
されているターレット式チャンバ32内の、ヒータ33
で加熱された陽極34上に、前記バリアメタルとなるT
iN膜4の形成を終わった被処理基板31(第1図(a
)参照)を搭載し、被処理基板の温度をAIの融点に近
い前記500℃に昇温せしめる。そしてこの状態でター
レット式陰極35の例えばA1−1%5i−0,1%C
u組成を有するA1合金ターゲット36を被処理基板3
1と対向せしめ、陽極34とA1合金ターゲット36間
に例えば13.56MHzの高周波電力を、1〜5W/
ci+”程度のパワー密度で印加し、被処理基板31上
の前記TiN膜4上に上記下層A1合金膜5を0.5μ
m程度の厚さに形成しく第1図(b)参照)、次いでチ
ャンバ32内のArガス圧を5〜IQ mTorrに引
続き維持し、且つ陽極温度即ち被処理基板31の温度を
500℃に引続き維持した状態で、ターレット式陰極3
5を90度回動し、被処理基板31とTiターゲット3
7とを対向せしめ、陽極34とTiターゲット37間に
前記同様の高周波電力を印加して500℃の高温スパッ
タ温度に引続き維持されているAl−1%5i−0,1
%Cu組成の下層A1合金膜5上に厚さ300人程度の
Ti膜6を形成しく第1囲い)参照)、その後この被処
理基板31を陽極34上から取外して冷却する。なお、
第2図において、3日はArガス導入口、39は真空排
気口、40はRF電源、41はコンデンサ、42は接地
点を示す。
That is, a heater 33 in a turret-type chamber 32 of a turret-type high-temperature sputtering apparatus, into which Ar gas is introduced and whose pressure is controlled at, for example, 5 to 10 anTorr.
T, which becomes the barrier metal, is placed on the anode 34 heated by
The substrate to be processed 31 on which the iN film 4 has been formed (Fig. 1(a)
)), and the temperature of the substrate to be processed is raised to 500° C., which is close to the melting point of AI. In this state, the turret type cathode 35, for example, A1-1%5i-0,1%C
The A1 alloy target 36 having the u composition is attached to the substrate 3 to be processed.
For example, a high frequency power of 13.56 MHz is applied between the anode 34 and the A1 alloy target 36 at 1 to 5 W/.
The lower layer A1 alloy film 5 is deposited by 0.5 μm on the TiN film 4 on the substrate 31 to be processed by applying power at a power density of about ci+”.
(see FIG. 1(b)), the Ar gas pressure in the chamber 32 was maintained at 5 to IQ mTorr, and the anode temperature, that is, the temperature of the substrate 31 to be processed, was maintained at 500°C. While maintaining the turret type cathode 3
5 by 90 degrees, the substrate to be processed 31 and the Ti target 3
Al-1%5i-0,1 which is kept at a high sputtering temperature of 500° C. by applying the same high frequency power between the anode 34 and the Ti target 37.
A Ti film 6 having a thickness of about 300 mm is formed on the lower layer A1 alloy film 5 having a composition of % Cu (see first box)), and then the substrate 31 to be processed is removed from above the anode 34 and cooled. In addition,
In FIG. 2, 3rd is an Ar gas inlet, 39 is a vacuum exhaust port, 40 is an RF power source, 41 is a capacitor, and 42 is a grounding point.

本発明の方法においては、上記のように高温スパッタに
より形成された下層A1合金膜5(または純A1膜)の
冷却が、その上にTi膜6等の高融点を有する金属或い
はシリサイドの膜を引き続いて高温スパッタにより形成
した後になされるので、被処理基板の常温への冷却に際
し、下層AI合金M5(または純Al膜)上面がその上
部を覆って形成された上記高温スパッタ温度においても
充分に剛性が維持されるTi膜6等の高融点金属または
そのシリサイド膜によって機械的に押さえ込まれている
状態になる。そのため、上記高温スパッタ温度がら冷却
される際にA1合金膜5中のAIのグレインが大きく成
長するのが抑えられて、下層41合金M5の上面は凹凸
のない平滑な面となる。
In the method of the present invention, the lower layer A1 alloy film 5 (or pure A1 film) formed by high-temperature sputtering as described above is cooled, and a metal or silicide film having a high melting point such as the Ti film 6 is formed thereon. Since this is performed after subsequent high-temperature sputtering, even at the high-temperature sputtering temperature when the upper surface of the lower layer AI alloy M5 (or pure Al film) is formed to cover the upper layer, when the substrate to be processed is cooled to room temperature, It is in a state where it is mechanically held down by a high melting point metal such as the Ti film 6 or its silicide film that maintains its rigidity. Therefore, when the A1 alloy film 5 is cooled from the high sputtering temperature, the large growth of the AI grains in the A1 alloy film 5 is suppressed, and the upper surface of the lower layer 41 alloy M5 becomes a smooth surface without irregularities.

第1図(C)参照 次いで、通常通り上記A1合金膜5とTi膜6との積層
膜上に配線パターンの形状に対応する形状の図示しない
レジストパターンを形成し、このレジストパターンをマ
スクにし、塩素系のガスをエツチングガスに用いる反応
性イオンエツチングにより上記A1合金膜5とTi膜6
との積層膜及び、その下部のTiN膜4(バリアメタル
)、Ti膜3(コンタクトメタル)を−括バターニング
して前記A1合金膜5を主たる導電層とする下層AI配
線5Lを形成する。
Refer to FIG. 1(C) Next, as usual, a resist pattern (not shown) having a shape corresponding to the shape of the wiring pattern is formed on the laminated film of the A1 alloy film 5 and the Ti film 6, and this resist pattern is used as a mask. The A1 alloy film 5 and the Ti film 6 are formed by reactive ion etching using chlorine-based gas as an etching gas.
A lower layer AI wiring 5L having the A1 alloy film 5 as a main conductive layer is formed by patterning the laminated film of the above-mentioned layer, the TiN film 4 (barrier metal), and the Ti film 3 (contact metal) below it.

第1図(dン参照 次いで、上記下層AI配線5Lの形成面上に、通常とお
りCVD法によりpsc等からなる厚さ1μm程度の眉
間絶縁膜7を形成し、次いでこの層間絶縁膜7に通常の
フォトリソグラフィにより下層AI配線5L上面のTi
膜6を表出するスルーホール8を形成する。
1 (see d) Next, on the surface on which the lower layer AI wiring 5L is formed, a glabellar insulating film 7 of about 1 μm thick made of PSC or the like is formed by the usual CVD method, and then this interlayer insulating film 7 is The Ti on the upper surface of the lower AI wiring 5L is removed by photolithography.
A through hole 8 exposing the membrane 6 is formed.

第1図(e)参照 次いで、上記スルーホール8の内部を含む層間絶縁膜7
上に、前記下層A1配線5Lを形成する場合と同様に、
第3図に示したターレット式高温スパッタ装置を用い、
前述と同様500℃のスパッタ温度で下層配線と同様の
Al−1%5i−0,1%Cu組成を有する厚さ1μm
程度の上層A1合金M9を形成し、次いで基板温度を5
00℃に引続き維持した状態で、上記AI合合金9上番
こ厚さ300人程度のTi膜10を形成し、次いで上記
Ti膜10の形成を終わった被処理基板を常温まで冷却
する。
Referring to FIG. 1(e), next is an interlayer insulating film 7 including the inside of the through hole 8.
Similarly to the case where the lower layer A1 wiring 5L is formed above,
Using the turret type high temperature sputtering equipment shown in Figure 3,
1 μm thick with the same Al-1%5i-0.1% Cu composition as the lower layer wiring at a sputtering temperature of 500°C as described above.
Form an upper layer A1 alloy M9 of
While maintaining the temperature at 00° C., a Ti film 10 having a thickness of about 300 mm is formed on the AI alloy 9, and then the substrate to be processed on which the Ti film 10 has been formed is cooled to room temperature.

なお、この冷却に際し、上層41合金膜9の上面がA1
合金膜9上を覆って形成された前記Ti膜10によって
機械的に押さえ込まれているので、41合金膜9中のA
Iのグレインが大きく成長するのが抑えられ、上層41
合金膜9の上面は凹凸のない平滑な面となる。この際下
層AI配線5Lも前記Ti膜6によってグレイン成長が
押さえ込まれる。
Note that during this cooling, the upper surface of the upper layer 41 alloy film 9 is
Since it is mechanically suppressed by the Ti film 10 formed to cover the alloy film 9, the A in the 41 alloy film 9
The grains of I are prevented from growing large, and the upper layer 41
The upper surface of the alloy film 9 becomes a smooth surface with no unevenness. At this time, the grain growth of the lower layer AI wiring 5L is also suppressed by the Ti film 6.

第1図げ)参照 次いで、前記下層配線のパターニングと同様な手段によ
り上層41合金膜9とTj膜10を一層パターニングし
て上層41合金膜9を主たる導電層とする表面が平滑な
上層AI配線9Lを形成し、多層屓配線が完成する。
Refer to Figure 1) Next, the upper layer 41 alloy film 9 and the Tj film 10 are further patterned by the same method as the patterning of the lower layer wiring to form an upper layer AI wiring with a smooth surface with the upper layer 41 alloy film 9 as the main conductive layer. 9L is formed, and the multilayer wiring is completed.

なお、本発明の方法を高温バイアススパッタ法により実
施する際には、第3図に示すスパッタ装置において、タ
ーゲットに20〜50V程度の一電圧を印加してやれば
よい。この高温バイアススパッタ法を用いれば、前記実
施例に示す高温スパッタ法に比べ一層の平滑化が達成で
きる。
Note that when the method of the present invention is carried out by high temperature bias sputtering, a voltage of about 20 to 50 V may be applied to the target in the sputtering apparatus shown in FIG. By using this high-temperature bias sputtering method, more smoothing can be achieved than with the high-temperature sputtering method shown in the above embodiment.

また、上記実施例の方法によれば、A1若しくはその合
金膜とその上部に形成される高融点金属若しくはそのシ
リサイドの膜のスパッタが同一装置内において基板温度
を低下させずに引き続いて行われるが、本発明の方法は
上記実施例の方法に限らず、複数のスパッタ室を有する
マルチチャンバ方式のスパッタ装置を用いAI若しくは
その合金膜の高温スパッタまたは高温バイアススパッタ
を終わった後、その基板を上記高温スパッタ時の温度に
できるだけ近い高温状態に引き続いて維持したまま別の
チャンバ内に移動し、引続き前記基板温度を維持した状
態で前記AI若しくはその合金膜上に高融点金属若しく
はそのシリサイドのスパッタ膜を形成し、その後に基板
を常温に冷却する方法で行うこともできる。
Further, according to the method of the above embodiment, sputtering of A1 or its alloy film and a film of a high melting point metal or its silicide formed on the film can be performed successively in the same apparatus without lowering the substrate temperature. The method of the present invention is not limited to the method of the above embodiment, but after high-temperature sputtering or high-temperature bias sputtering of AI or its alloy film is completed using a multi-chamber type sputtering apparatus having a plurality of sputtering chambers, the substrate is sputtered as described above. While maintaining the high temperature state as close as possible to the temperature during high-temperature sputtering, the substrate is moved to another chamber, and a sputtered film of a high melting point metal or its silicide is deposited on the AI or its alloy film while continuing to maintain the substrate temperature. It can also be carried out by forming a substrate and then cooling the substrate to room temperature.

なお、高温スパッタで形成されるA】若しくは41合金
膜の下部にも、例えば300人程度の薄くTi等の高融
点金属膜を敷いてやることにより、−層平滑性の向上が
図れることもある。
Note that the smoothness of the layer may be improved by laying a thin film of a high-melting point metal such as Ti, for example, on the bottom of the A or 41 alloy film formed by high-temperature sputtering. .

また、本発明の方法において高融点金属には、実施例に
示したTi以外にMo、 H、Pt等も用いられ、高融
点金属シリサイドにはTi5iz 、Mo5iz 、W
Siz、Pt5iz等が用いられる。
Furthermore, in the method of the present invention, in addition to Ti shown in the examples, Mo, H, Pt, etc. are also used as the high melting point metal, and Ti5iz, Mo5iz, W, etc. are used as the high melting point metal silicide.
Siz, Pt5iz, etc. are used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電極配線を形成す
るためのA1若しくはその合金の薄膜を、そのステップ
カバレージ性を向上するために高温スパッタ法或いは高
温バイアススパッタ法で形成する際、上記薄膜中のAI
ダレインが粗大化するのが防止されて薄膜表面が平滑に
保たれる。
As explained above, according to the present invention, when a thin film of A1 or its alloy for forming electrode wiring is formed by high-temperature sputtering or high-temperature bias sputtering in order to improve step coverage, the thin film is AI inside
The coarsening of the dalein is prevented and the surface of the thin film is kept smooth.

従って本発明によれば、ステップカバレージ性に優れ、
且つ各部が均一な厚さを有するA1若しくはその合金か
らなるAI既配線形成できるのでAI配線各部の断面積
がほぼ均一化され、配線が微細化された際にも、局所的
な応力集中によるA1のストレスマイグレーションや局
所的な高電流密度によるA1のエレクトロマイグレーシ
ョンに起因するAi配線の断線は防止され、高集積化さ
れる半導体装置の信較性を高めることができる。
Therefore, according to the present invention, step coverage is excellent;
In addition, since it is possible to form AI wiring made of A1 or its alloy with uniform thickness in each part, the cross-sectional area of each part of the AI wiring can be made almost uniform, and even when the wiring is miniaturized, A1 due to local stress concentration can be formed. Disconnection of the Ai wiring due to stress migration of A1 or electromigration of A1 due to local high current density is prevented, and reliability of highly integrated semiconductor devices can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜げ)は本発明の方法の一実施例の工程断
面図、 第2図は実施例に用いたターレット式高温スパッタ装置
の概略構成図、 第3図は従来の問題点を示す模式断面図である。 図において、 lは半導体基板、 2は下層絶縁膜、 3はTi膜(コンタクトメタル)、 4はTiN膜(バリアメタル)、 5は下層のAI (AI−1%5i−0,1%Cu)合
金膜、5Lは下層AI配線、 6.10はTi膜、 7は眉間絶縁膜、 8はスルーホール、 9は上層のA1 υ■ 1%Si 0.1%Cu) 合金膜 9Lは上層A1配線 を示す。
Figures 1(a) to 5) are process cross-sectional views of an embodiment of the method of the present invention, Figure 2 is a schematic diagram of the turret-type high-temperature sputtering apparatus used in the embodiment, and Figure 3 is a conventional problem. FIG. In the figure, l is the semiconductor substrate, 2 is the lower insulating film, 3 is the Ti film (contact metal), 4 is the TiN film (barrier metal), and 5 is the lower layer AI (AI-1%5i-0,1%Cu). Alloy film, 5L is lower layer AI wiring, 6.10 is Ti film, 7 is eyebrow insulating film, 8 is through hole, 9 is upper layer A1 υ■ 1%Si 0.1%Cu) Alloy film 9L is upper layer A1 wiring shows.

Claims (1)

【特許請求の範囲】 1、アルミニウム若しくはその合金からなる第1の膜を
主たる導電層とする半導体装置内部の電極配線を形成す
るに際し、 絶縁膜が形成された半導体基板上に、該半導体基板を4
00〜550℃に加熱して行う高温スパッタ法若しくは
高温バイアススパッタ法により前記第1の膜を形成する
第1のスパッタ工程と、 少なくとも基板温度を前記第1のスパッタ工程と同等若
しくはその近傍に連続して維持した状態で、前記第1の
膜上に、スパッタ法若しくはバイアススパッタ法により
、前記第1の膜よりも薄い高融点金属若しくはそのシリ
サイドからなる第2の膜を積層形成する第2のスパッタ
工程と、該第2のスパッタ工程を終わった後該半導体基
板を降温せしめ、次いで前記第1の膜と第2の膜との積
層膜を一括パターニングして電極配線を形成する工程を
有することを特徴とする半導体装置の製造方法。 2、前記第1のスパッタ工程と第2のスパッタ工程とが
、同一容器内で行われることを特徴とする請求項1記載
の半導体装置の製造方法。 3、前記第1のスパッタ工程と第2のスパッタ工程とが
、気密に連結された異なる容器内で行われることを特徴
とする請求項1記載の半導体装置の製造方法。
[Claims] 1. When forming electrode wiring inside a semiconductor device in which a first film made of aluminum or its alloy is a main conductive layer, the semiconductor substrate is placed on a semiconductor substrate on which an insulating film is formed. 4
a first sputtering step in which the first film is formed by a high-temperature sputtering method or a high-temperature bias sputtering method performed by heating to 00 to 550° C.; and a continuous sputtering step in which the substrate temperature is at least the same as or near the first sputtering step. a second film made of a high-melting point metal or its silicide, which is thinner than the first film, is laminated on the first film by sputtering or bias sputtering while maintaining the same temperature. A sputtering step, and a step of cooling the semiconductor substrate after completing the second sputtering step, and then collectively patterning the laminated film of the first film and the second film to form electrode wiring. A method for manufacturing a semiconductor device, characterized by: 2. The method of manufacturing a semiconductor device according to claim 1, wherein the first sputtering step and the second sputtering step are performed in the same container. 3. The method of manufacturing a semiconductor device according to claim 1, wherein the first sputtering step and the second sputtering step are performed in different containers that are hermetically connected.
JP23631690A 1990-09-06 1990-09-06 Manufacture of semiconductor device Pending JPH04116821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23631690A JPH04116821A (en) 1990-09-06 1990-09-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23631690A JPH04116821A (en) 1990-09-06 1990-09-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04116821A true JPH04116821A (en) 1992-04-17

Family

ID=16998994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23631690A Pending JPH04116821A (en) 1990-09-06 1990-09-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04116821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321068A (en) * 1994-05-24 1995-12-08 Samsung Electron Co Ltd Metal wiring formation and sputtering device that is used therefor
WO1997006562A1 (en) * 1995-08-10 1997-02-20 Siemens Aktiengesellschaft Metal interconnect structure for an integrated circuit with improved electromigration reliability
US7045399B2 (en) 1992-12-09 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045399B2 (en) 1992-12-09 2006-05-16 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US7061016B2 (en) 1992-12-09 2006-06-13 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US7105898B2 (en) 1992-12-09 2006-09-12 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
US7547916B2 (en) 1992-12-09 2009-06-16 Semiconductor Energy Laboratory Co., Ltd. Electronic circuit
JPH07321068A (en) * 1994-05-24 1995-12-08 Samsung Electron Co Ltd Metal wiring formation and sputtering device that is used therefor
WO1997006562A1 (en) * 1995-08-10 1997-02-20 Siemens Aktiengesellschaft Metal interconnect structure for an integrated circuit with improved electromigration reliability

Similar Documents

Publication Publication Date Title
US5963827A (en) Method for producing via contacts in a semiconductor device
US6001461A (en) Electronic parts and manufacturing method thereof
KR0148325B1 (en) Formation method of metal layer in semiconductor device
US5911857A (en) Method for forming metal wiring of semiconductor devices
JPH09186102A (en) Manufacture of semiconductor device
EP0107363B1 (en) Method of producing anisotropically-conducting layers
JPH04116821A (en) Manufacture of semiconductor device
CN1150325A (en) Process for fabricating CVD aluminum layer in semiconductor device
JP3200085B2 (en) Method and apparatus for producing conductive layer or structure for high density integrated circuit
JPH11260920A (en) Method for forming wiring of semiconductor element
JPH07115073A (en) Manufacture of semiconductor device
JPS60115221A (en) Manufacture of semiconductor device
JPH01191442A (en) Manufacture of semiconductor integrated circuit device
KR20070082887A (en) Semiconductor device and method of manufacturing the same
KR100429876B1 (en) Method for manufacturing semiconductor device having ruthenium layer with high density seeding layer and equipment for fabricating the same
JPH04127454A (en) Semiconductor device
JPH10106972A (en) Manufacture of electrode wiring structure
JP7057445B2 (en) Capacitors, capacitor manufacturing methods, and semiconductor devices
JP2003174092A (en) Semiconductor device and method of manufacturing the same
JPH04234124A (en) Semiconductor device
JP2538664B2 (en) Method for manufacturing semiconductor device
JP2000208628A (en) Production of semiconductor device
JPH0235753A (en) Manufacture of semiconductor device
KR100197665B1 (en) Forming method for metal wiring in semiconductor device
JPH05259108A (en) Oxygen-doped titanium nitride film and its manufacture