JPH04116137A - High toughness high carbon cold rolled steel sheet and its manufacture - Google Patents

High toughness high carbon cold rolled steel sheet and its manufacture

Info

Publication number
JPH04116137A
JPH04116137A JP2232717A JP23271790A JPH04116137A JP H04116137 A JPH04116137 A JP H04116137A JP 2232717 A JP2232717 A JP 2232717A JP 23271790 A JP23271790 A JP 23271790A JP H04116137 A JPH04116137 A JP H04116137A
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
toughness
carbon cold
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232717A
Other languages
Japanese (ja)
Inventor
Kiyoshi Fukui
清 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2232717A priority Critical patent/JPH04116137A/en
Publication of JPH04116137A publication Critical patent/JPH04116137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a high carbon cold rolled steel sheet excellent in toughness, in a steel having a specified compsn. in which each content of Nb, Ti, P and Cu is prescribed, by incorporating fine spheroidized cementite having specified average grain size. CONSTITUTION:A high carbon cold rolled steel sheet having a compsn. contg., by weight, 0.30 to 0.90% C, 0.05 to 0.70% Si, 0.05 to 1.00% Mn, <=0.020% P, 0.005 to 0.10% Ti, 0.005 to 0.100% Nb, <=0.08% solAl and 0.0020 to 0.010% N, furthermore suitably contg., at need, one or more kinds among 0.005 to 0.020% Ca 0.05 to 0.50% Cu, <=0.30% Cr and 0.0003 to 0.0030% B and the balance Fe with inevitable impurities and contg. fine spherical cementite having <=0.8mu average grain size is prepd. In this way, the high carbon steel sheet having excellent hydrogen cracking resistance and toughness in an are with high hardness of about >=45 HRc can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高靭性高炭素冷延鋼板とその製造方法に関し
、さらに詳述すれば熱処理後のオーステナイト組織が非
常に微細化し、耐衝撃性、耐摩耗性、さらには使用中の
水素侵入による割れの発生抑止効果が優れ、しかも製造
性や加工性が良好であって、チェーン部品、ギヤ部品、
クラッチ部品、板ばねホースバンド、シートベルトバッ
クル、座金用として好適な高靭性高炭素冷延鋼板とその
製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a high-toughness, high-carbon cold-rolled steel sheet and a method for manufacturing the same. , has excellent wear resistance, and has an excellent effect of preventing cracking caused by hydrogen intrusion during use, and has good manufacturability and processability, making it suitable for chain parts, gear parts,
The present invention relates to a high-toughness, high-carbon cold-rolled steel sheet suitable for use in clutch parts, leaf spring hose bands, seatbelt buckles, and washers, and a method for manufacturing the same.

(従来の技術) 一般に、チェーン部品、ギヤ部品、ホースクリップ、ク
ラッチ部品、シートベルトパンクル、座金部品等はJI
S G 3311に規定されているS30CM〜SS7
0Cの高炭素鋼板や、SK7M、SK5Mの高炭素冷延
鋼板を素材とし、これを成形加工した後、焼入れ・焼戻
し、オーステンパ等の熱処理により硬化することで製造
されるのが普通である。
(Prior art) In general, chain parts, gear parts, hose clips, clutch parts, seat belt punctures, washer parts, etc.
S30CM to SS7 specified in SG 3311
It is usually manufactured by using 0C high carbon steel plate, SK7M, SK5M high carbon cold rolled steel plate as a material, forming it, and then hardening it through heat treatment such as quenching, tempering, and austempering.

ここで、前記各製品用の素材鋼板には、成形加工前は軟
質で加工し易く、成形加工後に施される熱処理によって
初めて所望の強度が得られ、かつ製品として使用時に十
分な耐衝撃性と耐摩耗性を発揮することが要求されてい
る。この理由から、材質として前述の如き炭素含有量の
高いものが運ばれるとともに、一般に、鉄鋼メーカーか
らの薄鋼板の出荷に際しては軟質とするための球状化焼
鈍が施される。そして、出荷後の素材薄鋼板はユーザー
にて所望の形状に成形加工されてから、焼入れ、焼戻し
の熱処理が施されて必要特性の付与が行われる。この場
合、製品の耐衝撃性および耐摩耗性は特に焼戻しの温度
が影響することから、使用の形態や状況によって「焼入
れまま」ないしは「650°Cまで」の各焼戻し処理温
度が注意深く選択される(通常180〜450度)。ま
たオーステンパ処理としては、800°C以上のオース
テナイト域に均熱後、250〜380°Cの溶融塩浴ま
たは、溶融鉛浴へ象、冷される。
Here, the raw material steel plates for each of the above products are soft and easy to process before forming, and the desired strength can only be obtained through heat treatment after forming, and have sufficient impact resistance when used as a product. It is required to exhibit wear resistance. For this reason, materials with a high carbon content as described above are transported, and generally, when thin steel sheets are shipped from steel manufacturers, they are subjected to spheroidizing annealing to make them soft. After shipping, the raw material thin steel sheet is formed into a desired shape by the user, and then subjected to heat treatment such as quenching and tempering to impart necessary properties. In this case, the impact resistance and abrasion resistance of the product are particularly affected by the tempering temperature, so the tempering temperature of "as-quenched" or "up to 650°C" is carefully selected depending on the form and situation of use. (Usually 180-450 degrees). In addition, for austempering treatment, after soaking to an austenite region of 800°C or higher, the material is cooled in a molten salt bath or a molten lead bath at 250 to 380°C.

(発明が解決しようとする課題) しかし、JISに規定されている前記焼入れ、焼戻し型
高炭素鋼板では注意深い熱処理条件の選択にもかかわら
ず、耐衝撃性や耐水素割れ性が不十分である0例えば、
自動車エンジンにおける燃料管あるいはガス管等の接続
部を固定するホースクリップについては高いバネ性が要
求されるためTS:200に以上の高強度鋼が適用され
ている。この強度を確保するには従来CMが0.70−
0.85%の高炭素鋼(S70C,SK5M、 SK7
M等)をオーステンパ処理して用いられてきた。しかし
、このような鋼を適用した場合、使用中に応力集中を受
ける部分より割れが発生する問題が生じており、これら
の割れの破面ば粒界破壊の様相を呈していることがら使
用中に破断部に侵入した水素が原因であると推定されて
いる。
(Problem to be Solved by the Invention) However, despite careful selection of heat treatment conditions, the hardened and tempered high carbon steel sheets specified in JIS have insufficient impact resistance and hydrogen cracking resistance. for example,
High-strength steel of TS: 200 or higher is used for hose clips that fix connections such as fuel pipes or gas pipes in automobile engines because high spring properties are required. To ensure this strength, conventional CM is 0.70-
0.85% high carbon steel (S70C, SK5M, SK7
M, etc.) has been used after being austempered. However, when such steel is used, there is a problem that cracks occur in areas that receive stress concentration during use, and the fracture surfaces of these cracks appear to be intergranular fractures. It is presumed that the cause was hydrogen that entered the fracture.

このような水素割れを防止するには、オーステナイト粒
径を微細化するとともに、オーステナイト粒界が強化さ
れるように化学成分を調整する必要がある。オーステナ
イト粒径の微細化にはスラブ加熱あるいは焼入れ、また
はオーステナイト域の均熱処理に際して、析出するA+
N等の微細粒子により抑制する方法が一般的である。
In order to prevent such hydrogen cracking, it is necessary to refine the austenite grain size and adjust the chemical components so that the austenite grain boundaries are strengthened. To refine the austenite grain size, A+ precipitates during slab heating or quenching, or soaking in the austenite region
A common method is to suppress it using fine particles such as N.

しかし従来よりさらに微細なオーステナイト結晶粒を得
るためにはこれらの微細粒子の析出に加えさらに多くの
他の微細粒子の析出が必要となる。
However, in order to obtain finer austenite crystal grains than conventional ones, in addition to the precipitation of these fine particles, it is necessary to precipitate many other fine particles.

また、成形後の熱処理については摸業能率向上を目的と
してオーステナイト域での均熱時間の短縮が求められて
きている。このためには、冷間圧延・焼鈍後に球状化し
たセメンタイト粒を微細化する必要があり、このセメン
タイト粒の微細化のためには熱延板でのパーライト組織
を均一でかつ微細なものとしなければならない。この問
題を解決するための熱間圧延方法についてもいくつかの
提案がなされている。
In addition, with regard to post-forming heat treatment, there is a demand for shortening the soaking time in the austenite region for the purpose of improving manufacturing efficiency. For this purpose, it is necessary to refine the cementite grains that have become spheroidized after cold rolling and annealing, and in order to refine the cementite grains, the pearlite structure in the hot rolled sheet must be made uniform and fine. Must be. Several proposals have also been made regarding hot rolling methods to solve this problem.

本発明者らは先願(特願平1−177335号)におい
てTiまたはTi−Nbを加えたB添加鋼(以下、「先
願鋼」という)について発明したがこの鋼種は、靭性向
上を目的としてCr鋼またはCr−no鋼をヘースとし
ておりコストアップとなるとともに、Cr、Moのセメ
ンタイト中への固溶により熱処理時のセメンタイトの鋼
中への固溶が著しく遅らされる。
The present inventors invented a B-added steel containing Ti or Ti-Nb (hereinafter referred to as "prior application steel") in a previous application (Japanese Patent Application No. 1-177335), but this steel type was developed for the purpose of improving toughness. Since Cr steel or Cr-no steel is used as the base, the cost increases, and the solid solution of cementite into the steel during heat treatment is significantly delayed due to the solid solution of Cr and Mo into the cementite.

このためCr添加量を焼入れ性を阻害しない程度にまで
極力低減し、またMoの添加を除いたものが望まれる。
Therefore, it is desirable to reduce the amount of Cr added as much as possible to an extent that does not impede hardenability, and to eliminate the addition of Mo.

また熱延板の圧延条件を考えると、Bの添加が必須とな
りコストアップが問題となっていた。
Furthermore, considering the rolling conditions of hot-rolled sheets, the addition of B is essential, which poses a problem of increased costs.

また熱間圧延条件に関する知見は特願平2−14723
3号で得られていたが、この時の対象鋼は一般高炭素鋼
であり、耐水素割れ性等に関する対策を考慮したもので
はなく、140〜200kgf/mm”(Hv:420
〜570)の高強度域での使用については耐水素脆性の
向上が必要となっていた。
Further, knowledge regarding hot rolling conditions is disclosed in Japanese Patent Application No. 2-14723.
No. 3 was obtained, but the target steel at this time was general high carbon steel, and no measures regarding hydrogen cracking resistance etc. were taken into consideration, and
-570), it is necessary to improve the hydrogen embrittlement resistance for use in the high strength range.

本発明の一般的目的は、より安価な材料であって、焼入
れ・焼戻し後、あるいはオーステンパー処理後の耐摩耗
性さらには耐水素割れ性はもちろん、靭性に優れた高炭
素冷延鋼板とその製造方法を提供することである。
The general object of the present invention is to provide a high-carbon cold-rolled steel sheet that is less expensive and has excellent wear resistance and hydrogen cracking resistance after quenching, tempering, or austempering, as well as excellent toughness. An object of the present invention is to provide a manufacturing method.

本発明の具体的目的は、前記した各問題点を解消し、熱
処理後のオーステナイト組織が非常に微細化し、耐衝撃
性、耐摩耗性、さらには使用中に水素侵入による割れの
発生抑止効果が優れ、しかも製造性や加工性が良好な高
靭性高炭素冷延鋼板とその製造方法を提供することであ
る。
The specific purpose of the present invention is to solve the above-mentioned problems, to make the austenite structure extremely fine after heat treatment, to improve impact resistance, wear resistance, and to prevent cracking caused by hydrogen penetration during use. It is an object of the present invention to provide a high-toughness, high-carbon cold-rolled steel sheet having excellent manufacturability and workability, and a method for manufacturing the same.

(課題を解決するための手段) 上記目的を達成するため本発明者らは種々検潤を重ね、
これら高強度鋼板の素材として十分満足できる硬度、引
張り強度を備え、しかも加工性が良好で圧延過程や最終
製品への成形工程でも割れなど不都合を生じることのな
い冷延鋼板を提供すべく研究を行ったところ、次に示す
ような知見を得た。
(Means for solving the problem) In order to achieve the above object, the present inventors have repeatedly conducted various tests,
We are conducting research to provide cold-rolled steel sheets that have sufficient hardness and tensile strength to be used as materials for these high-strength steel sheets, have good workability, and do not cause problems such as cracking during the rolling process or forming process into final products. As a result, I obtained the following findings.

(a)従来、材料強度の高い鋼種において生し易い水素
脆化や疲労脆化は完全に防止することはできないと考え
られていたが、そのような鋼種であっても、成分として
厳密に調整された特定量のNb(0,005〜o、io
o%)を添加すると、オーステナイト粒が効果的に微細
化されて水素脆性による割れは著しく抑制されること。
(a) Previously, it was thought that hydrogen embrittlement and fatigue embrittlement, which tend to occur in steel types with high material strength, could not be completely prevented, but even in such steel types, the ingredients must be strictly adjusted. A specific amount of Nb (0,005~o,io
o%), the austenite grains are effectively refined and cracking due to hydrogen embrittlement is significantly suppressed.

(b)これに対しさらに0.005〜0.100%ノT
 iを添力Uするとスラブ加熱時あるいは焼入れにおけ
る均熱時においてT1Nb系複合窒化物あるいは炭窒化
物を形成しオーステナイト粒成長を効果的に抑制するこ
と。
(b) In addition, 0.005 to 0.100% T
When i is added to U, a T1Nb-based composite nitride or carbonitride is formed during slab heating or soaking during quenching, and austenite grain growth is effectively suppressed.

(C)また、鋼中のPを特定値以下に低減すると、オー
ステナイト粒界に偏析したP量が減って脆性破壊の要因
となる粒界脆化が抑えられ、材料の一層の靭性改善がも
たらされること。
(C) Furthermore, when the P content in steel is reduced below a certain value, the amount of P segregated at austenite grain boundaries is reduced, suppressing grain boundary embrittlement that causes brittle fracture, and further improving the toughness of the material. To be.

(d)更に、適量のCuの添加は走行中のギヤ、チェー
ン等の表面に硫化物の皮膜を形成し、表面からの水素の
侵入を抑制する特性があり、水素脆性による割れの発生
防止に効果があること。
(d) Furthermore, the addition of an appropriate amount of Cu forms a sulfide film on the surface of moving gears, chains, etc., and has the property of suppressing the intrusion of hydrogen from the surface, which prevents cracks due to hydrogen embrittlement. It must be effective.

(eJ熱間圧延後ホットランテーブル上で加速冷却ゾー
ン(仕上げ圧延機側)と空冷ゾーン(巻取り機側)に分
割して冷却する際、加速冷却ゾーン中の冷却速度を5〜
50°C/seeとして、加速冷却停止温度(以下、「
中間温度」といい、「Tll1」で表示する)が550
°C以上となるように冷却することにより、コイル全長
にわたって均一で微細なパーライト組織が形成され、こ
れを冷延後の箱焼鈍で焼鈍時間を調整することにより、
均一で微細な球状化セメンタイトを有する鋼板が得られ
る。この結果、成形後にオニステナイト域に均熱した際
に、セメンタイトのオーステナイト中への固溶が容易と
なり、熱処理時間の短縮、および熱処理後の鋼中でのセ
メンタイト残留が効率的に防止できること。
(eJ After hot rolling, when cooling is divided into an accelerated cooling zone (finishing mill side) and an air cooling zone (winding machine side) on the hot run table, the cooling rate in the accelerated cooling zone is set to 5~
Accelerated cooling stop temperature (hereinafter referred to as "
"Intermediate temperature" (displayed as "Tll1") is 550
By cooling to above °C, a uniform and fine pearlite structure is formed over the entire length of the coil, and by adjusting the annealing time in box annealing after cold rolling,
A steel plate having uniform and fine spheroidized cementite is obtained. As a result, when soaking in the onystenite region after forming, cementite is easily dissolved into austenite, shortening the heat treatment time and efficiently preventing cementite from remaining in the steel after heat treatment.

これら(a)〜(e)に示した知見事項により、本発明
は完成されたものであって、その要旨とするところは、
重量割合にて C:0.30〜0.90%、  Si: 0.05〜0
,70%、Mn: 0.05〜1.00%、  P:’
0.020%以下、Ti: 0.005〜0.10%、
 Nb: 0.005〜0.100%、sol’、Al
: O,08%以下、 N : 0.0020〜0.0
10%さらに必要に応し下記■ないし■の一種以上適宜
加え、 ■Ca:0.005〜0.020%、■Cu:0.05
〜0.50%、■Cr: 0.30%以下:  ■B:
O,0O03〜0.0030%残部Feおよび不可避不
純物 から成る鋼組成を有し、鋼中に平均粒径0.8p以下の
微細な球状化セメンタイトを有する高靭性高炭素冷延鋼
板である。
The present invention has been completed based on the findings shown in (a) to (e), and its gist is as follows:
C: 0.30-0.90%, Si: 0.05-0 in weight percentage
,70%, Mn: 0.05-1.00%, P:'
0.020% or less, Ti: 0.005 to 0.10%,
Nb: 0.005-0.100%, sol', Al
: O, 08% or less, N: 0.0020-0.0
10%, and if necessary, add one or more of the following ■Ca: 0.005 to 0.020%, ■Cu: 0.05
~0.50%, ■Cr: 0.30% or less: ■B:
It is a high-toughness, high-carbon cold-rolled steel sheet having a steel composition consisting of O,0O03 to 0.0030% balance Fe and unavoidable impurities, and having fine spheroidized cementite with an average grain size of 0.8p or less in the steel.

また、別の面からは、本発明は、上記鋼組成を有する鋼
を、熱間圧延後ホットランテーブル上で仕上げ圧延機側
の加速冷却ゾーンと巻取り機側の空冷ゾーンとに分割し
て冷却する際、前記加速冷却ゾーン中の冷却速度を5〜
50℃/secとして、加速冷却停止温度(中間温度、
Two)が550°C以上となるように冷却し、次いで
空冷してパーライト変態を終了後巻取り、熱延鋼板とし
てから該熱延鋼板を酸洗脱スケールし、必要に応して5
00°C〜AC++30°Cの温度域での箱焼鈍を行っ
てから、30〜80%の圧下率の冷間圧延とAc、−7
0°(−Ac++30℃の温度域での箱焼鈍とを1回ま
たは2回以上実施することにより、鋼中に平均粒径0.
8μm以下の微細な球状化セメンタイトを析出させるこ
とを特徴とする高靭性高炭素冷延鋼板の製造方法である
In addition, from another aspect, the present invention cools the steel having the above steel composition by dividing it into an accelerated cooling zone on the finish rolling mill side and an air cooling zone on the winding machine side on the hot run table after hot rolling. When doing so, the cooling rate in the accelerated cooling zone is set to 5~
Accelerated cooling stop temperature (intermediate temperature,
Two) is cooled to 550°C or higher, then air cooled to complete the pearlite transformation, and then coiled to form a hot rolled steel sheet.The hot rolled steel sheet is pickled and descaled, and if necessary,
After box annealing in the temperature range of 00°C to AC++30°C, cold rolling at a reduction rate of 30 to 80% and Ac, -7
By carrying out box annealing in the temperature range of 0° (-Ac++ 30°C) once or twice or more, an average grain size of 0.
This is a method for producing a high-toughness, high-carbon cold-rolled steel sheet, which is characterized by precipitating fine spheroidized cementite of 8 μm or less.

かくして、本発明によれば、成形後の焼入れ・焼戻し、
あるいはオーステンパー処理などの熱処理に際して均熱
時間が効果的に短縮され、また熱処理後のオーステナイ
ト粒が効果的に微細化され、その結果、耐摩耗性さらに
は耐水素割れ性Cよもちろん、靭性に優れた高炭素冷延
鋼板が得られるのである。
Thus, according to the present invention, quenching and tempering after forming,
Or, during heat treatment such as austempering, the soaking time is effectively shortened, and the austenite grains after heat treatment are effectively refined, resulting in improved wear resistance, hydrogen cracking resistance C, and of course toughness. An excellent high carbon cold rolled steel sheet can be obtained.

(作用ン 本発明にかかる冷延鋼板の成分組成および製造条件を上
記のごとくに数値限定した理由を説明する。
(The reason why the composition and manufacturing conditions of the cold-rolled steel sheet according to the present invention are numerically limited as described above will be explained.

(化学成分) (a) C 鋼板に所望の硬度、強度、焼入れ性および耐摩耗性を得
るためには0.30%以上のCの添加が必要である。ま
たC含[1が0.90%超の場合、焼入れ前の加工性が
劣化するばかりか、焼入れ後の脆性も増大するためC添
加量を0.30〜0.90%と定めた。
(Chemical composition) (a) C In order to obtain the desired hardness, strength, hardenability and wear resistance of the steel plate, it is necessary to add 0.30% or more of C. Further, when the C content [1] exceeds 0.90%, not only the workability before quenching deteriorates but also the brittleness after quenching increases, so the amount of C added was set at 0.30 to 0.90%.

(b)Si 積掻的添加は特に必要ないが、0.70%を超えて含有
させると鋼板が硬質となって脆化する傾向を見せること
から、Si含有量は0.70%以下と定めた。
(b) Si It is not particularly necessary to add Si cumulatively, but if it is added in excess of 0.70%, the steel plate tends to become hard and brittle, so the Si content is set at 0.70% or less. Ta.

また焼入れ性を確保するために0.05%以上、好まし
くは0.15%以上の添加は必要である。
Further, in order to ensure hardenability, it is necessary to add 0.05% or more, preferably 0.15% or more.

(C) 11 n 本発明が対象としている高炭素鋼板の一つの用途はギヤ
、チェーン等であり、−Sの耐摩耗鋼板と異なり靭性向
上のためMnを低減する必要がある。
(C) 11 n One application of the high carbon steel sheet targeted by the present invention is gears, chains, etc., and unlike -S wear-resistant steel sheets, it is necessary to reduce Mn in order to improve toughness.

特に本発明鋼板では1.0%を超えて含有されると熱処
理により焼きが入りやすく、硬くなり過ぎて靭性低下を
招く。一方、Mn含有量が0.05%未満であると、固
溶S量が多くなって熱間加工時の脆化が生じ鋼板の製造
性を害するようになることから、Mn含有量は0.05
〜1.00%と定め、望ましくは0.80%以下の添加
に制限するのがよい。
In particular, in the steel sheet of the present invention, if it is contained in an amount exceeding 1.0%, it is likely to be hardened by heat treatment, becoming too hard and causing a decrease in toughness. On the other hand, if the Mn content is less than 0.05%, the amount of solid solution S will increase, causing embrittlement during hot working and impairing the manufacturability of the steel sheet. 05
-1.00%, preferably limited to 0.80% or less.

(d) P P含有量は低いほど靭性上好ましく、本発明においてP
含有量は0.020%以下と定めたが、望ましくは0.
015%以下に制限するのがよい。
(d) P The lower the P content, the better from the viewpoint of toughness, and in the present invention, P
The content is set at 0.020% or less, preferably 0.020% or less.
It is preferable to limit it to 0.015% or less.

(e)N b Nbは、オーステナイト粒を微細化し鋼の靭性を向上さ
せる作用を有しており、この作用は水素脆化による破壊
の防止にも非常に有効である。したがって、これら割れ
発生防止を目的としてNbの添加がなされるが、その含
有量が0 、005%未満では前記作用による所望の効
果が確保できず、一方、0.100%を越えて含有させ
てもこれらの効果は飽和状態に達することから、Nb含
有量は0.005〜0.100%と定めた。また望まし
くはT1Nb系複合析出物を形成するためにTi添加量
の2倍程度の添加がよい。
(e) Nb Nb has the effect of refining austenite grains and improving the toughness of steel, and this effect is also very effective in preventing fracture due to hydrogen embrittlement. Therefore, Nb is added for the purpose of preventing the occurrence of these cracks, but if the content is less than 0.005%, the desired effect of the above action cannot be secured; on the other hand, if the content is less than 0.100%, However, since these effects reach a saturated state, the Nb content was determined to be 0.005 to 0.100%. Further, in order to form a T1Nb-based composite precipitate, it is preferable to add about twice the amount of Ti added.

(f)Ti Tiは、鋼の焼入れ性を向上させるとともに、TiNあ
るいはTiCを形成して微細分散させることにより鋼の
硬度および引張強度を増大させる作用を有している。そ
の上、Nbとの複合析出物としてTiNb(CN)を形
成し、オーステナイト結晶粒の微細化を促進する作用を
も発揮する。しかし、Ti含有量が0.005%未満で
は前記作用による所望の効果は得られず、一方、0.1
00%を超えて過剰に含有されるとコストアップになる
だけでなく、鋼の硬化につながって利点がなくなること
から、Ti含有量は0.005〜0.100%と定めた
。またT1Nb系の複合析出物を形成するにはNb添加
量を超えないようにすることが望ましい。
(f) Ti Ti has the effect of improving the hardenability of steel and increasing the hardness and tensile strength of steel by forming and finely dispersing TiN or TiC. Furthermore, TiNb (CN) is formed as a composite precipitate with Nb, and it also has the effect of promoting refinement of austenite crystal grains. However, if the Ti content is less than 0.005%, the desired effect due to the above action cannot be obtained;
If Ti is contained in excess of more than 0.00%, it not only increases costs but also leads to hardening of the steel and loses its benefits. Therefore, the Ti content is set at 0.005 to 0.100%. Further, in order to form a T1Nb-based composite precipitate, it is desirable that the amount of Nb added is not exceeded.

(g)  sol、Al Alは鋼の脱酸材として必要に応して添加される成分で
あるが、sol.Alの含有量が0.08%を超えると
コストアンプになるばかりが、鋼板の硬化をもたらすの
でなんら利点はない。このように、sol。
(g) sol, Al Al is a component added as necessary as a deoxidizing agent for steel, but sol. If the Al content exceeds 0.08%, it will not only increase the cost but also cause hardening of the steel plate, so there is no advantage. In this way, sol.

AI含有量が0.08%まで許容されるとの理由から、
その含有量を0.08%以下と定めた。
Because AI content is allowed up to 0.08%,
Its content was determined to be 0.08% or less.

(h) N Nの含有は鋼の硬度や引張強度の向上に効果がある他.
AlN 、 TiN等を形成してオーステナイトの粗粒
化を防止し、靭性向上に役立つ。この効果を確保するた
めには0.0020%以上のNが必要である。一方、そ
の含有量が0.010%超の場合には硬度上昇により焼
入れ前の加工性を阻害することがら、その含有量を0.
010%以下に制限した。
(h) N The inclusion of N is effective in improving the hardness and tensile strength of steel.
Forming AlN, TiN, etc. prevents austenite from becoming coarse and helps improve toughness. In order to ensure this effect, 0.0020% or more of N is required. On the other hand, if the content exceeds 0.010%, the hardness increases and the workability before quenching is inhibited, so the content is reduced to 0.010%.
0.010% or less.

(i)Ca 通常の綱においてもSによる靭性劣化が問題となる。こ
れは粗大なMnSの形成に起因するものであるが、Ca
を製鋼段階において添加することにより、この形成は制
御され、もしくは微細な球状析出物となることで靭性は
大幅に向上される。しかし、添加量が0.02%を超え
るとこの効果は飽和し、またコストアンプとなることか
ら添加量の上限を0.02%とした。
(i) Ca Even in ordinary steels, deterioration of toughness due to S is a problem. This is due to the formation of coarse MnS, but Ca
By adding P during the steelmaking stage, this formation can be controlled or the toughness can be significantly improved by forming fine spherical precipitates. However, if the amount added exceeds 0.02%, this effect will be saturated and the cost will be increased, so the upper limit of the amount added is set at 0.02%.

(j)Cu Cuは、焼入れ性に対する効果はあまり大きくないが、
表面に硫化物の皮膜を形成し、水素の侵入に対する制御
効果が顕著である。この効果により表層における割れ起
点の発生が押さえられる。この効果は0.05%以上で
確認されているが、0.50%以上ではこの効果が飽和
する。ところで通常の鋼では転炉鋼、電気炉鋼により異
なるがCuは0.05%未満で不可避的に含有される。
(j) Cu Cu does not have a very large effect on hardenability, but
A sulfide film is formed on the surface, and the effect of controlling hydrogen intrusion is remarkable. This effect suppresses the occurrence of crack starting points in the surface layer. This effect has been confirmed at 0.05% or more, but this effect is saturated at 0.50% or more. By the way, in ordinary steel, Cu is unavoidably contained in an amount of less than 0.05%, although this differs depending on whether the steel is a converter steel or an electric furnace steel.

しかし、水素脆性による割れ防止には0.05%以上が
必要であることから成分範囲を0.05〜0.50%と
設定した。
However, since 0.05% or more is required to prevent cracking due to hydrogen embrittlement, the component range was set at 0.05 to 0.50%.

(k)Cr Crは0.3〜0.6%C域での焼入れ性および焼戻し
軟化抵抗を改善するために0.30%までの添加は許容
される。0.30%超にまで添加すると材料コストが上
昇し、本発明の所期の目的達成が困難となる。
(k) Cr Cr is allowed to be added up to 0.30% in order to improve hardenability and temper softening resistance in the 0.3 to 0.6% C range. Adding more than 0.30% increases material cost and makes it difficult to achieve the intended purpose of the present invention.

(1)B: Bは焼入れ性および靭性を改善するために0.0003
〜0.0030%の配合は許容される。
(1) B: B is 0.0003 to improve hardenability and toughness
Loadings of ~0.0030% are acceptable.

なお、不純物としてのSは、MnSの形成によって靭性
の劣化をもたらし、またそれを阻止するための所要Ca
添加量が増大する結果、コスト上昇を招くことから、S
の上限は0.015%とするのが望ましい。
Note that S as an impurity causes deterioration of toughness due to the formation of MnS, and also reduces the required Ca to prevent this.
S
The upper limit of 0.015% is desirable.

(鋼中平均粒径) 本発明にあっては、冷間圧延後に鋼中に析出する球状化
セメンタイトの平均粒径が0.8 /Jl11超では粗
大粒子となって熱処理後の靭性改善という所期の効果が
得られないため、冷間圧延後の鋼中における球状化セメ
ンタイトの平均粒径を0.8p以下に制限する。
(Average particle size in steel) In the present invention, if the average particle size of spheroidized cementite precipitated in steel after cold rolling exceeds 0.8/Jl11, it becomes coarse particles and the toughness after heat treatment is improved. Therefore, the average grain size of spheroidized cementite in the steel after cold rolling is limited to 0.8p or less.

(製造プロセス) 本発明にあっては、熱間圧延→制御冷却→冷間圧延→焼
鈍の各工程を経て高靭性高炭素冷延鋼板が製造される。
(Manufacturing Process) In the present invention, a high-toughness, high-carbon cold-rolled steel sheet is manufactured through the steps of hot rolling, controlled cooling, cold rolling, and annealing.

その場合の熱間圧延条件は特に制限なく、慣用の条件で
行えばよいが、圧延終了温度は、後述する制御冷却によ
るパーライト変態を十分に完了させるためには、^r3
点[一般には、9to−2o3./i〒15.2(χN
i) +44.7(χSi) +31.5(!Mo)”
Cl以」二の1品度とするのが好ましい。
In that case, the hot rolling conditions are not particularly limited and may be carried out under conventional conditions, but the rolling end temperature must be ^r3 in order to sufficiently complete pearlite transformation by controlled cooling, which will be described later.
point [generally 9to-2o3. /i〒15.2(χN
i) +44.7(χSi) +31.5(!Mo)”
It is preferable to use a grade of 1 or higher than Cl.

(m)冷却速度 加速冷却ゾーン中の冷却速度は、巻取り前のパーライト
変態終了を目的とし、さらに通板速度、冷却ゾーンの長
さの制約から冷却速度の下限を57(:/secと規定
する。また過度に冷却速度を増大させると仮硬度が上昇
し冷間圧延性に弊害を与えることから、冷却速度の上限
は50℃/secとする。
(m) Cooling rate The cooling rate in the accelerated cooling zone is aimed at completing the pearlite transformation before winding, and the lower limit of the cooling rate is specified as 57 (:/sec) due to constraints on the sheet threading speed and the length of the cooling zone. Further, if the cooling rate is increased excessively, the temporary hardness increases and the cold rolling property is adversely affected, so the upper limit of the cooling rate is set to 50° C./sec.

(n)中間温度の限定 上述の冷却速度で加速冷却ゾーンを通過させても、綱の
Cその他の合金成分によりパーライトの形態は異なる。
(n) Limitation of intermediate temperature Even if the pearlite is passed through the accelerated cooling zone at the above-mentioned cooling rate, the morphology of pearlite will differ depending on the C and other alloy components of the steel.

このためC量、Si、 Mn量に対応した中間温度を設
定する必要がある。
Therefore, it is necessary to set an intermediate temperature corresponding to the amount of C, Si, and Mn.

中間温度(Tm)を650°C以下、550°C以上と
したのは、圧延機によるシミュレーションで得られた結
果から650°C超の温度で巻き取った場合、巻取りま
でに変態が完了せず、特性値変動が増加するとともに、
冷延・焼鈍後の球状化セメンタイトの平均粒径が1μm
以上となり、製品での熱処理に際してオーステナイト域
での均熱に非常に長い時間を要する。また550°C未
満で巻取った場合、ベイナイト等の低温変態生成相が加
速冷却中に出現し、硬質な熱延板となり、冷間加工性が
劣化するためである。
The reason for setting the intermediate temperature (Tm) to be 650°C or lower and 550°C or higher is because the results obtained from a simulation using a rolling mill indicate that if the coiling is performed at a temperature higher than 650°C, the transformation will not be completed before winding. As the characteristic value fluctuation increases,
The average particle size of spheroidized cementite after cold rolling and annealing is 1 μm.
As a result, it takes a very long time to soak the austenite region during heat treatment of the product. In addition, if the sheet is wound at a temperature lower than 550° C., low-temperature transformation phases such as bainite appear during accelerated cooling, resulting in a hard hot-rolled sheet and deteriorating cold workability.

なお、上述の加速冷却ゾーンおよび空冷ゾーンの具体的
構成は、熱間仕上げ圧延機の出側に例えば水冷による冷
却帯域を設けて加速冷却ゾーンとし、空冷ゾーンは巻取
機によって構成してもよい。
The specific configuration of the above-mentioned accelerated cooling zone and air cooling zone may be such that, for example, a cooling zone by water cooling is provided on the exit side of the hot finishing rolling mill to form the accelerated cooling zone, and the air cooling zone may be configured by a winding machine. .

(0)予備焼鈍条件 (n)に示す中間温度の限定条件に応じて熱間圧延を行
った鋼板についてはその組織の均一性を得るために硬度
はある程度増大する。これにより冷間圧延における圧延
荷重は増大することから、荷重低減のため必要に応じて
冷間圧延前の予備焼鈍を実施するのが好ましい、この時
の焼鈍条件としては極く微細なセメンタイトを粗大化さ
ゼるために下限温度を500°Cとする。またセメンタ
イトの過度の粗大化や粗大ラメラ−化を抑制するため上
限温度がAcl+30°Cの温度域で1〜24h均熱す
る箱焼鈍を実施するのが好ましい。
(0) Preliminary annealing conditions A steel plate hot-rolled according to the limited intermediate temperature conditions shown in (n) increases its hardness to some extent in order to obtain uniformity of its structure. As this increases the rolling load during cold rolling, it is preferable to carry out preliminary annealing before cold rolling as necessary to reduce the load.The annealing conditions at this time include converting extremely fine cementite into coarse particles. The lower limit temperature is set at 500°C to ensure that the temperature is reduced. Further, in order to suppress excessive coarsening and coarse lamellar formation of cementite, it is preferable to carry out box annealing in which the upper limit temperature is in the temperature range of Acl+30°C for 1 to 24 hours.

(p)冷間圧延条件 圧下率の下限は、後続の仕上げ焼鈍での再結晶および球
状化を促進することで成品の加工性向上をはかるため3
0%とした。またその上限は耳割れの発生を防止するた
め80%とした。
(p) The lower limit of the cold rolling reduction rate is set at 3 in order to improve the workability of the product by promoting recrystallization and spheroidization in the subsequent finish annealing.
It was set to 0%. Further, the upper limit was set at 80% to prevent the occurrence of edge cracks.

(q)仕上げ焼鈍条件 成品における組織の均一性を得るために、焼鈍条件とし
ては微細な球状化セメンタイトをある程度粗大化させる
ために下限温度をAc 、 −70“Cとする。
(q) Final annealing conditions In order to obtain uniformity of structure in the product, the annealing conditions are such that the lower limit temperature is Ac, -70"C in order to coarsen the fine spheroidized cementite to some extent.

また球状化セメンタイトの過度の粗大化や粗大ラメラ−
化を抑制するため上限温度がAcl+30°Cの温度域
で1時間以上均熱する箱焼鈍を実施するのが好ましい。
In addition, excessive coarsening of spheroidized cementite and coarse lamellae
It is preferable to perform box annealing in which the upper limit temperature is soaked for 1 hour or more in a temperature range of Acl+30° C. in order to suppress this.

また24時間超均熱するとセメンタイトが粗大化し、製
品での熱処理に際してオーステナイト域での均熱時間が
増大することから、好ましくは焼鈍工程での均熱時間は
24時間以内とする。
Further, if soaking is carried out for over 24 hours, the cementite will become coarse and the soaking time in the austenite region will increase during heat treatment of the product, so preferably the soaking time in the annealing step is within 24 hours.

なお、上記の冷間圧延および仕上げ焼鈍は少なくとも1
回行う。通常の条件下では1回だけ冷間圧延とそれに続
く仕上げ焼鈍を行えばよいが、炭素量が大きい場合、好
ましくは硬度条件:H*a<90が達成されるまで通常
は1〜2回行う。
Note that the above cold rolling and finish annealing are performed at least once.
Do it twice. Under normal conditions, cold rolling and subsequent finish annealing only need to be performed once, but if the carbon content is large, it is usually performed once or twice until the hardness condition: H*a<90 is achieved. .

以上のプロセスにより平均粒径0.8μm以下の球状化
セメンタイトが析出した高炭素冷延鋼板が得られる。
Through the above process, a high carbon cold rolled steel sheet in which spheroidized cementite with an average grain size of 0.8 μm or less is precipitated can be obtained.

(実施例) 次に、本発明をその実施例によってさらに具体的に説明
するが、本発明はこれによって限定されるものではない
(Example) Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1 本例では高硬度域における硬度と水素割れ特性との相関
を見るために、本発明にかがる製造条件で得られた高炭
素冷延鋼板の硬度特性と水素割れ耐久時間とを評価した
。比較用には本発明のi+inu成を外れたものを使用
した。
Example 1 In this example, in order to examine the correlation between hardness and hydrogen cracking properties in the high hardness range, the hardness properties and hydrogen cracking durability time of a high carbon cold rolled steel sheet obtained under the manufacturing conditions according to the present invention were measured. evaluated. For comparison, a sample other than the i+inu configuration of the present invention was used.

なお、上表の各供試鋼はSをほぼ0.005%含んでい
た。
Note that each steel sample in the above table contained approximately 0.005% S.

上記A−にの鋼を、1200℃で1h均熱した後、85
0″Cの仕上げ温度にて4mmの熱延板とした。これを
15℃/secで580°Cまで加速冷却した後、空冷
し変態終了後520°Cで巻取りを行った。この熱延板
を酸洗脱スケールの後650°Cにて6h均熱し軟質化
した後、板厚1.2 m+*まで圧下率70%の冷間圧
延を行い、引続き690℃にて16h均熱する球状化焼
鈍を行った。
After soaking the steel in A- above for 1 hour at 1200°C,
A 4 mm hot rolled sheet was prepared at a finishing temperature of 0''C. This was acceleratedly cooled to 580°C at a rate of 15°C/sec, and then air cooled and coiled at 520°C after completion of transformation. This hot rolled sheet was After pickling and descaling, the plate was soaked at 650°C for 6 hours to soften it, then cold rolled at a reduction rate of 70% to a thickness of 1.2 m+*, and then soaked at 690°C for 16 hours to form a spherical shape. Chemical annealing was performed.

このようにして得られた高炭素冷延鋼板を幅51長さ1
00IIllの板材として打ち抜き、860°Cで15
sinの均熱の後、直ちに270〜360°Cの塩浴中
に保持するオーステンパ処理を行った。
The high carbon cold rolled steel sheet obtained in this way has a width of 51 and a length of 1
Punched out as a plate material of 00IIll and heated at 860°C for 15
Immediately after soaking, an austempering process was performed by holding the sample in a salt bath at 270 to 360°C.

次いで、この試験片の長手中央部に深さ0.3n++n
、輻0.1mm、先端0.05+u+Rのスリットを加
工し、第1図に示す要領で曲げを付加した状態で20°
C,0,02Nの希硫酸水溶液中に保持して、耐水素割
れ試験を行った。この時の試験片硬度とスリット部の水
素割れ発生までの時間との相関を第2図にグラフで示し
た。
Next, a depth of 0.3n++n was placed in the longitudinal center of this test piece.
, a slit with a radius of 0.1mm and a tip of 0.05+u+R is machined, and the bending angle is 20° as shown in Figure 1.
A hydrogen cracking resistance test was conducted by holding the sample in a dilute sulfuric acid aqueous solution of C, 0,02N. The correlation between the hardness of the test piece at this time and the time until hydrogen cracking occurs in the slit portion is shown graphically in FIG.

本発明の鋼組成の範囲を外れた鋼1.JおよびKは材料
硬度および割れ耐久性のいずれも劣っていることが分か
る。
Steel outside the steel composition range of the present invention 1. It can be seen that J and K are inferior in both material hardness and cracking durability.

実施例2 本例では高硬度域の耐水素割れ性に対する熱間圧延条件
の影響について考察した。
Example 2 In this example, the influence of hot rolling conditions on hydrogen cracking resistance in a high hardness region was considered.

実施例1の鋼種BとDを用いて、熱間圧延後の制御冷却
および球状化焼鈍(仕上げ焼鈍)条件を第2表に示す6
水準(a=f)とし、これによる冷間圧延・仕上げ焼鈍
後のセメンタイト平均粒径と、850°Cで10m1n
の均熱後、鋼種Bでは280°C,鋼種りでは340″
Cで40m1n均熱するオーステンバ処理を行った。
Using steel types B and D of Example 1, the controlled cooling and spheroidizing annealing (finish annealing) conditions after hot rolling are shown in Table 2.
level (a = f), and the cementite average grain size after cold rolling and final annealing based on this and 10 m1n at 850 ° C.
After soaking, the temperature is 280°C for steel type B and 340'' for steel type
Austemper treatment was carried out by soaking at C for 40 ml.

この時の硬度は、鋼種B、Dともに!(++cで49.
5〜50.5 (Hv 〜500〜520)であった。
The hardness at this time is for both steel types B and D! (49.
5-50.5 (Hv ~500-520).

この後、実施例1と同じ試験方法を用いて耐水素割れ性
を評価した。
Thereafter, hydrogen cracking resistance was evaluated using the same test method as in Example 1.

それらの結果を鋼種B、Dそれぞれについて第3図およ
び第4図にグラフで示す。
The results are shown in graphs in FIGS. 3 and 4 for steel types B and D, respectively.

第3図および第4図からも分かるように、熱延板にて加
速冷却での冷却速度を5℃/sec未満とした場合、あ
るいは、中間温度が650 ’C超とした場合、あるい
は冷間圧延後の焼鈍処理においてセメンタイト粒が粗大
化した場合は、オーステンパ処理後にも鋼中にセメンタ
イトが残存していて、同し硬度レヘルでの耐水素割れ性
は著しく劣化している。
As can be seen from Figures 3 and 4, when the cooling rate in accelerated cooling is less than 5°C/sec, or when the intermediate temperature is over 650'C, or when the cold If the cementite grains become coarse during the annealing treatment after rolling, the cementite remains in the steel even after the austempering treatment, and the hydrogen cracking resistance at the same hardness level is significantly deteriorated.

第2表 注:*二本発明の範囲外 実施例3 本例は、第3表に示す鋼組成を有する各供試鋼について
第4表に示す製造条件で熱間圧延(スラブ均熱条件I2
00“cxlh)、制御冷却、予備焼鈍、板厚3.0m
mの熱延板から板厚1.2mmへの冷延板への圧率60
%の冷間圧延、そして仕上げ焼鈍として球状化焼鈍を行
って得られた冷延鋼板について球状化セメンタイト粒径
と硬度とを評価した。
Table 2 Note: *2 Example 3 outside the scope of the present invention In this example, each test steel having the steel composition shown in Table 3 was hot rolled (slab soaking condition I2) under the manufacturing conditions shown in Table 4.
00"cxlh), controlled cooling, preliminary annealing, plate thickness 3.0m
Rolling ratio 60 from a hot-rolled sheet of m to a cold-rolled sheet with a thickness of 1.2 mm
The grain size and hardness of spheroidized cementite were evaluated for cold rolled steel sheets obtained by cold rolling % and spheroidizing annealing as final annealing.

結果は同じく第4表にまとめて示す。The results are also summarized in Table 4.

このようにして得られた各供試材について第5表に示す
条件下でオーステンバ処理を行い、得られた供試材につ
いて、硬度、残留セメンタイトの有無、靭性、さらに耐
水素割れ性について評価試験を行った。
Each of the test materials thus obtained was subjected to austempering treatment under the conditions shown in Table 5, and the test materials obtained were evaluated for hardness, presence of residual cementite, toughness, and hydrogen cracking resistance. I did it.

それらの結果を第5表にまとめて示す。The results are summarized in Table 5.

現在、産業上求められている特性としては、■硬度49
.0(H*C)以上、■残留セメンタイトが無く、■耐
衝撃値1 kgf−m以上、■水素割れ耐久時間50時
間以上という特性を備えた材料であって、本発明にかか
る材料はいずれも満足するものである。
Currently, the characteristics required in industry are: ■Hardness 49
.. 0 (H*C) or more, ■ No residual cementite, ■ Impact resistance value of 1 kgf-m or more, ■ Hydrogen cracking durability of 50 hours or more, and all of the materials according to the present invention are It's satisfying.

(発明の効果) 本発明は以上説明したように構成されているから、従来
の高炭素鋼板と比較してH+tc:45以上の高硬度域
での耐水素割れ性および靭性に優れた鋼板が得られ、さ
らに焼入れ、焼戻しあるいは、オーステンバ等のオース
テナイト域の均熱時間が短縮され製品としての生産性が
高いものであり、産業上きわめて有用である。
(Effects of the Invention) Since the present invention is configured as described above, a steel plate with excellent hydrogen cracking resistance and toughness in a high hardness range of H+tc: 45 or more can be obtained compared to conventional high carbon steel plates. Furthermore, the time required for quenching, tempering, or soaking in the austenitic region such as in austenite is shortened, resulting in high productivity as a product, and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明鋼板の試験片の説明図;第2図は、本
発明鋼板の材料強度と割れ耐久時間に関係を示すグラフ
;および 第3図および第4図は、本発明鋼板の割れ耐久度と水素
割れによるTI!断までの時間を示す棒グラフである。
Figure 1 is an explanatory diagram of a test piece of the steel plate of the present invention; Figure 2 is a graph showing the relationship between material strength and cracking durability time of the steel plate of the present invention; and Figures 3 and 4 are diagrams of the steel plate of the present invention. TI due to cracking durability and hydrogen cracking! It is a bar graph showing the time until disconnection.

Claims (7)

【特許請求の範囲】[Claims] (1)重量割合にて C:0.30〜0.90%、Si:0.05〜0.70
%、Mn:0.05〜1.00%、P:0.020%以
下、Ti:0.005〜0.10%、Nb:0.005
〜0.100%、sol.Al:0.08%以下、N:
0.0020〜0.010%、残部Feおよび不可避的
不純物 から成る鋼組成を有し、鋼中に平均粒径0.8μm以下
の微細な球状化セメンタイトを有する高靭性高炭素冷延
鋼板。
(1) Weight percentage: C: 0.30-0.90%, Si: 0.05-0.70
%, Mn: 0.05-1.00%, P: 0.020% or less, Ti: 0.005-0.10%, Nb: 0.005
~0.100%, sol. Al: 0.08% or less, N:
A high-toughness, high-carbon cold-rolled steel sheet having a steel composition of 0.0020 to 0.010%, the balance being Fe and unavoidable impurities, and having fine spheroidized cementite with an average grain size of 0.8 μm or less in the steel.
(2)重量割合にて、さらに、Ca:0.005〜0.
020%を含有する請求項1記載の高靭性高炭素冷延鋼
板。
(2) In terms of weight ratio, Ca: 0.005 to 0.
The high toughness, high carbon cold rolled steel sheet according to claim 1, containing 0.020%.
(3)重量割合にて、さらに、Cu:0.05〜0.5
0%を含有する請求項1または2記載の高靭性高炭素冷
延鋼板。
(3) In terms of weight ratio, further Cu: 0.05 to 0.5
The high-toughness, high-carbon cold-rolled steel sheet according to claim 1 or 2, containing 0%.
(4)重量割合にて、さらに、Cr:0.30%以下を
含有する請求項1ないし3のいずれかに記載の高靭性高
炭素冷延鋼板。
(4) The high-toughness, high-carbon cold-rolled steel sheet according to any one of claims 1 to 3, further containing Cr: 0.30% or less in weight proportion.
(5)重量割合にて、さらに、B:0.0003〜0.
0030%を含有する請求項1ないし4のいずれかに記
載の高靭性高炭素冷延鋼板。
(5) In terms of weight ratio, B:0.0003 to 0.
The high toughness, high carbon cold rolled steel sheet according to any one of claims 1 to 4, containing 0.030%.
(6)請求項1ないし5のいずれかに記載の鋼組成を有
する鋼を、熱間圧延後ホットランテーブル上で仕上げ圧
延機側の加速冷却ゾーンと巻取り機側の空冷ゾーンとに
分割して冷却する際、前記加速冷却ゾーン中の冷却速度
を5〜50℃/secとして、加速冷却停止温度(中間
温度、Tm)が650℃以下、550℃以上となるよう
に冷却し、次いで空冷してパーライト変態を終了後巻取
り、熱延鋼板としてから該熱延鋼板を酸洗脱スケールし
、30〜80%の圧下率の冷間圧延とAc_1−70℃
〜Ac_1+30℃の温度域での箱焼鈍を冷却または2
回以上実施することにより、鋼中に平均粒径0.8μm
以下の微細な球状化セメンタイトを析出させることを特
徴とする高靭性高炭素冷延鋼板の製造方法。
(6) The steel having the steel composition according to any one of claims 1 to 5 is divided into an accelerated cooling zone on the finishing rolling mill side and an air cooling zone on the winding machine side on the hot run table after hot rolling. When cooling, the cooling rate in the accelerated cooling zone is set to 5 to 50 °C/sec, and the accelerated cooling stop temperature (intermediate temperature, Tm) is 650 °C or lower and 550 °C or higher, and then air cooling is performed. After the pearlite transformation is completed, the hot-rolled steel sheet is coiled and then pickled and descaled, followed by cold rolling at a rolling reduction of 30 to 80% and Ac_1-70°C.
Cooling box annealing in the temperature range of ~Ac_1+30℃ or 2
By performing this process more than once, the average grain size is 0.8 μm in the steel.
A method for producing a high-toughness, high-carbon cold-rolled steel sheet, characterized by precipitating the following fine spheroidized cementite.
(7)前記熱延鋼板を酸洗脱スケールした後、冷間圧延
を行うに先立って、500℃〜Ac_1+30℃の温度
域での箱焼鈍を行う請求項6記載の高靭性高炭素冷延鋼
板の製造方法。
(7) The high-toughness, high-carbon cold-rolled steel sheet according to claim 6, wherein after pickling and descaling the hot-rolled steel sheet, box annealing is performed in a temperature range of 500°C to Ac_1+30°C prior to cold rolling. manufacturing method.
JP2232717A 1990-09-03 1990-09-03 High toughness high carbon cold rolled steel sheet and its manufacture Pending JPH04116137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232717A JPH04116137A (en) 1990-09-03 1990-09-03 High toughness high carbon cold rolled steel sheet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232717A JPH04116137A (en) 1990-09-03 1990-09-03 High toughness high carbon cold rolled steel sheet and its manufacture

Publications (1)

Publication Number Publication Date
JPH04116137A true JPH04116137A (en) 1992-04-16

Family

ID=16943683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232717A Pending JPH04116137A (en) 1990-09-03 1990-09-03 High toughness high carbon cold rolled steel sheet and its manufacture

Country Status (1)

Country Link
JP (1) JPH04116137A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653494A1 (en) * 1993-11-12 1995-05-17 Sollac Narrow steel strip with a high carbon content and process for making this strip
CN102356174A (en) * 2009-02-26 2012-02-15 C.D.威尔斯有限公司 Micro-alloyed carbon steel as texture-rolled steel strip, in particular for spring elements
JP2014529355A (en) * 2012-07-31 2014-11-06 宝山鋼鉄股▲分▼有限公司 High hardness, high toughness, wear-resistant steel plate and its manufacturing method
JP2014529686A (en) * 2012-07-31 2014-11-13 宝山鋼鉄股▲分▼有限公司 High-strength, high-toughness, wear-resistant steel plate and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653494A1 (en) * 1993-11-12 1995-05-17 Sollac Narrow steel strip with a high carbon content and process for making this strip
FR2712305A1 (en) * 1993-11-12 1995-05-19 Lorraine Laminage Narrow bands of high carbon steel and method of making such bands.
CN102356174A (en) * 2009-02-26 2012-02-15 C.D.威尔斯有限公司 Micro-alloyed carbon steel as texture-rolled steel strip, in particular for spring elements
JP2012518723A (en) * 2009-02-26 2012-08-16 ツェー デー ヴェルツホルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Microalloyed carbon steel as a strip steel with texture formed by rolling, especially for spring members
US9290832B2 (en) 2009-02-26 2016-03-22 C.D. Waelzholz Gmbh Micro-alloyed carbon steel as a texture-rolled strip steel, in particular for spring elements
EP2401413B1 (en) * 2009-02-26 2016-11-30 C.D. Wälzholz GmbH Microalloyed carbon steel for steel sheet with rolled texture, in particular for spring parts
JP2014529355A (en) * 2012-07-31 2014-11-06 宝山鋼鉄股▲分▼有限公司 High hardness, high toughness, wear-resistant steel plate and its manufacturing method
JP2014529686A (en) * 2012-07-31 2014-11-13 宝山鋼鉄股▲分▼有限公司 High-strength, high-toughness, wear-resistant steel plate and its manufacturing method
EP2881485A4 (en) * 2012-07-31 2015-12-02 Baoshan Iron & Steel Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
US9994926B2 (en) 2012-07-31 2018-06-12 Baoshan Iron & Steel Co., Ltd. High-hardness, high-toughness, wear-resistant steel plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US10584396B2 (en) Heat treatable steel, product formed thereof having ultra high strength and excellent durability, and method for manufacturing same
JP6893560B2 (en) Tempered martensitic steel with low yield ratio and excellent uniform elongation and its manufacturing method
US5108518A (en) Method of producing thin high carbon steel sheet which exhibits resistance to hydrogen embrittlement after heat treatment
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JPH01230715A (en) Manufacture of high strength cold rolled steel sheet having superior press formability
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
CN113966404B (en) Non-heat-treated wire rod having excellent drawability and impact toughness and method for manufacturing the same
JP3474545B2 (en) Machine parts
EP3887556B1 (en) Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JPH04116137A (en) High toughness high carbon cold rolled steel sheet and its manufacture
JP2001181791A (en) Bar stock and wire rod for cold forging, excellent in induction hardenability and cold forgeability
JP3474544B2 (en) Linear or rod-shaped steel with reduced deformation resistance at room temperature and in the heating area
JPH02101117A (en) Production of high strength steel sheet having satisfactory formability
JP6610067B2 (en) Cold rolled steel sheet manufacturing method and cold rolled steel sheet
JPH09202921A (en) Production of wire for cold forging
JPH0598356A (en) Production of tempering-free-type ti-b type high carbon steel sheet
JPH0949065A (en) Wear resistant hot rolled steel sheet excellent in stretch-flanging property and its production
US20240141454A1 (en) Ultra high strength steel sheet having high yield ratio and excellent bendability and method of manufacturing same
JP2919642B2 (en) Manufacturing method of high carbon steel for tempering with excellent toughness and fatigue resistance
JPH09263838A (en) Production of high strength cold rolled steel sheet excellent in stretch-flange formability
JPH0344422A (en) Manufacture of high carbon thin steel sheet
JPH0941040A (en) Production of high strength cold rolled steel sheet excellent in strength-flanging property