JPH04114996A - Production of thin superconducting element film - Google Patents

Production of thin superconducting element film

Info

Publication number
JPH04114996A
JPH04114996A JP2232898A JP23289890A JPH04114996A JP H04114996 A JPH04114996 A JP H04114996A JP 2232898 A JP2232898 A JP 2232898A JP 23289890 A JP23289890 A JP 23289890A JP H04114996 A JPH04114996 A JP H04114996A
Authority
JP
Japan
Prior art keywords
substrate
raw material
oxide superconductor
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2232898A
Other languages
Japanese (ja)
Inventor
Yukio Watabe
行男 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP2232898A priority Critical patent/JPH04114996A/en
Publication of JPH04114996A publication Critical patent/JPH04114996A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To effectively obtain a thin superconducting element film having excellent continuity and uniformity by filling and burning a solution, melt or powder of oxide superconducting raw material in a hollow part formed on a substrate. CONSTITUTION:Hollow forming members 3A and 3B made of a resin, previously formed and having final shape are bonded through an adhesive 4 on a substrate to form a hollow part 2 having 0.1-1000mum depth. Then a solution containing an oxide superconductor raw material is packed in the hollow part 2 or melt containing the oxide superconducting raw material is packed therein or powder of oxide superconducting raw material two times larger than volume of the oxide superconducting raw material is packed therein and heated to 1050-1200 deg.C to melt the material and then burned at 800-970 deg.C for 0.5-2hr and quickly cooled and solidified.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は薄膜超伝導素子の製造方法に係り、特に、基板
上に所望のパターンで形成された酸化物超伝導体の厚膜
を有する薄膜超伝導素子を高い生産効率にて製造する方
法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a thin film superconducting device, and particularly relates to a method for manufacturing a thin film superconducting device, and in particular, a thin film having a thick film of an oxide superconductor formed on a substrate in a desired pattern. The present invention relates to a method for manufacturing superconducting elements with high production efficiency.

[従来の技術] 基板上に所定のパターンで形成された酸化物超伝導体の
厚膜を有する薄膜超伝導素子は、薄膜コイル、マイクロ
インダクター、マイクロ波の要素回路等として工業的に
有用である。
[Prior Art] Thin film superconducting elements having a thick film of oxide superconductor formed in a predetermined pattern on a substrate are industrially useful as thin film coils, microinductors, microwave element circuits, etc. be.

従来、基板上に酸化物超伝導体厚膜を形成する方法とし
ては、CVD、スパッター、塗布法などが知られており
、形成された厚膜な必要に応じて加工し、種々の超伝導
素子を作製する方法が提案されている。
Conventionally, CVD, sputtering, coating methods, etc. have been known as methods for forming oxide superconductor thick films on substrates, and the formed thick films can be processed as needed to form various superconducting elements. A method for manufacturing has been proposed.

[発明が解決しようとする課題] 上記従来法のうち、CVDやスパッター法は、高品質の
薄膜を得やすいため、その検討が盛んになされているが
、生産性、製造コスト面で問題かある。
[Problem to be solved by the invention] Among the conventional methods mentioned above, CVD and sputtering methods are being actively studied because they are easy to obtain high-quality thin films, but they have problems in terms of productivity and manufacturing cost. .

方、塗布法としては、原料粉のスラリーを用い、所望の
形状に形成する方法が提案されているが、この方法では
十分な超伝導特性が得られないという欠点があった。ま
た、有機酸塩などを用いる塗布方法では、原料濃度が極
めて低く、厚く塗布できないために生産性が低いという
欠点があった。
On the other hand, as a coating method, a method has been proposed in which a slurry of raw material powder is used to form a desired shape, but this method has the drawback that sufficient superconducting properties cannot be obtained. Furthermore, coating methods using organic acid salts have the drawback that the concentration of raw materials is extremely low and the coating cannot be applied thickly, resulting in low productivity.

本発明は上記従来の問題点を解決し、基板上に所望のパ
ターンで形成された酸化物超伝導体の厚膜を有する薄膜
超伝導素子を容易かつ効率的に製造することができる薄
膜超伝導素子の製造方法を提供することを目的とする。
The present invention solves the above conventional problems and makes it possible to easily and efficiently manufacture a thin film superconducting element having a thick film of an oxide superconductor formed on a substrate in a desired pattern. The object of the present invention is to provide a method for manufacturing an element.

[課題を解決するための手段] 請求項(1)の薄膜超伝導素子の製造方法は、基板上に
酸化物超伝導体膜を有する薄膜超伝導素子を製造するに
あたり、基板上に形成した四部に酸化物超伝導体原料を
含む溶液を充填した後、該酸化物超伝導体形成温度で焼
成することを特徴とする 請求項(2)の薄膜超伝導素子の製造方法は、基板上に
酸化物超伝導体膜を有する薄膜超伝導素子を製造するに
あたり、基板上に形成した凹部に酸化物超伝導体原料を
含む融液を充填した後、該酸化物超伝導体形成温度で焼
成することを特徴とする 請求項(3)の薄膜超伝導素子の製造方法は、基板上に
酸化物超伝導体膜を有する薄膜超伝導素子を製造するに
あたり、基板」二に形成した凹部に酸化物超伝導体原料
の粉体を充填して溶融させた後、該酸化物超伝導体形成
温度で焼成することを特徴とする。
[Means for Solving the Problems] The method for manufacturing a thin film superconducting device according to claim (1), in manufacturing a thin film superconducting device having an oxide superconductor film on a substrate, comprises four parts formed on a substrate. The method for manufacturing a thin film superconducting device according to claim (2), characterized in that a solution containing an oxide superconductor raw material is filled in the substrate and then fired at a temperature for forming the oxide superconductor. In manufacturing a thin film superconducting element having a oxide superconductor film, a recess formed on a substrate is filled with a melt containing an oxide superconductor raw material, and then fired at the oxide superconductor forming temperature. The method for manufacturing a thin film superconducting device according to claim (3) is characterized in that when manufacturing a thin film superconducting device having an oxide superconductor film on a substrate, an oxide superconductor is added to a recess formed in the substrate. The method is characterized in that after filling and melting conductor raw material powder, it is fired at the temperature for forming the oxide superconductor.

なお、本発明の方法により製造される超伝導体素子の酸
化物超伝導体膜としては、例えば、下記[T]又は[I
I ]等のビスマスや銅を含む酸化物膜が挙げられる。
In addition, as the oxide superconductor film of the superconductor element manufactured by the method of the present invention, for example, the following [T] or [I
Examples include oxide films containing bismuth and copper such as I.

[1] LI Ba2CI4307−6(Ln =Y、
Nd、Yb等の希土類元素)[II  コ  Bi  
2 5r2− X  Cal+ x  Cu0a+、5
以下に本発明を図面を参照して詳細に説明する。
[1] LI Ba2CI4307-6 (Ln = Y,
Rare earth elements such as Nd and Yb) [II Co Bi
2 5r2- X Cal+ x Cu0a+, 5
The present invention will be explained in detail below with reference to the drawings.

第1図及び第2図は基板に形成された凹部を示す断面斜
視図、第3図は凹部形成部材の断面斜視図、第4図は凹
部形成のためのマスクを示す断面斜視図である。
1 and 2 are cross-sectional perspective views showing a recess formed in a substrate, FIG. 3 is a cross-sectional perspective view of a recess forming member, and FIG. 4 is a cross-sectional perspective view showing a mask for forming a recess.

本発明の方法においては、まず、基板に凹部を形成する
。この凹部の形成方法としては特に制限はなく、例えば
、次の■又は■の方法を採用することができる。
In the method of the present invention, first, a recess is formed in the substrate. There is no particular restriction on the method of forming this recess, and for example, the following method (1) or (2) may be employed.

■ 第1図に示す如く、基板1」二に凹溝2等の凹部を
形成する。具体的には次の■〜■の方法が挙げられる。
(2) As shown in FIG. 1, a concave portion such as a concave groove 2 is formed in the substrate 1''2. Specifically, the following methods (1) to (2) may be mentioned.

■ 基板の成形時(例えば、加圧成形時)に、予め凹部
を有する形状に成形し、必要に応して焼成する。
(2) During molding of the substrate (for example, during pressure molding), it is preformed into a shape having a concave portion, and fired if necessary.

■ 機成加工(切り削り)により凹部を形成する。即ち
、基板成形体にg3械加工により凹部を形成した後必要
に応じて焼成する。或いは、焼結後の基板1に機械加工
により凹部を形成する。
■ Form recesses by mechanical processing (cutting). That is, after a concave portion is formed in the substrate molded body by G3 machining, it is fired if necessary. Alternatively, a recess is formed in the substrate 1 after sintering by machining.

■ 半導体素子に用いられるリソグラフィー技術、例え
ば、フォトリソグラフィーを用い一部をエツチングする
ことにより、凹部を形成する。
(2) A recess is formed by etching a portion using a lithography technique used for semiconductor devices, such as photolithography.

■ 第2図に示す如く、基板IA上に、樹脂等よりなる
凹部形成部材3 (3A、3B)を−法的に設ける。具
体的には次の■〜Oの方法が挙げられる。
(2) As shown in FIG. 2, recess forming members 3 (3A, 3B) made of resin or the like are legally provided on the substrate IA. Specifically, the following methods (1) to (0) may be mentioned.

■ 第3図に示す如く、予め成形された最終形状を有す
る樹脂製凹部形成部材3(3A3B)を接着剤4等によ
り基板に接着する。
(2) As shown in FIG. 3, a resin concave part forming member 3 (3A3B) having a pre-formed final shape is adhered to the substrate with an adhesive 4 or the like.

■ 基板上に樹脂を所定形状にスクリーン印刷するか、
或いは、第4図に示すようなマスク5 (5A、5B)
を基板上に載せて樹脂を塗布した後、硬化させる。
■ Screen print the resin in a predetermined shape on the board, or
Alternatively, a mask 5 (5A, 5B) as shown in FIG.
is placed on a substrate, coated with resin, and then cured.

■ 樹脂としてフ才)・レジストを使用し、通常のリソ
グラフィーにより基板上にパターンを形成する。この方
法は細密なパターンを形成する場合に有利である。
■ A pattern is formed on a substrate using normal lithography using a resist. This method is advantageous when forming fine patterns.

なお、本発明に使用される基板材料としては、MgO,
SrTiO3,ZrO2など、従来より銅酸化物等の酸
化物超伝導体膜形成用基板として用いられてきたもの、
その他、焼成時に銅酸化物等の酸化物と反応しない材料
であればいずれも採用可能である。これらの基板は、そ
の酸化物超伝導体膜形成表面が平坦であれば、多結晶体
でも、単結晶体でも良い。ただし、ポロシティ−は極力
低い方が好ましい。
Note that the substrate materials used in the present invention include MgO,
SrTiO3, ZrO2, etc., which have been conventionally used as substrates for forming oxide superconductor films such as copper oxide,
In addition, any material that does not react with oxides such as copper oxide during firing can be used. These substrates may be polycrystalline or single crystalline as long as the surface on which the oxide superconductor film is formed is flat. However, it is preferable that the porosity be as low as possible.

また■の凹部形成部材を構成する樹脂材料、接着剤、レ
ジストとしては、後工程の酸化物超伝導体膜を形成する
工程で劣化することのないもの、例えば、請求項(1)
の方法においては、用いる酸化物超伝導体原料を含む溶
液(以下「原料溶液」と称す。)により劣化しないこと
、即ち、該原料溶液が水溶液である場合には水に不溶で
あること、また、原料溶液が有機酸塩を含む有機溶液で
ある場合にはその有機溶媒に不溶であることが要求され
る。具体的には、原料溶液としてナフテン酸塩のトルエ
ン溶液を用いる場合には、トルエンに不溶の樹脂、接着
剤、レジストが必要となる。このような樹脂、接着剤、
レジストとしては、具体的には、アクリル系、エポキシ
系等の樹脂、接着剤、レジストが挙げられる。これらの
うち、特に三次元架橋度の高いエポキシ系樹脂は、トル
エンに不溶で、本発明に極めて好適である。
In addition, the resin material, adhesive, and resist constituting the concave portion forming member in (2) are those that will not deteriorate in the subsequent step of forming an oxide superconductor film, for example, as claimed in claim (1).
In the method, the oxide superconductor raw material used must not be deteriorated by the solution containing the raw material (hereinafter referred to as "raw material solution"), that is, if the raw material solution is an aqueous solution, it must be insoluble in water; When the raw material solution is an organic solution containing an organic acid salt, it is required to be insoluble in the organic solvent. Specifically, when a toluene solution of naphthenate is used as a raw material solution, a resin, an adhesive, and a resist that are insoluble in toluene are required. Such resins, adhesives,
Specific examples of the resist include resins such as acrylic and epoxy resins, adhesives, and resists. Among these, epoxy resins with a particularly high degree of three-dimensional crosslinking are insoluble in toluene and are extremely suitable for the present invention.

本発明の請求項(1)の方法においては、前述のように
して形成された基板上の凹部に、原料溶液を充填する。
In the method according to claim (1) of the present invention, the recesses formed on the substrate as described above are filled with a raw material solution.

この場合、原料溶液としては、形成する酸化物超伝導体
の構成元素の有機酸塩、例えばナフテン酸塩をトルエン
等の有機溶媒に溶解させた溶液、或いは、該構成元素の
酸化物(炭酸塩を含む)を硝酸などの酸に溶解させて水
溶液としたものが挙げられる。
In this case, the raw material solution may be a solution in which an organic acid salt of a constituent element of the oxide superconductor to be formed, such as a naphthenate, is dissolved in an organic solvent such as toluene, or an oxide (carbonate salt) of the constituent element of the oxide superconductor to be formed. ) in an acid such as nitric acid to form an aqueous solution.

例えば、前記[T]又は[n ]の超伝導体膜を形成す
る場合、原料溶液としては、ナフテン酸イツトリウム、
ナフテン酸バリウム、ナフテン酸銅、ナフテン酸ビスマ
ス、ナフテン酸ストロンチウム、ナフテン酸カルシウム
等を所定割合で含むトルエン溶液、或いは、酸化イツト
リウム(Y2O2)、炭酸バリウム(BaCO3)、酸
化銅(Cub)等を所定割合で含む硝酸溶液を用いるこ
とができる。
For example, when forming the superconductor film of [T] or [n], the raw material solution may include yttrium naphthenate,
A toluene solution containing barium naphthenate, copper naphthenate, bismuth naphthenate, strontium naphthenate, calcium naphthenate, etc. in a predetermined ratio, or a predetermined amount of yttrium oxide (Y2O2), barium carbonate (BaCO3), copper oxide (Cub), etc. A nitric acid solution containing the same proportions can be used.

請求項(2)の方法において、酸化物超伝導体原料を含
む融液としては、形成する酸化物超伝導体の構成元素の
酸化物、炭酸塩、フッ化物などの粉体を目的とする超伝
導体組成となるように混合したものを該混合粉体の融点
以上に加熱したものが挙げられる。
In the method of claim (2), the melt containing the oxide superconductor raw material is a superconductor whose purpose is to obtain powders of oxides, carbonates, fluorides, etc. of constituent elements of the oxide superconductor to be formed. Examples include those obtained by heating the mixed powder to a temperature higher than the melting point of the mixed powder so as to have a conductive composition.

なお、この混合粉体は、目的とする酸化物超伝導体組成
よりもその比を若干ずらして融解し易くしたり、超伝導
特性を向上させたり、また、超伝導特性を損なわない範
囲で他のフラックスを混合しても良い。具体的には、B
i25r2CaC11206を作製する時は、B i 
203を多めにすると融点が下がる。場合によっては、
CuOを多めにすることも超伝導特性向上に役立つ。ま
た、Bi2O5やCuOのような自己フラックス以外に
PbOや5b20sなどの添加も有効である。YBa2
Cu3O7の作製には、CuOやBaOを多めにするこ
とにより部分溶融状態が得やすい。また、希土類元素(
Yなど)を多めにしてY 2 B a Cu O5を多
く生成させることにより、機械強度を上げることがで計
る。
In addition, this mixed powder may be made by slightly changing the ratio of the desired oxide superconductor composition to make it easier to melt, or to improve the superconducting properties, or by adding other ingredients to the extent that the superconducting properties are not impaired. It is also possible to mix fluxes. Specifically, B
When producing i25r2CaC11206, B i
When the amount of 203 is increased, the melting point decreases. In some cases,
Increasing the amount of CuO also helps improve superconducting properties. In addition to self-fluxes such as Bi2O5 and CuO, addition of PbO, 5b20s, etc. is also effective. YBa2
When producing Cu3O7, a partially molten state can be easily obtained by adding a large amount of CuO or BaO. In addition, rare earth elements (
The mechanical strength can be increased by increasing Y 2 B a Cu O 5 by increasing the amount of Y 2 B a Cu O 5 (Y, etc.).

請求項(3)の方法において、酸化物超伝導体原料の粉
体(以下「原料粉体」と称す。)としては、形成する酸
化物超伝導体の構成元素の酸化物、炭酸塩、フッ化物な
どの粉体を所定割合で混合したものが挙げられる。これ
らは基板凹部への充填作業性等の改善のために、スラリ
ー化しても良い。なお、この場合、スラリー化は粉体の
取り扱い性向上と緻密性向上を目的とするため、溶液化
は必要としない。例えば、YBa2Cu3O7を作製す
る場合、Y203 、BaCO5、CuOの原料粉を各
々0.5モル、2モル、3モルの比で混合し、エチルア
ルコールや酸、水などに混入させてスラリー化して用い
る。また、YBa2Cu3O7の焼結体粒または仮焼粉
をスラリー化したものを用いることもできる。
In the method of claim (3), the oxide superconductor raw material powder (hereinafter referred to as "raw material powder") includes oxides, carbonates, and fluorine of the constituent elements of the oxide superconductor to be formed. An example is a mixture of powders such as chemical compounds in a predetermined ratio. These may be made into a slurry in order to improve the workability of filling the concave portions of the substrate. In this case, the purpose of slurrying is to improve the handleability and compactness of the powder, and therefore, solutionization is not necessary. For example, when producing YBa2Cu3O7, raw material powders of Y203, BaCO5, and CuO are mixed at a ratio of 0.5 mol, 2 mol, and 3 mol, respectively, and mixed with ethyl alcohol, acid, water, etc. to form a slurry. Furthermore, a slurry of YBa2Cu3O7 sintered particles or calcined powder can also be used.

このような原料粉体を基板の四部に充填した後は、10
50〜1200℃に加熱して溶融させる。なお、原料粉
体は溶融すると体積が減少するので、所望とする酸化物
超伝導体膜体積の約2倍量の原料粉体を充填する。溶融
後、凹部からはみ出した部分は必要に応じて除去する。
After filling the four parts of the substrate with such raw material powder, 10
Heat to 50-1200°C to melt. Note that since the raw material powder decreases in volume when melted, the raw material powder is filled in an amount approximately twice the volume of the desired oxide superconductor film. After melting, the portion protruding from the recess is removed as necessary.

請求項(1)の方法において原料溶液を基板の凹部に充
填した後、或いは、請求項(2)の方法において原料融
液を基板の凹部に充填した後、或いは、請求項(3)の
方法において原料粉体を基板の四部に充填して加熱溶融
させた後は、これを酸化物超伝導体の形成温度で焼成す
る。焼成は、通常、例えばBi25r2CaCu20a
を作製する場合、800〜880℃で05〜24時間、
YBa2Cu3O7を作製する場合、850〜970℃
で0.5〜24時間行なう。なお、請求項(2)、(3
)の方法において、焼成に際して、融液は急冷固化させ
るのが好ましい。
After filling the recesses of the substrate with the raw material solution in the method of claim (1), or after filling the recesses of the substrate with the raw material melt in the method of claim (2), or after the method of claim (3) After filling the four parts of the substrate with raw material powder and heating and melting it, it is fired at a temperature for forming an oxide superconductor. Firing is typically performed using, for example, Bi25r2CaCu20a
When producing, at 800-880°C for 05-24 hours,
When producing YBa2Cu3O7, 850-970°C
for 0.5 to 24 hours. In addition, claims (2) and (3)
), the melt is preferably rapidly cooled and solidified during firing.

本発明において、基板に形成される凹部の形状や大きさ
には特に制限はなく、凹部は貫通孔であっても良い。例
えば、第5図に示す如く、基板10に形成された細孔1
1に前述の原料溶液や原料融液12を充填して製造する
こともできる。
In the present invention, there is no particular restriction on the shape or size of the recess formed in the substrate, and the recess may be a through hole. For example, as shown in FIG.
1 can also be manufactured by filling the above-mentioned raw material solution or raw material melt 12.

また、第6図に示す如く、基板13に細孔14と凹溝1
5とを組み合わせたパターンを形成し、このパターンに
原料溶液や原料融液16を充填して製造することもでき
る。
Further, as shown in FIG. 6, the substrate 13 has pores 14 and grooves 1.
It is also possible to manufacture by forming a pattern combining 5 and 5 and filling this pattern with a raw material solution or raw material melt 16.

第6図に示す実施例では中心部に裏面と連結する超伝導
部を有する超伝導コイルが提供される。
In the embodiment shown in FIG. 6, a superconducting coil is provided which has a superconducting portion in its center that connects with the back surface.

また、第7図(平面図)及び第8図(第7図の■−■線
に沿う断面図)に示す如く、厚肉円筒形状の基板17に
同心状に形成した深溝18に原料溶液又は原料融液を注
入、充填して製造することもできる。また、複数枚の基
板を組み合せて製造することもできる。
Further, as shown in FIG. 7 (plan view) and FIG. 8 (cross-sectional view taken along the line ■-■ in FIG. 7), the raw material solution or It can also be manufactured by injecting and filling the raw material melt. Further, it is also possible to manufacture the device by combining a plurality of substrates.

本発明において形成される酸化物超伝導体膜の厚さは基
板」二に形成された凹部の深さによって決まるが、本発
明によれば、厚さ0.1〜1000μm程度、例えば3
0μm幅で30μm厚さの超伝導体膜を形成することが
できる。
The thickness of the oxide superconductor film formed in the present invention is determined by the depth of the recess formed in the substrate, and according to the present invention, the thickness is about 0.1 to 1000 μm, for example,
A superconductor film with a width of 0 μm and a thickness of 30 μm can be formed.

本発明で製造される超伝導体素子は薄膜コイル(例えば
、5QUID用)やマイクロインダクター、マイクロ波
の要素回路(デイレイライン)等のデバイスとして極め
て有用である。
The superconductor element manufactured by the present invention is extremely useful as devices such as thin film coils (for example, for 5QUID), microinductors, and microwave element circuits (delay lines).

[作用] 本発明の方法においては、基板に形成した凹部に原料溶
液又は原料融液を満たすため、S EM−EDAX観察
による確認によっても極めて平坦性、連続性の良い均一
厚膜を、複雑形状のものであっても所望のパターンに従
って、効率的に形成することができる。
[Function] In the method of the present invention, since the recesses formed in the substrate are filled with the raw material solution or raw material melt, it is possible to form a uniformly thick film with extremely good flatness and continuity as confirmed by SEM-EDAX observation. It is possible to efficiently form any type of material according to a desired pattern.

特に、請求項(1)の方法では、原料溶液として、均一
溶解し、分子レベルでの混合がなされたものを用いるた
め、生産性が良好である上に、符られる膜の均一性に著
しく優れる。この場合、後述の比較例にもあるように、
スラリーでは、均一性に優れた膜を得ることかできない
In particular, in the method of claim (1), since a raw material solution that is uniformly dissolved and mixed at the molecular level is used, the productivity is good and the uniformity of the resulting film is extremely excellent. . In this case, as shown in the comparative example below,
With slurry, it is only possible to obtain a film with excellent uniformity.

また、請求項(2)、(3)の方法では、原料融液とし
て、均一溶融したものを用いるため、原料濃度を高くす
ることができ、生産性、膜の均一性に優れる上に厚膜化
がより一層容易とされる。
In addition, in the methods of claims (2) and (3), since a uniformly molten material is used as the raw material melt, the raw material concentration can be increased, and in addition to being excellent in productivity and film uniformity, it is possible to form a thick film. It is said that it is even easier to

[実施例] 以下に実施例及び比較例を挙げて、本発明をより具体的
に説明する。
[Example] The present invention will be described in more detail by giving Examples and Comparative Examples below.

実施例l MgO([001]面)基板(厚さ0. 5mm)上に
機械加工にて、深さ約50μmの凹溝を形成し、この溝
内に、ナフテン酸ビスマス、ナフテン酸ストロンチウム
、ナフテン酸カルシウム、ナフテン酸銅をトルエンに1
11・2のモル比で溶かして得られたBi系ナフテン酸
溶液を塗布した。この時塗布はほぼ溝内に選択的に行な
うことができた。これを430℃で20分程仮焼し、再
び同様にして塗布、仮焼した。
Example 1 A concave groove with a depth of about 50 μm was formed by machining on an MgO ([001] plane) substrate (thickness 0.5 mm), and in this groove, bismuth naphthenate, strontium naphthenate, and naphthene were formed. Calcium acid, copper naphthenate in toluene 1
A Bi-based naphthenic acid solution obtained by dissolving at a molar ratio of 11.2 was applied. At this time, the coating could be applied selectively almost within the grooves. This was calcined at 430°C for about 20 minutes, and coated and calcined again in the same manner.

この試料を、860℃で3時間焼成した。This sample was fired at 860°C for 3 hours.

X線回折により、得られた超伝導体は、Bi系2212
相であり、第9図に示されるようにTCaollIを7
6Kに有する良好な超伝導特性を示すことが確認された
。なお、比抵抗は、約1mΩ・Cmであった。
By X-ray diffraction, the obtained superconductor was Bi-based 2212
phase, and as shown in FIG.
It was confirmed that it exhibited good superconducting properties at 6K. Note that the specific resistance was approximately 1 mΩ·Cm.

比較例I 実施例1において、溝の形成されていないMgO基板を
用いたこと以外は、同様にしてBi系ナフテン酸溶液を
塗布し、430℃で仮焼し、再び同様に塗布、仮焼した
Comparative Example I A Bi-based naphthenic acid solution was applied in the same manner as in Example 1, except that an MgO substrate without grooves was used, and calcined at 430°C, and again applied and calcined in the same manner. .

この試料を、860t:で3時間、焼成したところ、X
線回折ではほぼL相が得られた。しかし、膜厚が十分で
ないため、光学顕微鏡観察では、膜が島状に近く一様で
なかった。この試料の電気特性を測定したところ、Tc
8ndが73にとなり、比抵抗が実施例105倍になフ
た。これは、膜の連結性が悪いためと考えられる。
When this sample was fired at 860t for 3 hours,
Almost L phase was obtained by line diffraction. However, because the film thickness was not sufficient, optical microscopic observation showed that the film was almost island-like and not uniform. When we measured the electrical properties of this sample, we found that Tc
8nd was 73, and the specific resistance was 105 times higher than that of the example. This is thought to be due to poor connectivity of the membrane.

比較例2 実施例1において、Bi系ナフテン酸溶液の代りに、B
i2O:+、5rCOs、CaCO3及びCuOの平均
粒径1μmの粉体をメタノールに混合しスラリー状とし
たものを用い、このスラリー液を溝に塗布し、室温で乾
焼し、再び塗布した。
Comparative Example 2 In Example 1, instead of the Bi-based naphthenic acid solution, B
A slurry made by mixing powders of i2O:+, 5rCOs, CaCO3, and CuO with an average particle size of 1 μm in methanol was used, and this slurry liquid was applied to the grooves, dried at room temperature, and applied again.

この試料を、860℃で3時間焼成したところ、X線回
折ではほぼL相が得られたが、電気抵抗測定ではTen
dは83にであったが、4.2Kまで完全にゼロ抵抗に
はならなかった。
When this sample was fired at 860°C for 3 hours, almost L phase was obtained by X-ray diffraction, but Ten
d was 83, but it did not reach completely zero resistance until 4.2K.

実施例2 実施例1において、B1系ナフテン酸溶液のモル比を、
ナフテン酸ビスマス:ナフテン酸ストロンチウム、ナフ
テン酸カルシウム・ナフテン酸銅=2+2+1:2とし
たこと以外は同様に行なって、はぼ同等の特性を有する
試料を得た。
Example 2 In Example 1, the molar ratio of the B1 naphthenic acid solution was
Bismuth naphthenate: strontium naphthenate, calcium naphthenate/copper naphthenate = 2+2+1:2, but in the same manner as above to obtain samples having almost identical properties.

実施例3 ノボラック型エポキシアクリレート酸水性変性物をZr
O2([100]面)基板上に塗布し紫外線硬化(水銀
ランプ)し、150℃で30分間アニールして凹部を形
成した。形成された凹部に、60重量%の硝酸水溶液1
0g中に、Y203 、BaCO5、CuOの123(
モル比)混合粉末6gを溶解させた溶液を塗布し、30
0℃で加熱してNO8を放出させた後、950℃で24
時間焼成した。
Example 3 Novolak-type epoxy acrylate acid aqueous modified product
It was applied onto an O2 ([100] plane) substrate, cured with ultraviolet light (mercury lamp), and annealed at 150° C. for 30 minutes to form recesses. A 60% by weight nitric acid aqueous solution 1
In 0g, Y203, BaCO5, CuO 123(
Molar ratio) Apply a solution in which 6 g of mixed powder is dissolved, and
After heating at 0℃ to release NO8, heating at 950℃ for 24 hours.
Baked for an hour.

nd この試料の超伝導体膜部のTc   は90にで】 5 あり、X線回折によりYBa2 Cu307−δが形成
されていることが確認された。
nd The Tc of the superconductor film portion of this sample was 90] 5, and it was confirmed by X-ray diffraction that YBa2Cu307-δ was formed.

実施例4 第5図に示す如く、Mg0([100コ面)基板上に直
径0.5mmの孔を貫通させ、その孔中に実施例1と同
組成のBi系ナフテン酸溶液を塗布し、430℃で仮焼
し、この塗布、仮焼を繰り返した。
Example 4 As shown in FIG. 5, a hole with a diameter of 0.5 mm was penetrated on an Mg0 ([100 plane) substrate, and a Bi-based naphthenic acid solution having the same composition as in Example 1 was applied into the hole. It was calcined at 430°C, and this coating and calcining were repeated.

この試料を860℃で3時間焼成したところ、!3 i
 2 S r 3 Ca Cu Q O8+δと同定さ
れる物質が基板の孔部をうめており、得られた超伝導体
のTcendは76にであった。
When this sample was fired at 860℃ for 3 hours,! 3 i
A substance identified as 2 S r 3 Ca Cu Q O8+δ filled the pores of the substrate, and the Tcend of the obtained superconductor was 76.

実施例、5 第6図に示す孔及び凹溝な有する基板を用いたこと以外
は、実施例4と同様にして、同等の特性を有する試料を
得た。
Example 5 A sample having the same characteristics as Example 4 was obtained in the same manner as in Example 4, except that a substrate having the holes and grooves shown in FIG. 6 was used.

比較例3 実施例4において、Bi系ナフテン酸溶液の代りに、比
較例2で用いたスラリーを用いたこと以外は同様にして
行なったところ、得られた膜は】 6 孔をうめて連結されてはいたが、電気抵抗測定で、4.
2Kまで完全にゼロ抵抗にはならなかった。
Comparative Example 3 The same procedure as in Example 4 was carried out except that the slurry used in Comparative Example 2 was used instead of the Bi-based naphthenic acid solution. However, when measuring electrical resistance, 4.
It did not reach completely zero resistance until 2K.

実施例6 Mg0([001]面)基板(厚さ0.5mm)上に、
機械加工により深さ約30μmの凹溝を形成した。
Example 6 On Mg0 ([001] plane) substrate (thickness 0.5 mm),
A groove with a depth of about 30 μm was formed by machining.

Bi2O3,SrCO3,CaCO3及びCuOを1・
2:12のモル比で混合して得られた混合粉末を、エタ
ノールに20体積%混入し、十分攪拌、混合した後、沈
澱物を除去して基板の凹構内に塗り込んだ。
Bi2O3, SrCO3, CaCO3 and CuO in 1.
The mixed powder obtained by mixing at a molar ratio of 2:12 was mixed in ethanol in an amount of 20% by volume, and after thorough stirring and mixing, the precipitate was removed and applied to the concave areas of the substrate.

この試料を890℃に1時間保持して溶融した。なお、
この温度で溶融状態となることは、急冷、徐冷した試料
をSEM観察することにより確認することができた。こ
れを室温雰囲気に取り出し、自然冷却した。次に、炉の
温度を810℃に設定して、炉内に試料を挿入し、10
時間焼成した。
This sample was held at 890° C. for 1 hour to melt it. In addition,
It was confirmed by SEM observation of the rapidly cooled and slowly cooled samples that the sample was in a molten state at this temperature. This was taken out to room temperature atmosphere and allowed to cool naturally. Next, set the furnace temperature to 810°C, insert the sample into the furnace, and
Baked for an hour.

この試料をX線回折したところB1系超伝導体13量2
 Sr2 CaC11Oa+δ(L相)が主体でBi2
5r2Cube+δが混入したものが形成されているこ
とが確認された。このものの電気特性を第10図に示す
。また、抵抗値は室温で3Ωであり、後掲の比較例4の
ものの10倍低い。これは、本実施例のものの連結性の
良さを反映するものである。
When this sample was subjected to X-ray diffraction, the amount of B1 superconductor 13 was 2.
Mainly Sr2 CaC11Oa+δ (L phase), Bi2
It was confirmed that a mixture of 5r2Cube+δ was formed. The electrical characteristics of this material are shown in FIG. Further, the resistance value was 3Ω at room temperature, which is 10 times lower than that of Comparative Example 4 described below. This reflects the good connectivity of this embodiment.

比較例4 実施例6において、スラリーとして、比較例2で用いた
スラリーを用い、このスラリーを基板の凹溝内に塗布し
室温で乾焼し、再び塗布した。
Comparative Example 4 In Example 6, the slurry used in Comparative Example 2 was used as the slurry, and this slurry was applied to the grooves of the substrate, dried at room temperature, and applied again.

これを、860℃で3時間焼成した。この時、SEM観
察では、明白に融液状態が存在しなかったことが確認さ
れた。また、X線回折ではほぼL相が得られたが、電気
抵抗測定では超伝導のTc8ndは、83にであったが
、4 2Kまで完全にゼ、ロ抵抗にはならなかった。電
気特性は第11図に示す通りである。
This was baked at 860°C for 3 hours. At this time, it was confirmed by SEM observation that no melt state clearly existed. Further, almost L phase was obtained by X-ray diffraction, but superconducting Tc8nd was 83 by electrical resistance measurement, but it did not become completely zero resistance until 42K. The electrical characteristics are as shown in FIG.

なお、本比較例において、焼成温度を810℃にしたと
ころ、10時間焼成を行なったものでも、4.2Kまで
ゼロ抵抗とはならなかった。
In addition, in this comparative example, when the firing temperature was set to 810° C., zero resistance was not achieved up to 4.2 K even after firing for 10 hours.

[発明の効果コ 以上詳述した通り、本発明の薄膜超伝導素子の製造方法
によれば、酸化物超伝導体膜を比較的膜厚の厚い膜であ
っても、所望のパターンに従って、容易かつ効率的に基
板上に形成することができ、しかも、得られる超伝導体
膜は膜の連続性、均一性に著しく優れる。従って、本発
明によれば高特性薄膜超伝導体素子を高い生産性にて製
造することが可能とされる。
[Effects of the Invention] As detailed above, according to the method for manufacturing a thin film superconducting element of the present invention, an oxide superconductor film can be easily formed according to a desired pattern even if it is a relatively thick film. Moreover, it can be efficiently formed on a substrate, and the obtained superconductor film has extremely excellent film continuity and uniformity. Therefore, according to the present invention, it is possible to manufacture high-performance thin film superconductor elements with high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は基板に形成された凹部を示す断面斜
視図、第3図は凹部形成部材の断面斜視図、第4図は凹
部形成のためのマスクを示す断面斜視図である。第5図
は本発明の他の実施例を示す斜視図、第6図は本発明の
別の実施例を示す平面図、第7図は本発明の異なる実施
例を示す平面図、第8図は第7図の■−■線に沿う断面
図である。第9図は実施例1で得られた結果を示すグラ
フ、第10図は実施例6で得られた結果を示すグラフ、
第11図は比較例4で得られた結果を示すグラフである
。 1、IA・・・基板、  2・・・凹溝、3・・・凹部
形成部材、  4・・・接着剤、5・・・マスク。
1 and 2 are cross-sectional perspective views showing a recess formed in a substrate, FIG. 3 is a cross-sectional perspective view of a recess forming member, and FIG. 4 is a cross-sectional perspective view showing a mask for forming a recess. FIG. 5 is a perspective view showing another embodiment of the invention, FIG. 6 is a plan view showing another embodiment of the invention, FIG. 7 is a plan view showing a different embodiment of the invention, and FIG. 7 is a sectional view taken along the line ■-■ in FIG. 7. FIG. 9 is a graph showing the results obtained in Example 1, FIG. 10 is a graph showing the results obtained in Example 6,
FIG. 11 is a graph showing the results obtained in Comparative Example 4. DESCRIPTION OF SYMBOLS 1. IA...Substrate, 2... Concave groove, 3... Concave forming member, 4... Adhesive, 5... Mask.

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に酸化物超伝導体膜を有する薄膜超伝導素
子を製造するにあたり、基板上に形成した凹部に酸化物
超伝導体原料を含む溶液を充填した後、該酸化物超伝導
体形成温度で焼成することを特徴とする薄膜超伝導素子
の製造方法。
(1) When manufacturing a thin film superconducting device having an oxide superconductor film on a substrate, after filling a solution containing an oxide superconductor raw material into a recess formed on the substrate, the oxide superconductor film is A method for manufacturing a thin film superconducting element, characterized by firing at a forming temperature.
(2)基板上に酸化物超伝導体膜を有する薄膜超伝導素
子を製造するにあたり、基板上に形成した凹部に酸化物
超伝導体原料を含む融液を充填した後、該酸化物超伝導
体形成温度で焼成することを特徴とする薄膜超伝導素子
の製造方法。
(2) When manufacturing a thin film superconducting element having an oxide superconductor film on a substrate, after filling the recesses formed on the substrate with a melt containing the oxide superconductor raw material, the oxide superconductor 1. A method for manufacturing a thin film superconducting element, characterized by firing at a body forming temperature.
(3)基板上に酸化物超伝導体膜を有する薄膜超伝導素
子を製造するにあたり、基板上に形成した凹部に酸化物
超伝導体原料の粉体を充填して溶融させた後、該酸化物
超伝導体形成温度で焼成することを特徴とする薄膜超伝
導素子の製造方法。
(3) In manufacturing a thin film superconducting device having an oxide superconductor film on a substrate, the recesses formed on the substrate are filled with powder of the oxide superconductor raw material and then melted. 1. A method for manufacturing a thin film superconducting element, which comprises firing at a superconductor forming temperature.
JP2232898A 1990-09-03 1990-09-03 Production of thin superconducting element film Pending JPH04114996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2232898A JPH04114996A (en) 1990-09-03 1990-09-03 Production of thin superconducting element film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2232898A JPH04114996A (en) 1990-09-03 1990-09-03 Production of thin superconducting element film

Publications (1)

Publication Number Publication Date
JPH04114996A true JPH04114996A (en) 1992-04-15

Family

ID=16946569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2232898A Pending JPH04114996A (en) 1990-09-03 1990-09-03 Production of thin superconducting element film

Country Status (1)

Country Link
JP (1) JPH04114996A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078939A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Superconducting film and its manufacturing method
JP2013080849A (en) * 2011-10-05 2013-05-02 Toyota Central R&D Labs Inc Superconductive coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078939A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Superconducting film and its manufacturing method
JP4495426B2 (en) * 2003-08-29 2010-07-07 独立行政法人科学技術振興機構 Superconducting film and manufacturing method thereof
US7772157B2 (en) 2003-08-29 2010-08-10 Japan Science And Technology Agency Superconducting film and method of manufacturing the same
US8148300B2 (en) 2003-08-29 2012-04-03 Japan Science And Technology Agency Superconducting film and method of manufacturing the same
JP2013080849A (en) * 2011-10-05 2013-05-02 Toyota Central R&D Labs Inc Superconductive coil

Similar Documents

Publication Publication Date Title
AU599488B2 (en) Processes for film preparation
CN108218406B (en) Low-temperature co-fired ceramic material with low dielectric constant and low loss and preparation method thereof
JP3737774B2 (en) Dielectric ceramic composition
JPH027307A (en) Barrier layer arrangement for conductive layer on silicon substrate
JPH04114996A (en) Production of thin superconducting element film
KR100268698B1 (en) Process for making superconducting tl-pb-sr-ca-cu oxide films and devices
JP2606697B2 (en) Manufacturing method of superconducting ceramics
JP2005213138A (en) Low temperature firing high dielectric constant ceramic composition
KR910004861B1 (en) Paste for forming superconductive ceramic film
JP2764087B2 (en) Ceramic superconductor paste and method of manufacturing ceramic superconductor wiring circuit board using the paste
JPH0421521A (en) Production of bi-based superconductor having ni base material
EP0376864A2 (en) Coating composition for forming conductive films
JPS6021854A (en) Manufacture of alumina sintered substrate
JP4305787B2 (en) Magnet and manufacturing method thereof
JPH01215702A (en) Production of superconducting thin film
JPH03252350A (en) Production of superconductive oxide paste and oxide superconductor
JPH05330900A (en) Production of ceramic superconductor
JPH0196059A (en) Production of oxide superconducting material
JPS6175501A (en) Resistance material
JPS6175502A (en) Resistance material
JPH01238190A (en) Manufacture of superconductor thick film
JPS63279529A (en) Manufacture of superconductor molding
JPS63285815A (en) Manufacture of membranous oxide superconductor
JPH02229717A (en) Production of oxide superconducting thin film
JPH07309659A (en) Dielectric porcelain material