JPH02229717A - Production of oxide superconducting thin film - Google Patents

Production of oxide superconducting thin film

Info

Publication number
JPH02229717A
JPH02229717A JP1072871A JP7287189A JPH02229717A JP H02229717 A JPH02229717 A JP H02229717A JP 1072871 A JP1072871 A JP 1072871A JP 7287189 A JP7287189 A JP 7287189A JP H02229717 A JPH02229717 A JP H02229717A
Authority
JP
Japan
Prior art keywords
thin film
superconducting thin
substrate
oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1072871A
Other languages
Japanese (ja)
Other versions
JP2523013B2 (en
Inventor
Masao Nakao
中尾 昌夫
Yoshihiro Yuasa
湯浅 良寛
Hideki Kuwabara
英樹 桑原
Masaaki Nemoto
雅昭 根本
Atsuo Mizukami
水上 敦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1072871A priority Critical patent/JP2523013B2/en
Publication of JPH02229717A publication Critical patent/JPH02229717A/en
Application granted granted Critical
Publication of JP2523013B2 publication Critical patent/JP2523013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To easily obtain the superconducting thin film of the oxide of Tl-Ba- Ca-Cu with a simple method by forming a film by sputtering with the oxide as a target and then annealing the film in an oxidizing atmosphere. CONSTITUTION:The powders of Tl2O3 having 99.9% purity and the BaCO3, CaCO3 and CuO having 99.99% purity are added to an org. solvent such as methanol in Tl:Ba:Ca:Cu=3:2:2:3 and agitated. The org. solvent is vaporized from the mixture, the powder obtained by crushing is calcined, the calcined powder is pressed into pellets, and the pellets are sintered in the air to obtain a sintered body of Tl2Ba2Ca2Cu3Ox. The sintered body is used as a target, and sputtered onto a substrate to form a thin film on the substrate. The thin film is annealed in an oxidizing atmosphere, and the superconducting thin film of Tl-Ba-Ca-Cu-O is obtained.

Description

【発明の詳細な説明】 (イ)産業−Lの利用分野 本発明は酸化物超電導薄膜の製造法に関し、特にTe−
Ba−Ca−Cuの酸化物の超電導薄膜の製造法に関す
る。
Detailed Description of the Invention (a) Field of Application of Industry-L The present invention relates to a method for manufacturing oxide superconducting thin films, particularly Te-
The present invention relates to a method for producing a superconducting thin film of Ba-Ca-Cu oxide.

(口)従来の技術 近隼、T l − B a − C a − C uの
酸化物がMI’+窒素の沸点(77K)より高い臨界温
度で超電導状態に入ることが見出されて脚光を浴びてい
る。
(Example) Conventional technology Chikayuki discovered that the oxide of T l - B a - C a - C u enters a superconducting state at a critical temperature higher than the boiling point (77 K) of MI'+nitrogen, and it came into the spotlight. Bathing.

(ハ)発明が解決しようとする課題 ところで、現在、液体ヘリウムを用いてMR+などに実
用化されているNb系の超電導体は熱的安定性あるいは
磁気的安定性のために全て薄膜化あるいは線材化して用
いられている。従って酸化物超電導体も各種分野に用い
るには同様の理由で薄膜化あるいは線材化しなければな
らない。
(c) Problems to be solved by the invention By the way, Nb-based superconductors currently in practical use for MR+ etc. using liquid helium are all made into thin films or wires for thermal stability or magnetic stability. It is used as a form. Therefore, for the same reason, oxide superconductors must be made into thin films or wires in order to be used in various fields.

(二)課題を解決するための下段 本発明は、T l − B a − C a − C 
uの酸化物をターゲットとし、スパッタリング法により
基板−1二にスバッタした後、酸化雰囲気中でアニール
処理する酸化物超電導薄膜の製造法にある。
(2) The lower stage of the present invention for solving the problem is T l - B a - C a - C
The method of manufacturing an oxide superconducting thin film includes using an oxide of U as a target, sputtering it onto a substrate 1-2 by a sputtering method, and then annealing it in an oxidizing atmosphere.

(ホ)作 用 本発明によれば、T l − B a − C a −
 C uの酸化物からなる超電導薄膜を簡単な方法で容
易に得ることができる。
(e) Effect According to the present invention, T l - B a - C a -
A superconducting thin film made of Cu oxide can be easily obtained by a simple method.

(へ)実施例 [第I実Mit列] 第1図は本発明超電導薄膜を得るための装置の−1’A
を示し、同図において(1)はスパッタリング装置のベ
ルジャーであって、排気系(2)が連なっている。 (
3)は詠ベルジャー(1)内に放電ガスであるアルゴン
ガスを供給するアルゴンガスボンベで、 バリアブルリ
ークバルブ(4)並びにストップパルブ(5)を介して
ベルジャー(1)に連なっている(6)(7)はベルジ
ャー(1)内に可動自在のシャッター(8)を介して対
向配置された対向電極で、その陽極(6)は接地される
とともに、その表面tに超電導薄膜を堆積させるSrT
iO,基板(9)が置かれている。
(f) Example [Ith Actual Mit Row] Figure 1 shows -1'A of the apparatus for obtaining the superconducting thin film of the present invention.
In the figure, (1) is a bell jar of a sputtering device, and an exhaust system (2) is connected thereto. (
3) is an argon gas cylinder that supplies argon gas as a discharge gas into the bell jar (1), and is connected to the bell jar (1) via a variable leak valve (4) and a stop valve (5). 7) is a counter electrode placed opposite to each other through a movable shutter (8) in the bell jar (1), the anode (6) of which is grounded, and an SrT film on which a superconducting thin film is deposited on its surface t.
iO, a substrate (9) is placed.

一方、陰極(7)は超電導材料であるTt−Ba−Ca
−Cuの酸化物(組成比は、Tt : Ba :Ca 
: Cu−3 : 2 : 2 : 3)の焼結体から
なるターゲット材にて構成されており、この陰極(7)
にはttの高い電圧が印加されている。(10)(11
)は高真空計、低真空計である。
On the other hand, the cathode (7) is made of superconducting material Tt-Ba-Ca.
-Cu oxide (composition ratio: Tt:Ba:Ca
: Cu-3 : 2 : 2 : 3) is made of a target material made of a sintered body, and this cathode (7)
A high voltage of tt is applied to. (10) (11)
) are high vacuum gauges and low vacuum gauges.

上記焼結体からなるターゲットは、高純度試薬の固相反
応により形成される.すなわち純度999%の”r t
 *O s (3’t.3g)、純度99.99%のB
 a C O z (19.7g)、純度99.99%
のCaCO, (I0.0g)、純度99.99%のC
 u O (11.9g)の粉末を、仕込み組成でTj
:Ba:Ca:Cu=3 : 2 : 2 : 3とな
るようにメタノール、工タノールなどの有機溶媒に加え
てスターラにて撹拌し,次いで有機溶媒を蒸発させた後
、乳鉢にてすりつぶして粉末状にする。この粉末をアル
ミナキャップで覆われたアルミナボートに入れて電気炉
にて930℃で30分間仮焼成し、仮焼成された粉末を
成形器に入れ、成形圧力750kgf/c+n”でプレ
ス加工してベレット状に固める。次にこのベレットを空
気中において925℃で1分間焼結して直径10cm、
厚さ0.5cmのTJ’sBaICatc usoxの
焼結ターゲットを得る。
The target made of the sintered body described above is formed by a solid-state reaction of high-purity reagents. In other words, 999% purity
*Os (3't.3g), B with purity 99.99%
a C O z (19.7 g), purity 99.99%
CaCO, (I0.0g), purity 99.99% C
U O (11.9 g) of powder was added to the preparation composition Tj
:Ba:Ca:Cu=3:2:2:3 by adding to an organic solvent such as methanol or ethanol and stirring with a stirrer, then evaporating the organic solvent, and then grinding in a mortar to form a powder. make it into a shape. This powder is placed in an alumina boat covered with an alumina cap and calcined for 30 minutes at 930°C in an electric furnace.The calcined powder is then placed in a molding machine and pressed at a molding pressure of 750kgf/c+n'' to form a pellet. This pellet is then sintered in air at 925°C for 1 minute to form a diameter of 10 cm.
A sintered target of TJ's BaICatc usox with a thickness of 0.5 cm is obtained.

而して、 アルゴンガスポンベ(3)からベルジャ− 
(1)内に純度99.9995%のアルゴンガスを3.
0〜30,Omtorrの圧力で供給すると同時に、ス
パッタ出力を100〜250Wとしてスパッタリング処
理し、基板(9)に0.5〜5μmの厚みの膜を形成す
る。実施例においては、スパッタ出力1 20W.2.
6KVでターゲットに対して基板を3.53離し、成長
速度400人/分で、基板に1.5〜3.5μmの厚み
の膜を形成した。
Then, from the argon gas pombe (3) to the bell jar
(1) Place 99.9995% pure argon gas in 3.
At the same time, a sputtering process is carried out at a sputtering power of 100 to 250 W while supplying at a pressure of 0 to 30.0 mtorr to form a film with a thickness of 0.5 to 5 m on the substrate (9). In the example, sputtering output 1 is 20W. 2.
A film with a thickness of 1.5 to 3.5 μm was formed on the substrate at a growth rate of 400 persons/min at 6 KV, with the substrate separated by 3.53 mm with respect to the target.

その後,スパッタ装置から取り出して電気炉に入れ、流
量、217分の酸素雰囲気中において室温からl”c/
秒で940℃まで昇温し940℃で10分のアニール処
理を行い−20℃/秒で室温まで降温して冷却した。尚
、発明者等の実験によれば、アニール温度、時間、特に
温度は上記した温度が最適であったが、雰囲気は酸化雰
囲気であれば酸素に限定されるものではなく、また冷却
条件も超電導状態を得るのに余り影響がないことが判明
している。
After that, it was taken out from the sputtering equipment and placed in an electric furnace, and was heated from room temperature to 1"c/in an oxygen atmosphere for 217 minutes at a flow rate of 1"c/
The temperature was raised to 940° C. in seconds, annealing was performed at 940° C. for 10 minutes, and the temperature was lowered to room temperature at −20° C./second. According to the experiments conducted by the inventors, the annealing temperature and time, especially the temperatures mentioned above, were optimal, but the atmosphere is not limited to oxygen as long as it is an oxidizing atmosphere, and the cooling conditions are also superconducting. It has been found that it does not have much effect on obtaining the state.

第2図はこのようにして得られた、TI−Ba−Ca−
Cu−0の超電導薄膜の温度に対する抵抗変化を示すも
のである。抵抗の温度依存性は標準的な四端子t掻法に
て測定され、接続は薄膜上にインジウム電極を圧接させ
る。温度は金+0.07%鉄一クロメルサーモカップル
により測定する。
Figure 2 shows the TI-Ba-Ca-
It shows the resistance change with respect to temperature of a Cu-0 superconducting thin film. The temperature dependence of resistance is measured using a standard four-terminal tread method, and the connection is made by pressing an indium electrode onto the thin film. Temperature is measured with a gold+0.07% iron-chromel thermocouple.

また流した電流の密度は、0.5〜5A/0111’と
する。
Further, the density of the current applied is 0.5 to 5 A/0111'.

零抵抗温度は86K(−187℃)であるが、110K
前後で抵抗減少が観察される。このことから薄膜の一部
にIIOK級の超電導相が含まれているものと思われる
Zero resistance temperature is 86K (-187℃), but 110K
A decrease in resistance is observed before and after. This suggests that a portion of the thin film contains an IIOK class superconducting phase.

第3図はこのようにして得られた超電導薄膜のX線回折
パターンである。
FIG. 3 shows the X-ray diffraction pattern of the superconducting thin film thus obtained.

一方、超電導状態を立証する他の要因であるマイスナー
効果はIIOK付近から反磁性を示し始めた。
On the other hand, the Meissner effect, which is another factor proving the superconducting state, began to exhibit diamagnetic properties around IIOK.

[第2実施例] 第2実施例は、第1実施例において使用したSrTiO
s基板の代わりに、MgOの基板を使用したものであり
、他の条件即ち焼結ターゲット、スパッタ条件およびア
ニール条件はすべて第1実施例と同一である。
[Second Example] The second example is based on the SrTiO used in the first example.
An MgO substrate was used instead of the s-substrate, and the other conditions, ie, the sintering target, sputtering conditions, and annealing conditions, were all the same as in the first example.

第4図はこのようにして得られたTt−Ba−Ca−C
u−0の超電導薄膜の温度に対する抵抗変化を示すもの
であり、この測定条件も第1実施例と同一である。第4
図から、零抵抗温度は116K(−157℃)であるこ
とがわかる。
Figure 4 shows the Tt-Ba-Ca-C obtained in this way.
It shows the change in resistance of the u-0 superconducting thin film with respect to temperature, and the measurement conditions are also the same as in the first example. Fourth
From the figure, it can be seen that the zero resistance temperature is 116K (-157°C).

一方、マイスナー効果は115K付近から反磁性を示し
始める。
On the other hand, the Meissner effect begins to exhibit diamagnetic properties around 115K.

第5図は、このようにして得られた超電導薄膜のX線回
折パターンで、これらの回折ピークからこの超電導薄膜
は、2223相と2122相を含むことがわかる。
FIG. 5 shows the X-ray diffraction pattern of the superconducting thin film thus obtained, and it can be seen from these diffraction peaks that this superconducting thin film contains 2223 phase and 2122 phase.

[第3実施例コ 第3実施例は、第1実施例において使用したSr T 
iO s基板の代りに、YSZ基板を使用したものであ
り、他の条件はすべて第1実施例と同一である。
[Third Example] In the third example, Sr T used in the first example was used.
A YSZ substrate was used instead of the iOs substrate, and all other conditions were the same as in the first example.

第6図はこのようにして得られたTl−Ba7C a−
C u−0の超電導薄膜の温度に対する抵抗変化を示す
らのであり、この測定条件もlt実施例と同一である。
Figure 6 shows the Tl-Ba7C a- obtained in this way.
This figure shows the resistance change with respect to temperature of the Cu-0 superconducting thin film, and the measurement conditions are the same as in the lt example.

第6図では、YSZ基板と他の基板とを比較しているが
、YSZ基板では零抵抗温度は80K(−193℃)で
あり、他の基板と同様に実用上問題が無いことを示して
いる。以上第1〜第3実施例においては、    陰極
(7)のターゲット材として、超電導材料であるTJ!
−Ba−C a−C uの酸化物の焼結体であって、そ
の酸化物の組成比が3:2:2:3のものを用いている
が、TI!−Ba−Ca−Cuの酸化物焼結体の組成比
が1:2:2:3であるものを用いた第4〜第6実施例
を以下に示す。
In Figure 6, the YSZ board is compared with other boards, and the zero resistance temperature of the YSZ board is 80K (-193°C), indicating that there is no problem in practical use like other boards. There is. In the first to third embodiments described above, the target material of the cathode (7) is TJ!, which is a superconducting material.
A sintered body of -Ba-C a-C u oxide with a composition ratio of 3:2:2:3 is used, but TI! Examples 4 to 6 using sintered oxides of -Ba-Ca-Cu having a composition ratio of 1:2:2:3 are shown below.

[第4実施例] 第4実施例は、陰極(7)のターゲット材がTl−Ba
−Ca−Cuの酸化物(組成比は、Tt:Ba:Ca:
Cu−1 :2:2:3)の焼結体からなり、使用する
基板はS r T i O sである。
[Fourth Example] In the fourth example, the target material of the cathode (7) is Tl-Ba.
-Ca-Cu oxide (composition ratio is Tt:Ba:Ca:
The substrate used is SrTiOs.

まず、仕込み組成でTl:Ba:Ca:Cu=1:2:
2:3の焼結ターゲットをつぎのようにして形成した。
First, the preparation composition is Tl:Ba:Ca:Cu=1:2:
A 2:3 sintered target was formed as follows.

すなわち純度99.9%のT!.Os(16.3g)、
純度99.99%のB a C O sc28.2g)
、純度99.99%のC a C O s (14. 
3g)、純度99.99%のC u O (17.0g
)の粉末を、第1実施例と同じ条件で混合、仮焼成、プ
レス成形、焼結して焼結ターゲットを得た。
In other words, T with a purity of 99.9%! .. Os (16.3g),
28.2 g of B a CO sc with a purity of 99.99%)
, 99.99% purity Ca CO s (14.
3g), 99.99% purity CuO (17.0g
) were mixed, pre-fired, press-molded and sintered under the same conditions as in the first example to obtain a sintered target.

スパッタリング装置のベルジャー(1)内の構成は、基
板(9)の構成を含め第1実施例と同じであり,アルゴ
ンガス圧力、スパッタ出力及び基板(9)上に形成する
膜厚も第1実施例と同じにした。
The configuration inside the bell jar (1) of the sputtering device is the same as in the first embodiment, including the configuration of the substrate (9), and the argon gas pressure, sputtering output, and film thickness formed on the substrate (9) are also the same as in the first embodiment. I did the same as the example.

また2スパッタ装置から取り出して電気炉にいれるアニ
ール処理条件についても、第1実施例の場合と同じにし
た。
Further, the annealing conditions for taking out the sample from the second sputtering apparatus and placing it in an electric furnace were also the same as in the first embodiment.

第7図はこの第4実施例で得られた超電導薄膜のX#!
回折パターンであり、この薄膜がTJ!.Ba H(:
 a IC u so s相(1223相)の単相であ
ることを示している。
Figure 7 shows the X#! superconducting thin film obtained in this fourth example.
It is a diffraction pattern, and this thin film is TJ! .. BaH(:
It shows that it is a single phase of a IC u so s phase (1223 phase).

第8図は第2実施例で得られた超電導薄膜の超電導特性
を示しており、103K(−170℃)で抵抗が零にな
ることがわかる。
FIG. 8 shows the superconducting properties of the superconducting thin film obtained in the second example, and it can be seen that the resistance becomes zero at 103 K (-170° C.).

[第5実施例〕 第5実施例は、第4実施例において使用したSr T 
+ O s基板の代りに、MgO基板を使用したもので
あり,他の条件即ち焼結ターゲット、スパンタ条件およ
びアニール条件はすべて第4実施例と同一である。
[Fifth Example] In the fifth example, the Sr T used in the fourth example
A MgO substrate was used instead of the +Os substrate, and all other conditions, ie, sintering target, spunter conditions, and annealing conditions, were the same as in the fourth embodiment.

第9図はこのようにして得られたTj!+Ba*Cat
cusoxの超電導薄膜の温度に対する抵抗変化を示す
ものであり、この測定条件も第4実施例と同一である。
Figure 9 shows Tj! obtained in this way! +Ba*Cat
It shows the resistance change with respect to temperature of the superconducting thin film of CUSOX, and the measurement conditions are also the same as in the fourth example.

第9図から、零抵抗温度は109K(−164℃)であ
ることがわかる。
From FIG. 9, it can be seen that the zero resistance temperature is 109K (-164°C).

第lO図は、このようにして得られた超電導薄膜のX線
回折パターンで、これらの回折ピークから、この超電導
薄膜は1223相の単相であることがわかる。
Figure 10 shows the X-ray diffraction pattern of the superconducting thin film thus obtained, and from these diffraction peaks it can be seen that this superconducting thin film has a single phase of 1223 phases.

[第6実施例] 第6実施例は、第4実施例において使用したSr T 
+ O s基板の代りに、YSZ基板を使用したもので
あり,他の条件はすべて第4実施例と同一である。
[Sixth Example] In the sixth example, the Sr T used in the fourth example
A YSZ substrate was used instead of the +Os substrate, and all other conditions were the same as in the fourth embodiment.

第11図は、このようにして得られたTl,Ba tc
 a tC u soxの超電導薄膜の温度に対する抵
抗変化を示すものであり、この測定条件も第4実施例と
同一である。第11図では、YSz基板と他の基板とを
比較しているが、YSZ基板では零抵抗温度はIOOK
(−173℃)であり他の基板と同様に実用上問題が無
いことを示している。
FIG. 11 shows Tl, Batc obtained in this way.
It shows the resistance change with respect to temperature of the superconducting thin film of a tC u sox, and the measurement conditions are also the same as in the fourth example. In Figure 11, the YSZ substrate is compared with other substrates, and the zero resistance temperature of the YSZ substrate is IOOK.
(-173°C), indicating that there is no problem in practical use as with other substrates.

第12図は、このようにして得られた超電導薄膜のX線
回折パターンで、これらの回折ピークから、この超電導
薄膜は1223相の単相であることがノ)かる。
FIG. 12 shows the X-ray diffraction pattern of the superconducting thin film thus obtained, and from these diffraction peaks it can be seen that this superconducting thin film has a single phase of 1223 phases.

(ト) 発明の効果 本発明によれば、通常のスパッタリング装置を用いる簡
単な方法でTl−Ba−Ca−Cuの酸化物の超電導薄
膜が得られ、その工業的価値は極めて大である。
(G) Effects of the Invention According to the present invention, a superconducting thin film of Tl-Ba-Ca-Cu oxide can be obtained by a simple method using a normal sputtering apparatus, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による酸化物超電導薄膜を得るためのス
パッタリング装置の概略図、第2図は本発明の第1実施
例によって得られた超電導薄膜の抵抗一温度特性図2第
3図は同じく第1実施例によって得られた超電導薄膜の
X線回折パターン図、第4図は第2実施例によって得ら
れた超電導薄膜の抵抗一温度特性図、第5図は同じく第
2実施例によって得られた超電導薄膜のX線回折パター
ン図、第6図は第3実施例によって得られた超電導薄膜
の抵抗一温度特性比較図、第7図は同じく第3実施例に
よって得られた超電導薄膜の抵抗一温度特性図、第8図
は第4実施例によって得られた超電導薄膜の抵抗一温度
特性図、第9図は第5実施例によって得られた超電導薄
膜の抵抗一温度特性図、第lO図は同じく第5実施例に
よって得られた超電導薄膜のX線回折パターン図、第1
1図は第6実施例によって得られた超電導薄膜の抵抗一
温度特性比較図、第12図は同じく第6実施例によって
得られた超電導薄膜のX線回折パターン図である。(1
)・・・ベルジャー、(6)(7)・・・対向電極、(
9)・・・基板。
Fig. 1 is a schematic diagram of a sputtering apparatus for obtaining an oxide superconducting thin film according to the present invention, Fig. 2 is a diagram showing the resistance-temperature characteristics of a superconducting thin film obtained according to the first embodiment of the present invention, and Fig. 3 is the same. FIG. 4 is an X-ray diffraction pattern diagram of the superconducting thin film obtained in the first embodiment, FIG. 4 is a resistance-temperature characteristic diagram of the superconducting thin film obtained in the second embodiment, and FIG. FIG. 6 is a comparison diagram of the resistance-temperature characteristics of the superconducting thin film obtained in the third embodiment, and FIG. 7 is the resistance-temperature characteristic diagram of the superconducting thin film obtained in the third embodiment. FIG. 8 is a resistance-temperature characteristic diagram of the superconducting thin film obtained in the fourth embodiment, FIG. 9 is a resistance-temperature characteristic diagram of the superconducting thin film obtained in the fifth embodiment, and FIG. Similarly, X-ray diffraction pattern diagram of the superconducting thin film obtained in the fifth example, 1st
FIG. 1 is a comparison diagram of the resistance-temperature characteristics of the superconducting thin film obtained in the sixth embodiment, and FIG. 12 is an X-ray diffraction pattern diagram of the superconducting thin film also obtained in the sixth embodiment. (1
)...Bell jar, (6) (7)...Counter electrode, (
9)...Substrate.

Claims (1)

【特許請求の範囲】[Claims] (1)Tl−Ba−Ca−Cuの酸化物をターゲットと
し、スパッタリング法により基板上にスパッタした後、
酸化雰囲気中でアニール処理することを特徴とした酸化
物超電導薄膜の製造法。
(1) After sputtering onto a substrate using a sputtering method using Tl-Ba-Ca-Cu oxide as a target,
A method for producing an oxide superconducting thin film characterized by annealing in an oxidizing atmosphere.
JP1072871A 1988-03-25 1989-03-24 Manufacturing method of oxide superconducting thin film Expired - Lifetime JP2523013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072871A JP2523013B2 (en) 1988-03-25 1989-03-24 Manufacturing method of oxide superconducting thin film

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP63-72390 1988-03-25
JP7239088 1988-03-25
JP29143688 1988-11-17
JP63-291436 1988-11-17
JP1072871A JP2523013B2 (en) 1988-03-25 1989-03-24 Manufacturing method of oxide superconducting thin film

Publications (2)

Publication Number Publication Date
JPH02229717A true JPH02229717A (en) 1990-09-12
JP2523013B2 JP2523013B2 (en) 1996-08-07

Family

ID=27300939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072871A Expired - Lifetime JP2523013B2 (en) 1988-03-25 1989-03-24 Manufacturing method of oxide superconducting thin film

Country Status (1)

Country Link
JP (1) JP2523013B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01236663A (en) * 1988-03-17 1989-09-21 Matsushita Electric Ind Co Ltd Manufacture of superconducting wiring
JPH0244014A (en) * 1987-11-25 1990-02-14 Kawatetsu Mining Co Ltd Production of electroconductive or superconducting thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244014A (en) * 1987-11-25 1990-02-14 Kawatetsu Mining Co Ltd Production of electroconductive or superconducting thin film
JPH01236663A (en) * 1988-03-17 1989-09-21 Matsushita Electric Ind Co Ltd Manufacture of superconducting wiring

Also Published As

Publication number Publication date
JP2523013B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
JPS63206462A (en) Production of thin conductive or superconductive film
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH02229717A (en) Production of oxide superconducting thin film
JPS63270450A (en) Production of thick film oxide super conductor
US5141919A (en) Superconducting device and method of producing superconducting thin film
EP0445307A1 (en) Single crystal oxide substrate, superconductor device produced therefrom, and producing thereof
US5077269A (en) Sputtering target used for forming quinary superconductive oxide
JPH01215712A (en) Production of thin film of superconductor
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JPH01203258A (en) Production of oxide superconducting sintered body
Koshy et al. The structural and superconducting properties of the YBa2Cu3O7− δ‐HfO2 system
JPH0446098A (en) Superconducting member
JPH03112810A (en) Production of oxide superconducting film
JPS63303810A (en) Ceramic superconductor
JPH01238190A (en) Manufacture of superconductor thick film
JPH01219156A (en) Manufacture of thin superconductor film
JPH01157009A (en) Superconductor thin film
JPH0222126A (en) Production of superconductor
JPH01246105A (en) Superconducting oxide and surface coating method
JPH02153581A (en) Manufacture of superconductive device and superconductive thin film
JPH01179752A (en) Production of superconducting ceramic
JPH04314534A (en) Composite material of oxide superconductor and its manufacture
JPH01160855A (en) Production of superconductor
Li Fabrication and properties of high-temperature superconducting thin films
Kuo et al. Preparation of Superconducting Tl-Ba-Ca-Cu-O Films by Diffusion Method