JPH01179752A - Production of superconducting ceramic - Google Patents

Production of superconducting ceramic

Info

Publication number
JPH01179752A
JPH01179752A JP63000648A JP64888A JPH01179752A JP H01179752 A JPH01179752 A JP H01179752A JP 63000648 A JP63000648 A JP 63000648A JP 64888 A JP64888 A JP 64888A JP H01179752 A JPH01179752 A JP H01179752A
Authority
JP
Japan
Prior art keywords
atmosphere
critical temperature
superconducting ceramics
superconducting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63000648A
Other languages
Japanese (ja)
Inventor
Tomohiro Nakamori
仲森 智博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP63000648A priority Critical patent/JPH01179752A/en
Publication of JPH01179752A publication Critical patent/JPH01179752A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a superconducting ceramic having high critical temp., stable characteristic, and improved reliability by calcining a mixture of RE-Ba-Cu-O at a specified temp. in O3 atmosphere or O2+O3 atmosphere. CONSTITUTION:A herein RE mean rare earth elements, mixture consisting of (RE)2O3, BaCO3, CuO, etc., with a specific ratio, is calcined at 930-1,000 deg.C in O3 or O3+O2 atmosphere, then cooled at a desired cooling rate. In the case that (RE)2O3 is Y2O3 and mixing ratio of Y:Ba:Cu is 1:2:3, obtained ceramic by this method has higher Tc than that calcined in only O2 atmosphere.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は臨界温度の高温化を図った超電導セラミック
スの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing superconducting ceramics with a high critical temperature.

[従来の技術] 従来、超電導材料としては例えば特開昭57−8594
4号公報に開示されたものに代表されるように、Nbあ
るいはNb3Sn等のNb系合金を用いるものが多かっ
た。
[Prior art] Conventionally, as a superconducting material, for example, Japanese Patent Application Laid-Open No. 57-8594
As typified by the one disclosed in Publication No. 4, Nb or an Nb-based alloy such as Nb3Sn has been used in many cases.

しかしながら、上記従来のNbあるいはNb系合金を用
いる超電導材料は、超電導状態から常電導状態にもどっ
てしまう温度、すなわち臨界温度Tcが10〜20にと
低い温度である。このNbあるいはNb系合金を用いた
超電導体を超電導状態で使用するためには超電導体を臨
界温度Tc以下の極限環境におかなければならず、この
ため例えばヘリウム液化冷凍機を使用する必要かある。
However, in the conventional superconducting materials using Nb or Nb-based alloys, the temperature at which the superconducting state returns to the normal conducting state, that is, the critical temperature Tc, is as low as 10 to 20. In order to use a superconductor using Nb or a Nb-based alloy in a superconducting state, the superconductor must be placed in an extreme environment below the critical temperature Tc, and for this reason, it is necessary to use, for example, a helium liquefaction refrigerator. .

したがってヘリウム液化冷凍機と断熱構造体を含めた設
備費、運転費か非常に高価となると共に極限環境で機器
を使用するので機器の信頼性を保つことができないとい
う短所があった。
Therefore, the equipment costs including the helium liquefaction refrigerator and the heat insulating structure and the operating costs are very high, and the reliability of the equipment cannot be maintained because it is used in an extreme environment.

この短所を解決するために、臨界温度Tcを高くしたI
?E(希土類元素) −Ba−Cu−〇系の超電導セラ
ミックスが開発されており、なかには90に程度の臨界
温度Tcを有するものも現われている。これらの超電導
セラミックスの製造方法は、例えば文献ジャパニーズ、
ジャーナル、オブ、アプライド、フイジイクス(JAP
ANESE JOURNAL of APPLIEDP
HYSIC3、VOl、2B、 No、8.1987.
  Li2O2頁)に記載されているように、希土類元
素REの酸化物。
In order to solve this drawback, I
? BACKGROUND ART Superconducting ceramics based on E (rare earth element) -Ba-Cu-○ have been developed, and some have appeared to have a critical temperature Tc of about 90°C. The manufacturing method of these superconducting ceramics is described, for example, in the literature Japanese,
Journal of Applied Physics (JAP)
ANESE JOURNAL of APPLIEDP
HYSIC3, VOl, 2B, No, 8.1987.
oxides of rare earth elements RE, as described in Li2O2 (page).

BaC0a 、 CuOの混合物を900°C〜100
0℃の温度で空気中あるいは酸素(02)雰囲気で焼成
するという方法であった。
A mixture of BaC0a and CuO was heated to 900°C to 100°C.
The method involved firing in air or in an oxygen (02) atmosphere at a temperature of 0°C.

[発明が解決しようとする問題点] しかしながら上記製造方法で作成した超電導セラミック
スの臨界温度Tcは焼成温度、雰囲気等の微妙な差によ
ってばらつきが生じやすく、臨界温度Tcが高くかつ安
定した超電導セラミックスを作製しにくいという問題点
があった。
[Problems to be Solved by the Invention] However, the critical temperature Tc of superconducting ceramics produced by the above manufacturing method tends to vary due to subtle differences in firing temperature, atmosphere, etc. There was a problem that it was difficult to manufacture.

この発明はかかる問題点を解決するためになされたもの
であり、臨界温度Teが高くかつ安定した超電導セラミ
ックスを再現性よく作成することができる超電導セラミ
ックスの製造方法を提供することを目的とするものであ
る。
This invention was made to solve these problems, and an object thereof is to provide a method for manufacturing superconducting ceramics that can produce stable superconducting ceramics with high critical temperature Te with good reproducibility. It is.

[問題点を解決するための手段] この発明に係る超電導セラミックスの製造方法はRE(
希土類元素Sc、 Y、 La、 Nd、 Sm、 E
u。
[Means for solving the problems] The method for manufacturing superconducting ceramics according to the present invention is based on RE (
Rare earth elements Sc, Y, La, Nd, Sm, E
u.

Gd、  Dy、  Ho、  Er、  Tm、  
Yb、  Lu)  とBaとCu及びOを含む超電導
セラミックスを作製するにあたり、(RE)  OBa
C03,Cu Oを所定成分比で混合2   3’ 後03雰囲気又はO2+O3雰囲気で930°C〜10
00°Cの温度範囲で焼成したことを特徴とする。
Gd, Dy, Ho, Er, Tm,
In producing superconducting ceramics containing Yb, Lu), Ba, Cu, and O, (RE) OBa
After mixing C03 and CuO in a predetermined component ratio 2 3', heat at 930°C to 10 in 03 atmosphere or O2 + O3 atmosphere.
It is characterized by being fired in a temperature range of 00°C.

[作用] この発明においては、(RE)  Ba−Cu−0系の
超電導セラミックスを03雰囲気又はO2+O3雰囲気
で焼成して作製することにより、安定した高い臨界温度
Tcを有する超電導セラミックスを得ることかできた。
[Function] In the present invention, superconducting ceramics having a stable and high critical temperature Tc can be obtained by firing (RE) Ba-Cu-0 based superconducting ceramics in an 03 atmosphere or an O2+O3 atmosphere. Ta.

したかって前記問題点を解決することかできる。Therefore, the above problems can be solved.

[実施例] 以下、この発明の一実施例として希土類元素17EにY
を使用したY1Ba2Cu3oxからなる超電導セラミ
ックスを作成する場合について説明する。
[Example] Hereinafter, as an example of the present invention, Y is added to the rare earth element 17E.
The case of creating superconducting ceramics made of Y1Ba2Cu3ox will be described.

y2o3. +3aC03,CuOをY、 Ba、 C
uの組成比か] 2・3となるように秤量し、乳鉢で各
組成物か均一になるまで混合した。この混合粉を空気中
で900°C,5時間仮焼成して仮焼成粉を作成した。
y2o3. +3aC03,CuO as Y, Ba, C
The composition ratio of u] was weighed so as to be 2.3, and each composition was mixed in a mortar until it became uniform. This mixed powder was pre-sintered in air at 900°C for 5 hours to produce a pre-sintered powder.

この仮焼成粉をボールミルを用いて粉砕した後、プレス
により成形して、直径10mm、厚さ3 mmの大きさ
の試料ペレットを複数個作製した。
This calcined powder was crushed using a ball mill and then molded using a press to produce a plurality of sample pellets each having a diameter of 10 mm and a thickness of 3 mm.

この試料をO雰囲気及び02 + Oa z囲気て95
0℃、10時間焼成した。ここてO+03雰囲気は02
ガスをオゾン発生器を通した後に炉内に導入することに
より実現した。焼成した各試料は]°C/分、2°C/
分、4℃/分、6℃/分及びIO°C/分の5種類の冷
却速度で冷却して、焼成条件を変えた超電導セラミック
スを作製した。
This sample was placed in an O atmosphere and an atmosphere of 95
It was baked at 0°C for 10 hours. Here O+03 atmosphere is 02
This was achieved by introducing the gas into the furnace after passing it through an ozone generator. Each sample was fired at ]°C/min, 2°C/min.
Superconducting ceramics were fabricated under different firing conditions by cooling at five cooling rates: 10°C/min, 4°C/min, 6°C/min, and IO°C/min.

この焼成条件を変えた超電導セラミックスの臨界温度T
cを調べるため、焼成のおわった各試料を冷凍機で20
Kまで冷却しなから四端子抵抗測定法により各試料の電
気抵抗率の変化を測定した。そして、この電気抵抗率の
測定値が1.0×10−6Ω・0m以下となった点の温
度を臨界温度Tcとして観測した。この観測した各試料
の臨界温度Tcを第1表に示す。
Critical temperature T of superconducting ceramics with different firing conditions
In order to investigate c, each sample after firing was placed in a refrigerator for 20 minutes.
Before cooling to K, the change in electrical resistivity of each sample was measured by a four-terminal resistance measurement method. Then, the temperature at which the measured value of electrical resistivity became 1.0×10 −6 Ω·0 m or less was observed as the critical temperature Tc. Table 1 shows the critical temperature Tc of each sample observed.

第  1  表 第1表から明らかなように、02 + Os雰囲気で焼
成した試料は02雰囲気で焼成した試料と比べて、いず
れの冷却速度においても高い臨界温度Tcを示した。ま
た02雰囲気で焼成した試料の臨界温度Tcは冷却速度
か相違すると83Kから89にと大きなばらつきを生し
る。しがし、02 + 03雰囲気で焼成した試料の臨
界温度Tcは冷却速度が相違しても87Kから94にの
範囲に含まれており、安定した臨界温度Tcを実現する
ことができた。
Table 1 As is clear from Table 1, the samples fired in the 02 + Os atmosphere showed a higher critical temperature Tc at all cooling rates than the samples fired in the 02 atmosphere. Further, the critical temperature Tc of the sample fired in the 02 atmosphere varies greatly from 83K to 89K depending on the cooling rate. However, the critical temperature Tc of the sample fired in the 02 + 03 atmosphere was within the range of 87K to 94K even if the cooling rate was different, and a stable critical temperature Tc could be achieved.

なお、上記実施例においては焼成温度を950℃とした
場合について説明したが、焼成温度を9308C〜10
00℃の範囲で変えてO2+O3雰囲気で試料を焼成し
ても上記実施例と同様に安定した高い臨界温度Tcを実
現することができた。
In addition, in the above example, the case where the firing temperature was 950°C was explained, but the firing temperature was changed to 9308°C to 10°C.
Even if the sample was fired in an O2+O3 atmosphere with the temperature changed within the range of 00°C, a stable and high critical temperature Tc could be achieved as in the above example.

また、希土類元素1?EとしてYの代りにSc、 La
Also, rare earth element 1? Sc, La instead of Y as E
.

Nd、  Sm、  Eu、  Gd、  Dy、  
Ho、  Er、  Tm、  YbまたはLuを用い
た超電導セラミックスをO2+O3雰囲気あるいは03
雰囲気で焼成して作製した場合も上記実施例と同様に安
定した高い臨界温度Tcを実現することができた。
Nd, Sm, Eu, Gd, Dy,
Superconducting ceramics using Ho, Er, Tm, Yb or Lu are placed in an O2+O3 atmosphere or 03
Even when the film was produced by firing in an atmosphere, a stable and high critical temperature Tc could be achieved similarly to the above embodiment.

[発明の効果コ 以上説明したように、この発明の製造方法によると、空
気雰囲気あるいは02雰囲気で焼成したRE −Ba−
Cu−0系の超電導セラミックスに比べて、焼成条件に
左右されにくい安定した高い臨界温度Teを有する超電
導セラミックスを作製することができた。
[Effects of the Invention] As explained above, according to the manufacturing method of the present invention, RE-Ba-
Compared to Cu-0-based superconducting ceramics, it was possible to produce superconducting ceramics having a stable and high critical temperature Te that is less affected by firing conditions.

また、臨界温度Tcが焼成条件に左右されにくいため、
信頼性の高い超電導セラミックスを再現性良く作製する
ことができた。
In addition, since the critical temperature Tc is less affected by firing conditions,
We were able to fabricate highly reliable superconducting ceramics with good reproducibility.

Claims (1)

【特許請求の範囲】[Claims] RE−Ba−Cu−O系の超電導セラミックスの製造方
法において、焼成をO_3雰囲気内又はO_2+O_3
雰囲気内で、930℃〜1000℃の温度範囲で行なう
ことを特徴とする超電導セラミックスの製造方法。
In the method for manufacturing RE-Ba-Cu-O-based superconducting ceramics, firing is performed in an O_3 atmosphere or in an O_2+O_3 atmosphere.
A method for producing superconducting ceramics, characterized in that the process is carried out in an atmosphere at a temperature range of 930°C to 1000°C.
JP63000648A 1988-01-07 1988-01-07 Production of superconducting ceramic Pending JPH01179752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000648A JPH01179752A (en) 1988-01-07 1988-01-07 Production of superconducting ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000648A JPH01179752A (en) 1988-01-07 1988-01-07 Production of superconducting ceramic

Publications (1)

Publication Number Publication Date
JPH01179752A true JPH01179752A (en) 1989-07-17

Family

ID=11479527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000648A Pending JPH01179752A (en) 1988-01-07 1988-01-07 Production of superconducting ceramic

Country Status (1)

Country Link
JP (1) JPH01179752A (en)

Similar Documents

Publication Publication Date Title
CA1337149C (en) Devices and systems based on novel superconducting material
JPH0259465A (en) Production of oxide high temperature superconductor
JPH01179752A (en) Production of superconducting ceramic
US5270292A (en) Method for the formation of high temperature semiconductors
JPH10330117A (en) Oxide superconductor, its production and current lead using the same
JP2523928B2 (en) Oxide superconductor and method for producing the same
JPS63176353A (en) Superconductive raw material
JPH01179751A (en) Superconducting ceramic and its production
JPH0238359A (en) Production of superconductor
JPH02221125A (en) Oxide superconductor and its production
JPH01179750A (en) Superconducting ceramic and its production
JPH02107518A (en) Oxide superconducting material
JPH01226725A (en) Oxide superconducting material
JPH01278458A (en) Production of superconductor
JPH01226726A (en) Oxide superconducting material
JPS63291815A (en) Production of superconductor
JPH01108147A (en) Oxide superconducting material
JPH06256059A (en) Production of superconductor whisker composite material
JPH02129022A (en) Oxide superconducting material
JPH01108153A (en) Oxide superconducting material
JPH01108149A (en) Oxide superconducting material
JPH0380112A (en) Oxide superconductor
JPH01108146A (en) Oxide superconducting material
JPH01278461A (en) Production of superconductor
JPH02129023A (en) Oxide superconducting material