JPH02129023A - Oxide superconducting material - Google Patents

Oxide superconducting material

Info

Publication number
JPH02129023A
JPH02129023A JP63282919A JP28291988A JPH02129023A JP H02129023 A JPH02129023 A JP H02129023A JP 63282919 A JP63282919 A JP 63282919A JP 28291988 A JP28291988 A JP 28291988A JP H02129023 A JPH02129023 A JP H02129023A
Authority
JP
Japan
Prior art keywords
phase
superconducting
transition temperature
composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63282919A
Other languages
Japanese (ja)
Inventor
Osamu Inoue
修 井上
Seiji Adachi
成司 安達
Shunichiro Kawashima
俊一郎 河島
Yukihiro Takahashi
幸宏 高橋
Hirofumi Hirano
平野 洋文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63282919A priority Critical patent/JPH02129023A/en
Publication of JPH02129023A publication Critical patent/JPH02129023A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide the title material of high superconductivity transition temperature, requiring no long baking time in air and capable of giving dense sintered compact, consisting of a composition containing at least group IIIa element(s), Pb, Sr and Cu. CONSTITUTION:Each powder of each high-purity Ln oxide (Ln is at least one element selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Sc) (e.g., Yb2O3), PbO, SrCO3 and CuO is weighed so as to result in the composition ratio: LnPbSr2Cu3Ox followed by wet mixing. The resultant mixture is dried, calcined and formed, and then baked in air, thus obtaining the objective oxide superconducting material. This material contains no highly toxic component such as Tl, its superconductivity transition temperature being higher than that of La-Sr-Cu-O-based superconductor, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高い超伝導転移温度を持つ酸化物超伝導材料
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to oxide superconducting materials with high superconducting transition temperatures.

従来の技術 超伝導材料は、1)電気抵抗がゼロである、2)完全反
磁性である、 3)ジ1セフソン効果がある、といった
、他の材料にない特性を持っており、電力輸送、発電器
、核融合プラズマ閉じ込め、磁気浮上列車、磁気シール
ド、高速コンピュータ等の幅広い応用が期待されている
。ところが、従来の金属系超伝導体では、超伝導転移温
度は最も高いものでも23に程度であり、実使用時には
高価な液体ヘリウムと大がかりな断熱装置を使って冷却
しなければならず、工業上大きな問題であった。
Conventional technology Superconducting materials have properties not found in other materials, such as 1) zero electrical resistance, 2) complete diamagnetism, and 3) di1-Sefson effect, and are useful for power transport, It is expected to have a wide range of applications, including power generators, fusion plasma confinement, magnetic levitation trains, magnetic shields, and high-speed computers. However, with conventional metallic superconductors, the highest superconducting transition temperature is around 23°C, and in actual use, they must be cooled using expensive liquid helium and large-scale insulation equipment, making it difficult for industrial use. It was a big problem.

このため、より高温で超伝導体となる材料の探索が行わ
れていた。
For this reason, research has been underway to find materials that become superconductors at higher temperatures.

1986年にベト°ノルフ(Bednorz)とミュー
5−(Muller)により約40にという高い超伝導
転移温度をもつ、酸化物系超伝導材料(La+−zS 
rz)pcuOXが見いだされ、それ以後Y B a 
2 Cu a Ox*  B1−5r−Ca−Cu−0
,Tl−Ba−Ca−Cu−0などで、あいついでより
高い温度での超伝導転移が報告されている。超伝導転移
温度が高いほど、冷却が容易となり、また同じ温度で使
用した場合の臨界電流密度や臨界磁場も太き(なる事が
予想され、応用範囲も広がるものと期待される。このた
め現在、これらの材料の製造法、物性、応用等に関して
多くの研究がなされている。
In 1986, Bednorz and Muller developed an oxide-based superconducting material (La+-zS) with a high superconducting transition temperature of about 40.
rz) pcuOX was discovered, and since then Y B a
2 Cu a Ox* B1-5r-Ca-Cu-0
, Tl-Ba-Ca-Cu-0, and the like, superconducting transitions at higher temperatures have been reported. The higher the superconducting transition temperature, the easier the cooling becomes, and the critical current density and critical magnetic field are also expected to become thicker when used at the same temperature, and the range of applications is expected to expand.For this reason, the current Many studies have been conducted on the manufacturing methods, physical properties, applications, etc. of these materials.

発明が解決しようとする課題 ところが上記の材料のうち、(L at−zs rz)
acUOXは超伝導転移温度が40に以下と比較的低く
、Y B a 2Cu s 011は焼成時に雰囲気を
制御する必要があり、B1−5r−Ca−Cu−0は単
一相とするのが困難な上に、長時間の焼成が必要であり
、Tl−Ba−Ca−Cu−0はTIの毒性が強い上に
、Tlの蒸発のために組成を一定に保つ事が難しいとい
う問題点があった。また、何れの組成でも、セラミック
スとした場合に焼結体の密度が低かった。
Problem to be solved by the invention However, among the above materials, (L at-zs rz)
acUOX has a relatively low superconducting transition temperature of 40 or less, YBa 2Cu s 011 requires atmosphere control during firing, and B1-5r-Ca-Cu-0 is difficult to form into a single phase. Moreover, it requires long firing time, and Tl-Ba-Ca-Cu-0 has the problem that TI is highly toxic and it is difficult to keep the composition constant due to evaporation of Tl. Ta. In addition, regardless of the composition, the density of the sintered body was low when it was made of ceramic.

課題を解決する為の手段 少なくともLn (LnはY、  La、  Cet 
 Pr+NcL  Sm+  Eu+  GcL  T
b+  Dy+  Hot  Er+  Tm+  Y
b+  Lu+  Scより選択された、1種類以上の
元素)t  Pb+  SrおよびCuを含む組成とす
る。
Means to solve the problem At least Ln (Ln is Y, La, Cet
Pr+NcL Sm+ Eu+ GcL T
b+ Dy+ Hot Er+ Tm+ Y
The composition contains one or more elements selected from b+ Lu+ Sc)t Pb+ Sr and Cu.

作用 発明者等は、従来知られていない酸化物高温超伝導体の
組成比を探索・研究した結果、上記の組成からなる物質
において、比較的高い温度における超伝導転移を見いだ
した。
As a result of exploring and researching the composition ratio of oxide high temperature superconductors, which was hitherto unknown, the inventors discovered superconducting transition at relatively high temperatures in a substance having the above composition.

本発明の組成では、TI等の毒性の高い成分を含まず、
また空気中での短時間の焼成で超伝導体を合成する事が
出来る。
The composition of the present invention does not contain highly toxic components such as TI,
Moreover, superconductors can be synthesized by short-time firing in air.

実施例 出発原料として、純度99%以上のYb2O3、PbO
9SrCO3、CuOの各粉末を用いた。これらの粉末
を、表1の組成比となり、かつ粉末の総重量が20gと
なるようにそれぞれ秤量した。
Examples Starting materials include Yb2O3 and PbO with a purity of 99% or more.
Each powder of 9SrCO3 and CuO was used. These powders were each weighed so that the composition ratios shown in Table 1 were achieved and the total weight of the powders was 20 g.

表1.配合組成比(モル比) 秤量粉末を振動ミルにて直径2mmのZrO2ボールを
用い、エタノール20m1を分散媒として1時間粉砕混
合した。混合終了後、分散媒ごと全量を乾燥機中で12
0°Cで乾燥させた。得られた粉末を800℃で5時間
、空気中で仮焼した後、振動ミルにて前述と同様の方法
で30分間粉砕し、120℃で乾認させた。得られた粉
末の0.6gを18mmX4mmの金型中で800Kg
/cm2の圧力で一軸加圧成形した。この成形体を、電
気炉にて空気中で950℃で5時間焼成し、冷却した。
Table 1. Composition Ratio (Mole Ratio) The weighed powders were pulverized and mixed in a vibration mill for 1 hour using a ZrO2 ball with a diameter of 2 mm and 20 ml of ethanol as a dispersion medium. After mixing, the entire amount including the dispersion medium was placed in a dryer for 12 hours.
Dry at 0°C. The obtained powder was calcined in air at 800°C for 5 hours, then ground in a vibration mill for 30 minutes in the same manner as described above, and dried at 120°C. 0.6g of the obtained powder was transferred to 800Kg in a 18mm x 4mm mold.
Uniaxial pressure molding was carried out at a pressure of /cm2. This molded body was fired in air at 950° C. for 5 hours in an electric furnace, and then cooled.

焼結体は銀電極を付け、通常の4端子法により電気抵抗
の温度変化を測定電流10mAで300Kから 4.2
Kまで測定し、超伝導転移により電気抵抗が急激に低下
し始める温度(TI)と、抵抗がOとなる温度(Tl)
を求めた。また、焼結体の帯磁率の温度変化を測定し、
マイスナー効果により帯磁率が急激に変化し始める温度
(T3)を求めた。結果を表2に示した。
A silver electrode was attached to the sintered body, and the temperature change in electrical resistance was measured using the usual 4-terminal method from 300 K at a current of 10 mA. 4.2
Measured up to K, the temperature at which the electrical resistance begins to rapidly decrease due to superconducting transition (TI) and the temperature at which the resistance becomes O (Tl)
I asked for In addition, we measured the temperature change in the magnetic susceptibility of the sintered body,
The temperature (T3) at which the magnetic susceptibility begins to change rapidly due to the Meissner effect was determined. The results are shown in Table 2.

表2.焼結体の特性(単位K) TI:電気抵抗低下開始温度(Tc onset)Tl
:電気抵抗消失温度  (Tc R=0)T3:マイス
ナー効果開始温度 表2より明らかなように、Pbを含まないNo、1の試
料では、300にではある程度導電性があるが温度を下
げていくにしたがって、電気抵抗は半導体的に増加し、
 4.2にでは絶縁体となった。
Table 2. Characteristics of sintered body (unit: K) TI: Temperature at which electrical resistance begins to decrease (Tconset) Tl
: Electrical resistance vanishing temperature (Tc R=0) T3: Meissner effect starting temperature As is clear from Table 2, samples No. 1, which do not contain Pb, have some conductivity at 300, but the temperature is lowered. Accordingly, the electrical resistance increases in a semiconducting manner,
4.2, it became an insulator.

これに対し、Pbを含むNo、2. No、3の試料で
は、300−100に間ではやはり電気抵抗が若干増加
する傾向にあるが、No、2で59に1 No、3で5
6により電気抵抗は減少に転じ、それぞれ9にと6にで
電気抵抗が実質状消失した。また、マイスナー効果によ
る帯磁率の変化もそれぞれ12にと10にで観察された
。従って、Yb、Pb+Sr、Cuを含む本発明の酸化
物はオンセット温度約E30にの超伝導体である。
On the other hand, No. 2 containing Pb. In the sample No. 3, the electrical resistance tends to increase slightly between 300 and 100, but it is 59 for No. 2 and 5 for No. 3.
6, the electrical resistance started to decrease, and the electrical resistance substantially disappeared at 9 and 6, respectively. In addition, changes in magnetic susceptibility due to the Meissner effect were also observed in samples 12 and 10, respectively. Therefore, the oxides of the present invention containing Yb, Pb+Sr, Cu are superconductors with an onset temperature of about E30.

発明者等は、本実施例の組成比以外にも、種々の組成比
のセラミックスを作製し、その電気抵抗の温度変化を測
定した。その結果、組成比の選択によって超伝導相の生
成量や転移温度には差があるが、広い組成範囲で超伝導
転移の存在を確認した。
In addition to the composition ratio of this example, the inventors produced ceramics with various composition ratios, and measured changes in electrical resistance with temperature. As a result, although the amount of superconducting phase produced and the transition temperature differ depending on the selection of the composition ratio, we confirmed the existence of superconducting transition over a wide composition range.

次に、生成した超伝導相の結晶構造について少し説明す
る。No 、2の試料をX線回折測定にかけると、観察
される回折ピークは、S r P b Oa 相と未知
相によるものである。5rPbOs相は超伝導相ではな
いので、未知相が超伝導相と考えられる。この未知相に
よると考えられる回折ピークは、a軸長約3.81A、
a軸長約11.8Aをとる正方品の回折パターンとして
説明されうる。この格子定数は、一般に123構造と呼
ばれる、90に程度の超伝導転移温度をもつ、ペロブス
カイト相YbBa2Cu30.より、a軸が少し短い(
YbBa2Cu30x相はa軸が約3.83A、b軸が
約s、eAtc軸が約11.7Aの斜方晶であるが、酸
素欠損の増加により超伝導とならない正方品となると、
a軸長約3.88AX a軸長約11.75A)が、よ
く似た値となっている。
Next, we will briefly explain the crystal structure of the superconducting phase produced. When the sample No. 2 is subjected to X-ray diffraction measurement, the observed diffraction peaks are due to the S r P b Oa phase and the unknown phase. Since the 5rPbOs phase is not a superconducting phase, the unknown phase is considered to be a superconducting phase. The diffraction peak thought to be due to this unknown phase has an a-axis length of about 3.81A,
It can be described as a diffraction pattern of a square piece with an a-axis length of about 11.8A. This lattice constant is a perovskite phase YbBa2Cu30.0 with a superconducting transition temperature of the order of 90°C, commonly referred to as the 123 structure. , the a-axis is a little shorter (
The YbBa2Cu30x phase is an orthorhombic crystal with an a-axis of about 3.83 A, a b-axis of about s, and an eAtc axis of about 11.7 A, but when it becomes a tetragonal product that does not become superconducting due to an increase in oxygen vacancies,
The a-axis length is approximately 3.88AX and the a-axis length is approximately 11.75A), which are very similar values.

Y b B a 2 Cu 30 *のペロブスカイト
相は、BaがSrで60%程度まで置換可能である。こ
の置換を行うと、Srのイオン半径がBaのそれより小
さいために、a、  b軸とも小さくなる。一方、Ba
を含まず、SrとCuを含む超伝導酸化物として、B1
−5r−Ca−Cu−0系が知られている。この化合物
は若干式なる結晶構造をもつが、YbBa2Cu 30
 x相のas  b軸に相当する軸の長さは約3.82
Aであり、本発明のものに近い値をとる。
In the perovskite phase of Y b B a 2 Cu 30 *, Ba can be replaced by Sr up to about 60%. When this substitution is performed, since the ionic radius of Sr is smaller than that of Ba, both the a and b axes become smaller. On the other hand, Ba
As a superconducting oxide containing Sr and Cu, B1
-5r-Ca-Cu-0 system is known. This compound has a crystal structure of the following formula, YbBa2Cu 30
The length of the axis corresponding to the as b axis of the x phase is approximately 3.82
A, which takes a value close to that of the present invention.

以上の事実より、本発明の超伝導相の格子定数は、Y 
b B a 2Cu s Ox相のBaサイトがSrで
1ooVo置換された時に期待される値を持つ。しかし
ながら、YbBa2CuaOx相のBaサイトを単純に
Srで100%置換する事は不可能であり、100%置
換組成比で配合して焼成すると、ちとのペロブスカイト
相は消失し、超伝導転移も示さなくなる。この事は、N
o、1の試料の結果からも明らかである。ところが、こ
のN001の組成にPbを加えていく事により、Baが
0となっても、123+M造のペロブスカイト相が生成
するものと考えられる。従って、本発明の超伝導相は、
YbBa2Cu30x相のBaサイトがSrとPbで置
換されたものと考えられる。
From the above facts, the lattice constant of the superconducting phase of the present invention is Y
b It has the expected value when the Ba site of the B a 2Cu s Ox phase is replaced with 1ooVo of Sr. However, it is impossible to simply replace 100% of the Ba sites of the YbBa2CuaOx phase with Sr, and when the composition is blended with 100% substitution and fired, the original perovskite phase disappears and no superconducting transition is exhibited. This matter is N
This is also clear from the results of samples o and 1. However, it is thought that by adding Pb to the composition of N001, a 123+M perovskite phase is generated even if Ba becomes 0. Therefore, the superconducting phase of the present invention is
It is considered that the Ba site of the YbBa2Cu30x phase was replaced with Sr and Pb.

発明の効果 本発明・によれば、Ln−Pb−8r−Cu−0系組成
の酸化物超伝導体とすることにより、得られたセラミッ
クスの転移温度は(L as−xs rx)2cUOZ
相を越え、また、焼結体は緻密である。
Effects of the Invention According to the present invention, by using an oxide superconductor having an Ln-Pb-8r-Cu-0 composition, the transition temperature of the obtained ceramic is (Las-xs rx)2cUOZ
Beyond the phase, the sintered body is also dense.

Claims (1)

【特許請求の範囲】[Claims]  少なくともLn(LnはY,La,Ce,Pr,Nd
,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,
Yb,Lu,Scより選択された、1種類以上の元素)
,Pb,Sr,およびCuを含む組成を有することを特
徴とする、酸化物超伝導材料。
At least Ln (Ln is Y, La, Ce, Pr, Nd
, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
one or more elements selected from Yb, Lu, Sc)
, Pb, Sr, and Cu.
JP63282919A 1988-11-09 1988-11-09 Oxide superconducting material Pending JPH02129023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63282919A JPH02129023A (en) 1988-11-09 1988-11-09 Oxide superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63282919A JPH02129023A (en) 1988-11-09 1988-11-09 Oxide superconducting material

Publications (1)

Publication Number Publication Date
JPH02129023A true JPH02129023A (en) 1990-05-17

Family

ID=17658811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63282919A Pending JPH02129023A (en) 1988-11-09 1988-11-09 Oxide superconducting material

Country Status (1)

Country Link
JP (1) JPH02129023A (en)

Similar Documents

Publication Publication Date Title
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
WO1990002098A1 (en) Superconducting metal oxide compositions
JPH02129023A (en) Oxide superconducting material
JP3219563B2 (en) Metal oxide and method for producing the same
Hayri et al. La2− xBaxSr1− xYxCu2O6 and M1. 9Sr1. 1Cu2O6 (M= PrandNd); new layered copper-oxides with the La2SrCu2O6 structure
JPH02129022A (en) Oxide superconducting material
Prasad et al. Superconductivity in the 70K range in Ca-free Pb Sr R Cu O oxide system
JPH02133317A (en) Oxide superconducting material
JP2523928B2 (en) Oxide superconductor and method for producing the same
AU632076B2 (en) Superconducting metal oxide compositions and processes for manufacture and use
JP3247914B2 (en) Metal oxide material
JP2555505B2 (en) Metal oxide material
KR970001258B1 (en) Super conducting material
JPS63176353A (en) Superconductive raw material
JPH02107518A (en) Oxide superconducting material
KR0119192B1 (en) New high-tc superconductors and process for preparing them
WO1989007086A1 (en) SUPERCONDUCTING Bi-Sr-Ca-Cu OXIDE COMPOSITIONS AND PROCESS FOR MANUFACTURE
JPH0230618A (en) Oxide high-temperature superconductor
JPH02275720A (en) Oxide superconducting material
Peacor et al. Physical and electromagnetic properties of Y‐Ba‐Cu‐O superconductors synthesized with peroxides
JPH02252622A (en) Oxide superconducting material
JPH0616419A (en) Infinite-layer superconductor
JPH02225318A (en) Oxide superconductor material
JPH02157154A (en) Ceramics electrical conductive material
EP0468428A2 (en) Oxide superconductor material and manufacturing method thereof