JPH01246105A - Superconducting oxide and surface coating method - Google Patents
Superconducting oxide and surface coating methodInfo
- Publication number
- JPH01246105A JPH01246105A JP63073185A JP7318588A JPH01246105A JP H01246105 A JPH01246105 A JP H01246105A JP 63073185 A JP63073185 A JP 63073185A JP 7318588 A JP7318588 A JP 7318588A JP H01246105 A JPH01246105 A JP H01246105A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- superconducting oxide
- carbon film
- component
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 32
- 239000011248 coating agent Substances 0.000 claims abstract description 7
- 239000010408 film Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 5
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 abstract description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 abstract description 6
- 239000000843 powder Substances 0.000 abstract description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 4
- 239000007789 gas Substances 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 3
- 229910052786 argon Inorganic materials 0.000 abstract description 2
- 238000010891 electric arc Methods 0.000 abstract description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- -1 ela-2nol Chemical class 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002887 superconductor Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000255896 Galleria mellonella Species 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- QLOAVXSYZAJECW-UHFFFAOYSA-N methane;molecular fluorine Chemical compound C.FF QLOAVXSYZAJECW-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は耐候性にすぐねた超伝導酸化物およびその表面
被覆方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting oxide with excellent weather resistance and a method for coating the surface thereof.
[従来の技術]
近年、液体窒素温度より高い温度で超伝導特性を示す酸
化物セラミックスの存在が明らかになり、各所で製造法
や特性等の改良検討が開始されている。[Prior Art] In recent years, the existence of oxide ceramics that exhibit superconducting properties at temperatures higher than liquid nitrogen temperatures has been revealed, and studies have begun in various places to improve their manufacturing methods and properties.
従来、超伝導酸化物はミクロンあるいはサブミクロン程
度の粒径を有するCuO、Y2O,、Ln2O3(In
はランクメイド元素)等の酸化物原料粉体とBaCO3
粉体を所定の比率で混合し、成形した後、900℃〜1
000℃程度の酸素雰囲気下で焼結して製造するか、あ
るいは所定組成構造を持つ酸化物をターゲットとして、
真空中でスパッタリングして薄膜状酸化物を製造するこ
とが一般的である。Conventionally, superconducting oxides include CuO, Y2O, Ln2O3 (In
is a rank-made element) and other oxide raw material powders and BaCO3
After mixing the powders in a predetermined ratio and molding,
It can be manufactured by sintering in an oxygen atmosphere at around 000°C, or by targeting an oxide with a specific composition structure.
It is common to produce thin film oxides by sputtering in a vacuum.
[発明か解決しようどする課題]
上記のような手段C形成した超伝導酸化物は、製造直後
は超伝導転移温度が901f程度の潰れた特性を示すこ
とが知られている。しかし、空気中に含まれる水分が酸
化物内に侵入して超伝導酸化物構成元素のBaと反応し
、超伝導酸化物の電子状態に変化を与え、超伝導転移温
度が低下することが知られている。[Problems to be Solved by the Invention] It is known that the superconducting oxide formed by means C as described above exhibits collapsed characteristics with a superconducting transition temperature of about 901f immediately after production. However, it is known that moisture contained in the air enters the oxide and reacts with Ba, a constituent element of the superconducting oxide, changing the electronic state of the superconducting oxide and lowering the superconducting transition temperature. It is being
本発明は表面状態が安定で耐候性にすぐれた超伝導酸化
物を提供すること、および超伝導酸化物の表面被覆方法
を提供することを目的とする。An object of the present invention is to provide a superconducting oxide with a stable surface state and excellent weather resistance, and to provide a method for coating the surface of a superconducting oxide.
[課題を解決するための手段]
このような目的を達成するために、本発明超伝導酸化物
は表面が炭素膜で覆われていることを特徴とする。[Means for Solving the Problems] In order to achieve such objects, the superconducting oxide of the present invention is characterized in that its surface is covered with a carbon film.
本発明被覆方法は超伝導酸化物薄膜の表面に炭素膜を形
成することを特徴とする。The coating method of the present invention is characterized in that a carbon film is formed on the surface of a superconducting oxide thin film.
1作 用〕 本発明によれは、従来から知られ′Cいる(Y。For 1 work According to the present invention, there is a conventionally known method (Y).
Ln) (βa、 Sr、 Ca) 2CL13fl
y−x系超伝県酸化物、あるいはBi−G:a−5r−
山J−0系超伝導酸化物など、各種製造方法で形成した
バルクもしくは薄膜超伝導体表面を炭素層で覆うことに
よって酸素の拡散、水分の拡散を抑え、超伝導特性を長
期間安定に保たせることができる。Ln) (βa, Sr, Ca) 2CL13fl
y-x series superdensity oxide, or Bi-G:a-5r-
By covering the surface of bulk or thin film superconductors formed by various manufacturing methods, such as Yama J-0 superconducting oxides, with a carbon layer, oxygen diffusion and moisture diffusion are suppressed, and superconducting properties are maintained stably for a long period of time. You can make it happen.
[実施例] 以下に実施例によって、本発明の詳細な説明する。[Example] The present invention will be explained in detail below by way of examples.
叉遁−叶工
Y2O5,BaCO3,CuO粉末を1:2:3のモル
比に混合し、ベレット状に成形した物を酸素雰囲気中に
おいて950℃で5時間加熱し、その後室温まで徐冷し
てYBazCIjsl)y−11の組成からなる超伝導
酸化物を作製した。X線回折の結果、第1図に示すよう
に、この超伝導酸化物焼結体が超伝導層(斜方晶)のピ
ークを示す事が確認された。さらに4端子法によって抵
抗の温度変化を測定した結果、超伝導特性を示す臨界温
度(零抵抗になる温度)が90にである事が判った。A mixture of Y2O5, BaCO3, and CuO powders in a molar ratio of 1:2:3 was formed into a pellet shape, heated at 950°C for 5 hours in an oxygen atmosphere, and then slowly cooled to room temperature. A superconducting oxide having a composition of YBazCIjsl)y-11 was produced. As a result of X-ray diffraction, it was confirmed that this superconducting oxide sintered body exhibited a superconducting layer (orthorhombic) peak as shown in FIG. Furthermore, as a result of measuring temperature changes in resistance using the four-terminal method, it was found that the critical temperature (temperature at which zero resistance occurs) exhibiting superconducting properties is 90°C.
この試料を複数個作製して、−群の試料は焼結した後の
状態で、また他の一群は次に示す手順に従って炭素膜を
表面に形成した。両群の試料について耐候性試験を行っ
た。A plurality of these samples were prepared, and the samples of the - group were in a state after sintering, and the carbon film was formed on the surface of the other group according to the following procedure. Weather resistance tests were conducted on samples from both groups.
アルゴンガスにメタノールを数%混合したガスを流しな
がら、直流アーク放電によって高温プラズマ状態を出現
させた。高温プラズマによって、アルコールガスは分解
して炭素を発生し、発生り。A high-temperature plasma state was created by direct current arc discharge while flowing a mixture of argon gas and several percent methanol. The high-temperature plasma decomposes alcohol gas and generates carbon.
た炭素を超伝導酸化物ベレット上に堆積させた。carbon was deposited on a superconducting oxide pellet.
YBa2CusO7−X超伝導酸化物材料は、高温に加
熱されると酸素が離脱し、超伝導特性が劣化するので、
試料温度が上昇しないように玲却しながら炭素膜堆積を
行った。超伝導酸化物表面に形成された炭素膜厚は20
・〜40μ■であワだ。When YBa2CusO7-X superconducting oxide material is heated to high temperatures, oxygen is released and the superconducting properties deteriorate.
The carbon film was deposited while cooling the sample to prevent the temperature from rising. The thickness of the carbon film formed on the superconducting oxide surface is 20
・It's ~40μ■.
上記のようにして得た、2種類の試料を、温度80℃、
湿度85%の環境条件に6時間放置した。両試料の表面
をX線回折測定を行った結果、表面に何も!A理を施さ
なかった試料は、YBa2Cu30y−xの特徴的な回
折ピークは消失し、同定不能なピークが現れた。炭素膜
を形成した試料は、炭素膜を除去した後、同様にX線回
折測定した結果YBa2Cu307−、に特徴的なピー
クが観測できた。炭素膜が高温・高温という劣悪な条件
下で、超伝導酸化物表面を保護する能力がある事を確認
できた。The two types of samples obtained as described above were heated at a temperature of 80°C.
It was left for 6 hours under an environmental condition of 85% humidity. As a result of performing X-ray diffraction measurements on the surfaces of both samples, there was nothing on the surfaces! In the sample that was not subjected to the A treatment, the characteristic diffraction peak of YBa2Cu30y-x disappeared, and an unidentifiable peak appeared. After removing the carbon film, the sample on which the carbon film was formed was similarly subjected to X-ray diffraction measurement, and as a result, a characteristic peak of YBa2Cu307- was observed. It was confirmed that the carbon film has the ability to protect the superconducting oxide surface under the adverse conditions of high and high temperatures.
超伝導特性確認の他の手段として、両群の試料の磁化率
の温度特性を測定した。第2図に磁化率の温度特性を示
す。実線Aは焼結直後の試料の特性であって、炭素膜を
形成した試料では、耐候性試験後もほぼこの曲線に一致
する特性を示した。As another means of confirming the superconducting properties, we measured the temperature characteristics of the magnetic susceptibility of both groups of samples. Figure 2 shows the temperature characteristics of magnetic susceptibility. The solid line A represents the characteristics of the sample immediately after sintering, and the sample on which the carbon film was formed showed characteristics that almost matched this curve even after the weathering test.
一方、表面に炭素膜を形成しなかった試料では、第2図
中破線Bで示すようにマイスナー効果の減少がみられ、
超伝導特性が劣化していることが判る。On the other hand, in the sample on which no carbon film was formed on the surface, a decrease in the Meissner effect was observed, as shown by the broken line B in Figure 2.
It can be seen that the superconducting properties have deteriorated.
去閃0辻主
Y2O3,BaCO3,CuO各粉末を1+2:3のモ
ル比にひよう全混合した後、プロピレングリコールを・
少ド荻添加15、ペースト状にした右の4−・、’15
7(イブ1−リユーム安定化ジルコニア)基板上+、−
g=IT+シ、酸素雰囲気中で1000℃で1時間加熱
焼成し、その9を室7品まで徐ン令し、Y−Ba−Cu
−0系から7シるノアさSμNの超伝導酸化物膜を形成
1.・た。同様の試料を禎数個作製し、実施イク1目と
同様に、 群はそのままの状態とし、他の一群には表面
に2〜・3μIIl程度の厚さの炭素膜を形成した。何
1の試料#a90Kf′1度の臨界温度を示した。両群
の試料を50℃の水中に10時間放置した後、臨界温度
を測定した。炭素膜を形成しlこ試料では、臨界温度の
変化はなかったが、炭素膜を形成し?、2かった試料で
は、臨界温度の確定が出来ないほどであフた。薄膜の場
合は、全体積中に占める表面部分の割合が大きいので、
炭素液Jの効果は特に大きい。After thoroughly mixing Y2O3, BaCO3, and CuO powders in a molar ratio of 1+2:3, propylene glycol was added.
Added a small amount of ogi 15, made into a paste 4-・, '15
7 (Eve 1-Rium stabilized zirconia) on substrate +, -
g=IT+Si, heated and fired at 1000℃ for 1 hour in an oxygen atmosphere, and slowly aged the 9 to 7 products in a room to produce Y-Ba-Cu
1. Forming a superconducting oxide film with a noisiness SμN of 7 from the −0 system. ·Ta. Several similar samples were prepared, and in the same manner as in the first experiment, one group was left as it was, and a carbon film with a thickness of about 2 to 3 μl was formed on the surface of the other group. No. 1 sample #a90Kf' showed a critical temperature of 1 degree. After the samples of both groups were left in water at 50° C. for 10 hours, the critical temperature was measured. In this sample with a carbon film formed, there was no change in critical temperature, but with the carbon film formed? , 2, the critical temperature could not be determined. In the case of thin films, the surface area occupies a large proportion of the total volume, so
The effect of carbon liquid J is particularly large.
炭素被覆の19さけ1μm程度で効果がある。1[発、
明の効果]
以上説明したように、本発明によれば超伝導酸化物表面
に°比較的低温で炭素膜仝、形成することにJ、っ−〔
、従来問題であった超伝導体の還元劣化を抑制すること
が出来た。実施例ではYSZ上ムこ形成した超伝導酸化
物膜への炭素膜の効果のみを説明したか、基板として使
用できる材料は単にYSZに限らず、S!、 Ag、
PL、 Al2O3等の基板に形成された超伝導酸化物
に炭素を被覆することも有効であることは言うまでもな
く、環境条件に一対する耐性なり―えることが出来る。A carbon coating thickness of about 1 μm is effective. 1 [shot,
As explained above, according to the present invention, it is possible to form a carbon film on the surface of a superconducting oxide at a relatively low temperature.
, it was possible to suppress the reduction deterioration of superconductors, which had been a problem in the past. In the examples, only the effect of the carbon film on the superconducting oxide film formed on YSZ has been explained, and the materials that can be used as the substrate are not limited to YSZ. , Ag,
Needless to say, coating a superconducting oxide formed on a substrate such as PL or Al2O3 with carbon is also effective, and can provide resistance to environmental conditions.
なお、炭素膜の形成には、エラ2ノールなど一価のアル
コール、エヂレングリコ・−ルその他の多価)′ル、二
1−ルまたは芳香族化合物を用いることができ、さらに
実施例に記載した高温プラズマを用いで発生した炭素の
他に、炭化水素、フッ素化炭素、あるいはどれらの混合
物等を原着とした低温プラズマにJ:っ゛(得られるダ
イヤ千ノドライク炭素膜、α−クロロ−〇−キシレン等
を原料と1)たCVDはうによっ′C得られるグラファ
イト・ライク炭素膜、あるいは真空中で炭素を電子ビー
ムで蒸発さt″(得られる炭素膜であっても良く、炭素
膜の形成力者去によって本発明の主旨は失われないこと
は言うまでもない。For forming the carbon film, monohydric alcohols such as ela-2nol, ethylene glycol and other polyhydric alcohols, di-ols, or aromatic compounds can be used. In addition to carbon generated using high-temperature plasma, hydrocarbons, fluorinated carbon, or mixtures thereof are deposited on low-temperature plasma. 〇-CVD using xylene, etc. as a raw material can be used to obtain a graphite-like carbon film, or by evaporating carbon with an electron beam in a vacuum. It goes without saying that the gist of the present invention is not lost even if the shaping power is removed.
第1図はYBaz(:uJy−xのX線回折図、第2図
は炭素膜を形成した試料および炭素膜を形成しなかった
試料の磁化率の温度依存性を示す特性図′Pある。
特許出願人 日本型イ3電話株式会ネ」代 理 人
弁理士 谷 義 −FIG. 1 is an X-ray diffraction diagram of YBaz(:uJy-x), and FIG. 2 is a characteristic diagram 'P showing the temperature dependence of the magnetic susceptibility of a sample with a carbon film and a sample without a carbon film. Patent applicant: Japanese Type A3 Telephone Co., Ltd.” Agent
Patent Attorney Yoshi Tani −
Claims (1)
導酸化物。 2)超伝導酸化物薄膜の表面に炭素膜を形成することを
特徴とする超伝導酸化物の表面被覆方法。[Claims] 1) A superconducting oxide whose surface is covered with a carbon film. 2) A method for coating a superconducting oxide surface, which comprises forming a carbon film on the surface of a superconducting oxide thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63073185A JPH01246105A (en) | 1988-03-29 | 1988-03-29 | Superconducting oxide and surface coating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63073185A JPH01246105A (en) | 1988-03-29 | 1988-03-29 | Superconducting oxide and surface coating method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01246105A true JPH01246105A (en) | 1989-10-02 |
Family
ID=13510827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63073185A Pending JPH01246105A (en) | 1988-03-29 | 1988-03-29 | Superconducting oxide and surface coating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01246105A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4948413A (en) * | 1987-06-04 | 1990-08-14 | Taki Chemical Co., Ltd. | Physiologically active agent for agriculture use |
US5288697A (en) * | 1991-05-15 | 1994-02-22 | Basf Aktiengesellschaft | Production of thin protective polyimide layers on high temperature superconductors |
-
1988
- 1988-03-29 JP JP63073185A patent/JPH01246105A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4948413A (en) * | 1987-06-04 | 1990-08-14 | Taki Chemical Co., Ltd. | Physiologically active agent for agriculture use |
US5288697A (en) * | 1991-05-15 | 1994-02-22 | Basf Aktiengesellschaft | Production of thin protective polyimide layers on high temperature superconductors |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002505032A5 (en) | ||
US6794339B2 (en) | Synthesis of YBa2CU3O7 using sub-atmospheric processing | |
JPH01246105A (en) | Superconducting oxide and surface coating method | |
JPH0780710B2 (en) | Manufacturing method of oxide high temperature superconductor | |
Grammatika et al. | Formation of thick YBa2Cu3O7-delta and YBa2Cu3O7-delta-Ag films on Y2BaCuO5 and BaZrO3 substrates | |
JPS63277555A (en) | Oxide superconductive ceramic sintered material and production thereof | |
Shin et al. | Fabrication of high-Jc YBCO films by the TFA-MOD process using YBCO powder as precursor | |
JP3219563B2 (en) | Metal oxide and method for producing the same | |
JPH0345301A (en) | Manufacture of oxide superconductive tape wire | |
JP2573650B2 (en) | Superconductor manufacturing method | |
JP3121001B2 (en) | Method for producing Tl-based oxide superconductor | |
Koshy et al. | Novel ceramic substrates for high Tc superconductors | |
Nair et al. | Superconducting YBa 2 Cu 3 O 7− δ thick film (T c (0)= 92 K) on a newly developed perovskite ceramic substrate | |
US5081073A (en) | Superconducting ceramic structure | |
JP2817170B2 (en) | Manufacturing method of superconducting material | |
JP2919955B2 (en) | Superconducting member manufacturing method | |
JP2855128B2 (en) | Oxide superconductor | |
JPH0248457A (en) | Coating for oxide superconductive thick film | |
JP2544760B2 (en) | Preparation method of superconducting thin film | |
JPS63277554A (en) | Oxide superconductive ceramic linear sintered material and production thereof | |
Koshy et al. | The structural and superconducting properties of the YBa2Cu3O7− δ‐HfO2 system | |
JP2554235B2 (en) | Tl-based oxide superconducting wire and method for producing the same | |
Dos Santos et al. | Superconducting films made by spin-coating with acetate solutions | |
JP2855126B2 (en) | Oxide superconductor | |
JPH01126206A (en) | Superconducting thin film |