JPH01246105A - Superconducting oxide and surface coating method - Google Patents

Superconducting oxide and surface coating method

Info

Publication number
JPH01246105A
JPH01246105A JP63073185A JP7318588A JPH01246105A JP H01246105 A JPH01246105 A JP H01246105A JP 63073185 A JP63073185 A JP 63073185A JP 7318588 A JP7318588 A JP 7318588A JP H01246105 A JPH01246105 A JP H01246105A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting oxide
carbon film
component
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63073185A
Other languages
Japanese (ja)
Inventor
Takao Edahiro
枝広 隆夫
Shuichi Shibata
修一 柴田
Takao Kimura
隆男 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63073185A priority Critical patent/JPH01246105A/en
Publication of JPH01246105A publication Critical patent/JPH01246105A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To suppress reductional deterioration and improve weather resistance by coating the surface with a carbon film. CONSTITUTION:Powders such as Y2O3, BaCO3 and CuO are blended, formed and sintered at about 950 deg.C under O2 atmosphere to obtain a superconducting oxide (A). Under an atmosphere of a mixed gas (B) consisting of argon gas, methanol, etc., a high temperature plasma is generated by direct-current arc discharge to decompose component (B) and produce carbon (C). The produced component (C) is subsequently accumulated on the component (A). The component (A) is then cooled without deterioration of the superconducting properties and a coating film with 20-40mum carbon film thickness is made to form on the superconducting oxide surface.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は耐候性にすぐねた超伝導酸化物およびその表面
被覆方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting oxide with excellent weather resistance and a method for coating the surface thereof.

[従来の技術] 近年、液体窒素温度より高い温度で超伝導特性を示す酸
化物セラミックスの存在が明らかになり、各所で製造法
や特性等の改良検討が開始されている。
[Prior Art] In recent years, the existence of oxide ceramics that exhibit superconducting properties at temperatures higher than liquid nitrogen temperatures has been revealed, and studies have begun in various places to improve their manufacturing methods and properties.

従来、超伝導酸化物はミクロンあるいはサブミクロン程
度の粒径を有するCuO、Y2O,、Ln2O3(In
はランクメイド元素)等の酸化物原料粉体とBaCO3
粉体を所定の比率で混合し、成形した後、900℃〜1
000℃程度の酸素雰囲気下で焼結して製造するか、あ
るいは所定組成構造を持つ酸化物をターゲットとして、
真空中でスパッタリングして薄膜状酸化物を製造するこ
とが一般的である。
Conventionally, superconducting oxides include CuO, Y2O, Ln2O3 (In
is a rank-made element) and other oxide raw material powders and BaCO3
After mixing the powders in a predetermined ratio and molding,
It can be manufactured by sintering in an oxygen atmosphere at around 000°C, or by targeting an oxide with a specific composition structure.
It is common to produce thin film oxides by sputtering in a vacuum.

[発明か解決しようどする課題] 上記のような手段C形成した超伝導酸化物は、製造直後
は超伝導転移温度が901f程度の潰れた特性を示すこ
とが知られている。しかし、空気中に含まれる水分が酸
化物内に侵入して超伝導酸化物構成元素のBaと反応し
、超伝導酸化物の電子状態に変化を与え、超伝導転移温
度が低下することが知られている。
[Problems to be Solved by the Invention] It is known that the superconducting oxide formed by means C as described above exhibits collapsed characteristics with a superconducting transition temperature of about 901f immediately after production. However, it is known that moisture contained in the air enters the oxide and reacts with Ba, a constituent element of the superconducting oxide, changing the electronic state of the superconducting oxide and lowering the superconducting transition temperature. It is being

本発明は表面状態が安定で耐候性にすぐれた超伝導酸化
物を提供すること、および超伝導酸化物の表面被覆方法
を提供することを目的とする。
An object of the present invention is to provide a superconducting oxide with a stable surface state and excellent weather resistance, and to provide a method for coating the surface of a superconducting oxide.

[課題を解決するための手段] このような目的を達成するために、本発明超伝導酸化物
は表面が炭素膜で覆われていることを特徴とする。
[Means for Solving the Problems] In order to achieve such objects, the superconducting oxide of the present invention is characterized in that its surface is covered with a carbon film.

本発明被覆方法は超伝導酸化物薄膜の表面に炭素膜を形
成することを特徴とする。
The coating method of the present invention is characterized in that a carbon film is formed on the surface of a superconducting oxide thin film.

1作 用〕 本発明によれは、従来から知られ′Cいる(Y。For 1 work According to the present invention, there is a conventionally known method (Y).

Ln)  (βa、 Sr、 Ca) 2CL13fl
y−x系超伝県酸化物、あるいはBi−G:a−5r−
山J−0系超伝導酸化物など、各種製造方法で形成した
バルクもしくは薄膜超伝導体表面を炭素層で覆うことに
よって酸素の拡散、水分の拡散を抑え、超伝導特性を長
期間安定に保たせることができる。
Ln) (βa, Sr, Ca) 2CL13fl
y-x series superdensity oxide, or Bi-G:a-5r-
By covering the surface of bulk or thin film superconductors formed by various manufacturing methods, such as Yama J-0 superconducting oxides, with a carbon layer, oxygen diffusion and moisture diffusion are suppressed, and superconducting properties are maintained stably for a long period of time. You can make it happen.

[実施例] 以下に実施例によって、本発明の詳細な説明する。[Example] The present invention will be explained in detail below by way of examples.

叉遁−叶工 Y2O5,BaCO3,CuO粉末を1:2:3のモル
比に混合し、ベレット状に成形した物を酸素雰囲気中に
おいて950℃で5時間加熱し、その後室温まで徐冷し
てYBazCIjsl)y−11の組成からなる超伝導
酸化物を作製した。X線回折の結果、第1図に示すよう
に、この超伝導酸化物焼結体が超伝導層(斜方晶)のピ
ークを示す事が確認された。さらに4端子法によって抵
抗の温度変化を測定した結果、超伝導特性を示す臨界温
度(零抵抗になる温度)が90にである事が判った。
A mixture of Y2O5, BaCO3, and CuO powders in a molar ratio of 1:2:3 was formed into a pellet shape, heated at 950°C for 5 hours in an oxygen atmosphere, and then slowly cooled to room temperature. A superconducting oxide having a composition of YBazCIjsl)y-11 was produced. As a result of X-ray diffraction, it was confirmed that this superconducting oxide sintered body exhibited a superconducting layer (orthorhombic) peak as shown in FIG. Furthermore, as a result of measuring temperature changes in resistance using the four-terminal method, it was found that the critical temperature (temperature at which zero resistance occurs) exhibiting superconducting properties is 90°C.

この試料を複数個作製して、−群の試料は焼結した後の
状態で、また他の一群は次に示す手順に従って炭素膜を
表面に形成した。両群の試料について耐候性試験を行っ
た。
A plurality of these samples were prepared, and the samples of the - group were in a state after sintering, and the carbon film was formed on the surface of the other group according to the following procedure. Weather resistance tests were conducted on samples from both groups.

アルゴンガスにメタノールを数%混合したガスを流しな
がら、直流アーク放電によって高温プラズマ状態を出現
させた。高温プラズマによって、アルコールガスは分解
して炭素を発生し、発生り。
A high-temperature plasma state was created by direct current arc discharge while flowing a mixture of argon gas and several percent methanol. The high-temperature plasma decomposes alcohol gas and generates carbon.

た炭素を超伝導酸化物ベレット上に堆積させた。carbon was deposited on a superconducting oxide pellet.

YBa2CusO7−X超伝導酸化物材料は、高温に加
熱されると酸素が離脱し、超伝導特性が劣化するので、
試料温度が上昇しないように玲却しながら炭素膜堆積を
行った。超伝導酸化物表面に形成された炭素膜厚は20
・〜40μ■であワだ。
When YBa2CusO7-X superconducting oxide material is heated to high temperatures, oxygen is released and the superconducting properties deteriorate.
The carbon film was deposited while cooling the sample to prevent the temperature from rising. The thickness of the carbon film formed on the superconducting oxide surface is 20
・It's ~40μ■.

上記のようにして得た、2種類の試料を、温度80℃、
湿度85%の環境条件に6時間放置した。両試料の表面
をX線回折測定を行った結果、表面に何も!A理を施さ
なかった試料は、YBa2Cu30y−xの特徴的な回
折ピークは消失し、同定不能なピークが現れた。炭素膜
を形成した試料は、炭素膜を除去した後、同様にX線回
折測定した結果YBa2Cu307−、に特徴的なピー
クが観測できた。炭素膜が高温・高温という劣悪な条件
下で、超伝導酸化物表面を保護する能力がある事を確認
できた。
The two types of samples obtained as described above were heated at a temperature of 80°C.
It was left for 6 hours under an environmental condition of 85% humidity. As a result of performing X-ray diffraction measurements on the surfaces of both samples, there was nothing on the surfaces! In the sample that was not subjected to the A treatment, the characteristic diffraction peak of YBa2Cu30y-x disappeared, and an unidentifiable peak appeared. After removing the carbon film, the sample on which the carbon film was formed was similarly subjected to X-ray diffraction measurement, and as a result, a characteristic peak of YBa2Cu307- was observed. It was confirmed that the carbon film has the ability to protect the superconducting oxide surface under the adverse conditions of high and high temperatures.

超伝導特性確認の他の手段として、両群の試料の磁化率
の温度特性を測定した。第2図に磁化率の温度特性を示
す。実線Aは焼結直後の試料の特性であって、炭素膜を
形成した試料では、耐候性試験後もほぼこの曲線に一致
する特性を示した。
As another means of confirming the superconducting properties, we measured the temperature characteristics of the magnetic susceptibility of both groups of samples. Figure 2 shows the temperature characteristics of magnetic susceptibility. The solid line A represents the characteristics of the sample immediately after sintering, and the sample on which the carbon film was formed showed characteristics that almost matched this curve even after the weathering test.

一方、表面に炭素膜を形成しなかった試料では、第2図
中破線Bで示すようにマイスナー効果の減少がみられ、
超伝導特性が劣化していることが判る。
On the other hand, in the sample on which no carbon film was formed on the surface, a decrease in the Meissner effect was observed, as shown by the broken line B in Figure 2.
It can be seen that the superconducting properties have deteriorated.

去閃0辻主 Y2O3,BaCO3,CuO各粉末を1+2:3のモ
ル比にひよう全混合した後、プロピレングリコールを・
少ド荻添加15、ペースト状にした右の4−・、’15
7(イブ1−リユーム安定化ジルコニア)基板上+、−
g=IT+シ、酸素雰囲気中で1000℃で1時間加熱
焼成し、その9を室7品まで徐ン令し、Y−Ba−Cu
−0系から7シるノアさSμNの超伝導酸化物膜を形成
1.・た。同様の試料を禎数個作製し、実施イク1目と
同様に、 群はそのままの状態とし、他の一群には表面
に2〜・3μIIl程度の厚さの炭素膜を形成した。何
1の試料#a90Kf′1度の臨界温度を示した。両群
の試料を50℃の水中に10時間放置した後、臨界温度
を測定した。炭素膜を形成しlこ試料では、臨界温度の
変化はなかったが、炭素膜を形成し?、2かった試料で
は、臨界温度の確定が出来ないほどであフた。薄膜の場
合は、全体積中に占める表面部分の割合が大きいので、
炭素液Jの効果は特に大きい。
After thoroughly mixing Y2O3, BaCO3, and CuO powders in a molar ratio of 1+2:3, propylene glycol was added.
Added a small amount of ogi 15, made into a paste 4-・, '15
7 (Eve 1-Rium stabilized zirconia) on substrate +, -
g=IT+Si, heated and fired at 1000℃ for 1 hour in an oxygen atmosphere, and slowly aged the 9 to 7 products in a room to produce Y-Ba-Cu
1. Forming a superconducting oxide film with a noisiness SμN of 7 from the −0 system. ·Ta. Several similar samples were prepared, and in the same manner as in the first experiment, one group was left as it was, and a carbon film with a thickness of about 2 to 3 μl was formed on the surface of the other group. No. 1 sample #a90Kf' showed a critical temperature of 1 degree. After the samples of both groups were left in water at 50° C. for 10 hours, the critical temperature was measured. In this sample with a carbon film formed, there was no change in critical temperature, but with the carbon film formed? , 2, the critical temperature could not be determined. In the case of thin films, the surface area occupies a large proportion of the total volume, so
The effect of carbon liquid J is particularly large.

炭素被覆の19さけ1μm程度で効果がある。1[発、
明の効果] 以上説明したように、本発明によれば超伝導酸化物表面
に°比較的低温で炭素膜仝、形成することにJ、っ−〔
、従来問題であった超伝導体の還元劣化を抑制すること
が出来た。実施例ではYSZ上ムこ形成した超伝導酸化
物膜への炭素膜の効果のみを説明したか、基板として使
用できる材料は単にYSZに限らず、S!、 Ag、 
PL、 Al2O3等の基板に形成された超伝導酸化物
に炭素を被覆することも有効であることは言うまでもな
く、環境条件に一対する耐性なり―えることが出来る。
A carbon coating thickness of about 1 μm is effective. 1 [shot,
As explained above, according to the present invention, it is possible to form a carbon film on the surface of a superconducting oxide at a relatively low temperature.
, it was possible to suppress the reduction deterioration of superconductors, which had been a problem in the past. In the examples, only the effect of the carbon film on the superconducting oxide film formed on YSZ has been explained, and the materials that can be used as the substrate are not limited to YSZ. , Ag,
Needless to say, coating a superconducting oxide formed on a substrate such as PL or Al2O3 with carbon is also effective, and can provide resistance to environmental conditions.

なお、炭素膜の形成には、エラ2ノールなど一価のアル
コール、エヂレングリコ・−ルその他の多価)′ル、二
1−ルまたは芳香族化合物を用いることができ、さらに
実施例に記載した高温プラズマを用いで発生した炭素の
他に、炭化水素、フッ素化炭素、あるいはどれらの混合
物等を原着とした低温プラズマにJ:っ゛(得られるダ
イヤ千ノドライク炭素膜、α−クロロ−〇−キシレン等
を原料と1)たCVDはうによっ′C得られるグラファ
イト・ライク炭素膜、あるいは真空中で炭素を電子ビー
ムで蒸発さt″(得られる炭素膜であっても良く、炭素
膜の形成力者去によって本発明の主旨は失われないこと
は言うまでもない。
For forming the carbon film, monohydric alcohols such as ela-2nol, ethylene glycol and other polyhydric alcohols, di-ols, or aromatic compounds can be used. In addition to carbon generated using high-temperature plasma, hydrocarbons, fluorinated carbon, or mixtures thereof are deposited on low-temperature plasma. 〇-CVD using xylene, etc. as a raw material can be used to obtain a graphite-like carbon film, or by evaporating carbon with an electron beam in a vacuum. It goes without saying that the gist of the present invention is not lost even if the shaping power is removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はYBaz(:uJy−xのX線回折図、第2図
は炭素膜を形成した試料および炭素膜を形成しなかった
試料の磁化率の温度依存性を示す特性図′Pある。 特許出願人  日本型イ3電話株式会ネ」代 理 人 
 弁理士 谷  義 −
FIG. 1 is an X-ray diffraction diagram of YBaz(:uJy-x), and FIG. 2 is a characteristic diagram 'P showing the temperature dependence of the magnetic susceptibility of a sample with a carbon film and a sample without a carbon film. Patent applicant: Japanese Type A3 Telephone Co., Ltd.” Agent
Patent Attorney Yoshi Tani −

Claims (1)

【特許請求の範囲】 1)表面が炭素膜で覆われていることを特徴とする超伝
導酸化物。 2)超伝導酸化物薄膜の表面に炭素膜を形成することを
特徴とする超伝導酸化物の表面被覆方法。
[Claims] 1) A superconducting oxide whose surface is covered with a carbon film. 2) A method for coating a superconducting oxide surface, which comprises forming a carbon film on the surface of a superconducting oxide thin film.
JP63073185A 1988-03-29 1988-03-29 Superconducting oxide and surface coating method Pending JPH01246105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63073185A JPH01246105A (en) 1988-03-29 1988-03-29 Superconducting oxide and surface coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63073185A JPH01246105A (en) 1988-03-29 1988-03-29 Superconducting oxide and surface coating method

Publications (1)

Publication Number Publication Date
JPH01246105A true JPH01246105A (en) 1989-10-02

Family

ID=13510827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63073185A Pending JPH01246105A (en) 1988-03-29 1988-03-29 Superconducting oxide and surface coating method

Country Status (1)

Country Link
JP (1) JPH01246105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948413A (en) * 1987-06-04 1990-08-14 Taki Chemical Co., Ltd. Physiologically active agent for agriculture use
US5288697A (en) * 1991-05-15 1994-02-22 Basf Aktiengesellschaft Production of thin protective polyimide layers on high temperature superconductors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948413A (en) * 1987-06-04 1990-08-14 Taki Chemical Co., Ltd. Physiologically active agent for agriculture use
US5288697A (en) * 1991-05-15 1994-02-22 Basf Aktiengesellschaft Production of thin protective polyimide layers on high temperature superconductors

Similar Documents

Publication Publication Date Title
JP2002505032A5 (en)
US6794339B2 (en) Synthesis of YBa2CU3O7 using sub-atmospheric processing
JPH01246105A (en) Superconducting oxide and surface coating method
JPH0780710B2 (en) Manufacturing method of oxide high temperature superconductor
Grammatika et al. Formation of thick YBa2Cu3O7-delta and YBa2Cu3O7-delta-Ag films on Y2BaCuO5 and BaZrO3 substrates
JPS63277555A (en) Oxide superconductive ceramic sintered material and production thereof
Shin et al. Fabrication of high-Jc YBCO films by the TFA-MOD process using YBCO powder as precursor
JP3219563B2 (en) Metal oxide and method for producing the same
JPH0345301A (en) Manufacture of oxide superconductive tape wire
JP2573650B2 (en) Superconductor manufacturing method
JP3121001B2 (en) Method for producing Tl-based oxide superconductor
Koshy et al. Novel ceramic substrates for high Tc superconductors
Nair et al. Superconducting YBa 2 Cu 3 O 7− δ thick film (T c (0)= 92 K) on a newly developed perovskite ceramic substrate
US5081073A (en) Superconducting ceramic structure
JP2817170B2 (en) Manufacturing method of superconducting material
JP2919955B2 (en) Superconducting member manufacturing method
JP2855128B2 (en) Oxide superconductor
JPH0248457A (en) Coating for oxide superconductive thick film
JP2544760B2 (en) Preparation method of superconducting thin film
JPS63277554A (en) Oxide superconductive ceramic linear sintered material and production thereof
Koshy et al. The structural and superconducting properties of the YBa2Cu3O7− δ‐HfO2 system
JP2554235B2 (en) Tl-based oxide superconducting wire and method for producing the same
Dos Santos et al. Superconducting films made by spin-coating with acetate solutions
JP2855126B2 (en) Oxide superconductor
JPH01126206A (en) Superconducting thin film