JPH07309659A - Dielectric porcelain material - Google Patents

Dielectric porcelain material

Info

Publication number
JPH07309659A
JPH07309659A JP6099479A JP9947994A JPH07309659A JP H07309659 A JPH07309659 A JP H07309659A JP 6099479 A JP6099479 A JP 6099479A JP 9947994 A JP9947994 A JP 9947994A JP H07309659 A JPH07309659 A JP H07309659A
Authority
JP
Japan
Prior art keywords
dielectric
porcelain material
dielectric porcelain
weight
pbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6099479A
Other languages
Japanese (ja)
Inventor
Kazuya Akiyama
和也 秋山
Akihiro Isomura
明宏 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6099479A priority Critical patent/JPH07309659A/en
Publication of JPH07309659A publication Critical patent/JPH07309659A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a dielectric porcelain material which has a large dielectric constant epsilonr, the temp. coefft. tauf of a resonance frequency as approximate as to zero, a large QXf value and permits simultaneous sintering even if Au, Ag, Cu, and their alloys, etc., having low m.p. are used for internal electrode materials. CONSTITUTION:This dielectric porcelain material consists of an essential component having the chemical compsn. expressed by general formula, a(Ba1-xPbx)-O-b(La1-yGdy)2O3-cTiO2 (where, a=11.7 21.7mol%, b=11.7 to 21.7mol%, a+b+c=100 mol%, 0.01<=x<=0.65, 0.01<=y<=0.65) and the additives added to this essential component. The additive consist of 0.2 to 4.0wt.% SiO2, 0.2 to 3.0wt.% B2O3 and 0.5 to 4.0wt.% PbO with on the total weight of the dielectric porcelain material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,主にマイクロ波帯域用
の通信や放送機器に使用される誘電体磁器材料に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic material mainly used for communication and broadcasting equipment for microwave band.

【0002】[0002]

【従来の技術】近年,通信技術の進歩による自動車電話
や携帯電話などの移動体通信の普及に伴って,通信に利
用される周波数帯域はマイクロ波帯域に及んでいる。
2. Description of the Related Art In recent years, with the spread of mobile communication such as car phones and mobile phones due to the progress of communication technology, the frequency band used for communication has reached the microwave band.

【0003】従来,このマイクロ波帯域で使用される回
路部品には,空洞共振器等が用いられていた。しかし,
これらの部品はマイクロ波の波長と同程度の大きさにな
るため,自動車用電話機,携帯電話機,小型GPS装置
等に適用できるような部品の小型化は不可能であった。
Conventionally, a cavity resonator or the like has been used as a circuit component used in the microwave band. However,
Since these parts have the same size as the wavelength of microwaves, it was impossible to miniaturize the parts applicable to automobile phones, mobile phones, small GPS devices, and the like.

【0004】これに対し,マイクロ波フィルタや発信器
の周波数安定化回路に,誘電体共振器を用いることによ
って,回路部品の小型化が盛んにおこなわれている。
On the other hand, by using a dielectric resonator in a microwave filter or a frequency stabilizing circuit of an oscillator, miniaturization of circuit parts has been actively carried out.

【0005】このようなマイクロ波誘電体材料に要求さ
れる特性は,使用周波数帯域における誘電率εr が大き
いこと,共振周波数の温度係数τf ができるだけ零に近
いこと,マイクロ波帯域での誘電損失tanδ(=1/
Q)が小さいこと,即ち,Q値(普通Q×fの形で表現
される,fは共振周波数)が大きいこと等が挙げられ
る。
The characteristics required of such a microwave dielectric material are that the dielectric constant ε r in the frequency band used is large, the temperature coefficient τ f of the resonance frequency is as close to zero as possible, and the dielectric constant in the microwave band. Loss tan δ (= 1 /
Q) is small, that is, the Q value (normally expressed in the form of Q × f, f is a resonance frequency) is large.

【0006】従来,マイクロ波誘電体材料としては,B
aO−TiO2 系,BaO・4TiO2 ・0.1W
3 ,Ba(Zn1/3 Ta2/3 )O3 ,(Zr0.8 Sn
0.2 )TiO4 等の組成が知られているが,これらの系
で,高Q×f値,共振周波数の温度係数τf ≒±0pp
m/℃は得られるものの,誘電率εr は高々40程度し
かなく,低い周波数帯域では部品の小型化には寄与でき
なかった。
Conventionally, B has been used as a microwave dielectric material.
aO-TiO 2 system, BaO · 4TiO 2 · 0.1W
O 3 , Ba (Zn 1/3 Ta 2/3 ) O 3 , (Zr 0.8 Sn
0.2 ) Compositions such as TiO 4 are known, but in these systems, high Q × f value, temperature coefficient of resonance frequency τ f ≈ ± 0 pp
Although m / ° C was obtained, the permittivity ε r was only about 40 at most, and it could not contribute to the miniaturization of parts in the low frequency band.

【0007】また,上記のBaO−TiO2 系に希土類
酸化物を添加し,さらにBaサイトをPbやSrで置換
した(Ba,Pb)O−Nd2 3 −TiO2 系,(B
a,Sr)O−Sm2 3 −TiO2 系では,誘電率ε
r =70〜100が得られることが知られているが,マ
イクロ波帯域でのQ値が上記の系よりも劣るという欠点
があった。また,上記のような希土類酸化物を主成分と
する誘電材料は,希土類磁石材料として需要の大きいN
2 3 やSm2 3 を大量に使用しているので,希土
類元素の有効利用とは言えない。
Further, a rare earth oxide is added to the above BaO—TiO 2 system, and the Ba site is replaced by Pb or Sr. (Ba, Pb) O—Nd 2 O 3 —TiO 2 system, (B
a, Sr) O—Sm 2 O 3 —TiO 2 system, dielectric constant ε
It is known that r = 70 to 100 can be obtained, but it has a drawback that the Q value in the microwave band is inferior to that of the above system. In addition, the dielectric material containing a rare earth oxide as a main component as described above has a large demand for N as a rare earth magnet material.
Since a large amount of d 2 O 3 and Sm 2 O 3 are used, it cannot be said that the rare earth elements are effectively used.

【0008】そこで,本発明者は,BaO−TiO2
の添加材料として,ガラス添加剤等の用途しかなく供給
過剰となっているLa2 3 を使用し,貴重なNd2
3 やSm2 3 を使用しない(Ba,Pb)−(La,
Gd)2 Ti4 12系の誘電材料を見出した。(特願平
5−28713号,参照)
[0008] The present inventors, as a additive material BaO-TiO 2 system, using La 2 O 3 that is the only without oversupply applications such as glass additives, precious Nd 2 O
No 3 or Sm 2 O 3 (Ba, Pb)-(La,
A Gd) 2 Ti 4 O 12 based dielectric material has been found. (See Japanese Patent Application No. 5-287713)

【0009】[0009]

【発明が解決しようとする課題】ところで,マイクロ波
回路のより一層の小型化を図るためには,LC素子を用
いる方法が有効であり,これは,既に実用化されている
セラミック積層技術を適用することによって実現でき
る。例えば,薄いセラミック層の上に金属パターンを形
成し,これらを何枚か重ねれば,種々の形状を持つ積層
セラミック回路部品を製作することができる。
By the way, in order to further miniaturize the microwave circuit, a method using an LC element is effective, and the ceramic lamination technology which has already been put into practical use is applied. It can be realized by doing. For example, by forming a metal pattern on a thin ceramic layer and stacking several metal patterns, a laminated ceramic circuit component having various shapes can be manufactured.

【0010】しかし,マイクロ波帯域で使用される素子
の電極部には,一般に,導電性のよいAu,Ag,C
u,及びそれらの合金等が用いられており,上記のLC
素子等を得るには,それらのような比較的融点の低い電
極材料と誘電体材料が同時焼結できることが必要であ
る。
However, Au, Ag, and C, which have good conductivity, are generally used in the electrode part of the device used in the microwave band.
u and their alloys are used, and the above LC
In order to obtain an element or the like, it is necessary that such an electrode material having a relatively low melting point and a dielectric material can be simultaneously sintered.

【0011】しかしながら,前記した従来知られている
誘電体材料で,十分な焼結密度と大きな誘電率εr を得
るには,1300〜1500℃で焼結しなければなら
ず,内部電極材料としてAu,Ag,Cu等が使用でき
ないという課題があった。
However, in order to obtain a sufficient sintering density and a large dielectric constant ε r with the above-mentioned conventionally known dielectric material, it is necessary to sinter at 1300 to 1500 ° C. There is a problem that Au, Ag, Cu, etc. cannot be used.

【0012】そこで,本発明の技術的課題は,誘電率ε
r が大きく,共振周波数の温度係数τf ができるだけ零
に近く,Q×f値が大きく,しかも融点の低いAu,A
g,Cu,及びそれらの合金等を内部電極材料に使用し
ても同時焼結できる誘電体磁器材料を提供することにあ
る。
Therefore, the technical problem of the present invention is that the dielectric constant ε
Au, A having a large r , a temperature coefficient τ f of the resonance frequency as close to zero as possible, a large Q × f value, and a low melting point
Another object of the present invention is to provide a dielectric ceramic material that can be co-sintered even when g, Cu, or an alloy thereof is used as an internal electrode material.

【0013】[0013]

【課題を解決するための手段】上記の課題を解決するた
めに,本発明者は,SiO2 ,B2 3 ,及びPbOを
添加することによって,誘電率εr が大きく,共振周波
数の温度係数τf が零に近く,Q×f値が大きく,しか
も,融点の低いAu,Ag,Cu,及びそれらの合金等
を内部電極材料に使用しても同時焼結できる誘電体磁器
材料が得られることを見出した。
In order to solve the above-mentioned problems, the inventor of the present invention added SiO 2 , B 2 O 3 , and PbO to increase the dielectric constant ε r and increase the temperature at the resonance frequency. A dielectric ceramic material having a coefficient τ f close to zero, a large Q × f value, and a low melting point, such as Au, Ag, Cu, and their alloys, which can be simultaneously sintered even when used as the internal electrode material, is obtained. I found that

【0014】即ち,本発明によれば,化学組成が,一般
式,a(Ba1-x Pbx )O−b(La1-y Gdy 2
3 −cTiO2 (ただし,a=11.7〜21.7モ
ル%,b=11.7〜21.7モル%,a+b+c=1
00モル%,0.01≦x≦0.65,0.01≦y≦
0.65)で示される主成分と,この主成分に添加され
た添加物とからなる誘電体磁器材料であって,前記添加
物は,前記誘電体磁器材料の総量に対して0.2〜4.
0重量%のSiO2 と0.2〜3.0重量%のB2 3
と0.5〜4.0重量%のPbOとからなることを特徴
とする誘電体磁器材料が得られる。
That is, according to the present invention, the chemical composition is represented by the general formula: a (Ba 1-x Pb x ) Ob (La 1-y Gd y ) 2
O 3 -cTiO 2 (where a = 11.7 to 21.7 mol%, b = 11.7 to 21.7 mol%, a + b + c = 1
00 mol%, 0.01 ≦ x ≦ 0.65, 0.01 ≦ y ≦
0.65), and a dielectric porcelain material comprising a main component and an additive added to the main component, wherein the additive is 0.2 to the total amount of the dielectric porcelain material. 4.
0 wt% SiO 2 and 0.2-3.0 wt% B 2 O 3
And a dielectric ceramic material characterized by comprising 0.5 to 4.0 wt% of PbO.

【0015】[0015]

【作用】上記のように,SiO2 を0.2〜4.0重量
%,B2 3 を0.2〜3.0重量%,PbOを0.5
〜4.0重量%添加することで,最適な誘電率εr を得
るに必要であった1300〜1500℃の焼結温度を,
1000〜1100℃まで低下させることができる。こ
れにより,誘電体材料と内部電極材料を同時に焼結する
ことができる。
As described above, SiO 2 is 0.2 to 4.0% by weight, B 2 O 3 is 0.2 to 3.0% by weight, and PbO is 0.5% by weight.
˜4.0% by weight, the sintering temperature of 1300-1500 ° C., which was necessary to obtain the optimum dielectric constant ε r ,
It can be lowered to 1000 to 1100 ° C. Thereby, the dielectric material and the internal electrode material can be sintered at the same time.

【0016】[0016]

【実施例】以下,実施例に基づいて,本発明の詳細を説
明する。
EXAMPLES The present invention will be described in detail below based on examples.

【0017】まず,誘電体磁器材料の製造方法について
説明する。
First, a method for manufacturing a dielectric ceramic material will be described.

【0018】BaCO3 ,PbO,La2 3 ,Gd2
3 ,TiO2 の各粉末をそれぞれ表1の割合になるよ
うに秤量した後,純水を用い,ジルコニアボールにて樹
脂製のボールミルで湿式混合し,混合物を得た。次に,
この混合物を乾燥させた後,大気中にて1050℃の温
度で約4時間仮焼し,仮焼物を得た。次に,SiO2
2 3 ,PbOの各粉末をそれぞれ下記表1の割合に
なるように秤量した後,仮焼物に加え,上記のボールミ
ルで湿式粉砕(混合)した。これを,直径15mm,厚
さ約6mmの円盤状に成形し,大気中にて1000〜1
375℃の温度で約1時間焼結することによって誘電体
磁器材料(試料1〜35)を得た。
BaCO 3 , PbO, La 2 O 3 , Gd 2
O 3 and TiO 2 powders were weighed so as to have the ratios shown in Table 1, and were then wet mixed with pure water using a resin ball mill with zirconia balls to obtain a mixture. next,
After this mixture was dried, it was calcined in the atmosphere at a temperature of 1050 ° C. for about 4 hours to obtain a calcined product. Next, SiO 2 ,
The powders of B 2 O 3 and PbO were weighed so as to have the ratios shown in Table 1 below, added to the calcined product, and wet-ground (mixed) with the above ball mill. This is molded into a disk shape with a diameter of 15 mm and a thickness of about 6 mm, and 1000-1
Dielectric ceramic materials (Samples 1 to 35) were obtained by sintering at a temperature of 375 ° C. for about 1 hour.

【0019】次に,この誘電体磁器材料の誘電特性を測
定した。
Next, the dielectric properties of this dielectric ceramic material were measured.

【0020】これらの組成の誘電体磁器について,誘電
体共振器法により,誘電率εr ,Q×f値,及び−25
〜80℃における共振周波数の温度係数τf を測定し
た。それらの結果を下記表2に示した。尚,下記表1,
及び表2において,試料番号の欄に*印があるものは,
本発明の実施例に係る試料以外の比較例である。また,
共振周波数は,2.9〜3.5GHzであった。
With respect to the dielectric ceramics having these compositions, by the dielectric resonator method, the dielectric constant ε r , Q × f value, and −25.
The temperature coefficient τ f of the resonance frequency at -80 ° C was measured. The results are shown in Table 2 below. In addition, the following Table 1,
And in Table 2, those with * in the column of sample number are
It is a comparative example other than the sample which concerns on the Example of this invention. Also,
The resonance frequency was 2.9 to 3.5 GHz.

【0021】[0021]

【表1】 [Table 1]

【表2】 上記表2より明らかなように,(Ba1-x Pbx )O−
(La1-y Gdy 23 −TiO2 系材料に,SiO
2 を0.2〜4.0重量%,B2 3 を0.2〜3.0
重量%,PbOを0.5〜4.0重量%添加すること
で,誘電率εr が大きく,Q×f値が大きく,共振周波
数の温度係数τf が零に近く,しかも1000〜110
0℃の低温で焼結できる誘電体磁器を得ることができ
る。
[Table 2] As is clear from Table 2 above, (Ba 1-x Pb x ) O-
The (La 1-y Gd y) 2 O 3 -TiO 2 based materials, SiO
2 to 0.2 to 4.0% by weight, B 2 O 3 to 0.2 to 3.0
By adding 0.5% by weight of PbO and 0.5-4.0% by weight of PbO, the dielectric constant ε r is large, the Q × f value is large, the temperature coefficient τ f of the resonance frequency is close to zero, and moreover 1000-110.
It is possible to obtain a dielectric ceramic that can be sintered at a low temperature of 0 ° C.

【0022】これに対し,比較例に係る試料(1,4,
5,8,9,12〜14,17〜19,25,26,2
8,30,33)では,添加量が,SiO2 について
は,0.2重量%,B2 3 について0.2重量%,P
bOについて0.5重量%より夫々小さい場合,添加の
効果が得られず,焼結温度が1100℃を越えてしま
う。また,添加量がそれぞれSiO2 4.0重量%,B
2 3 3.0重量%,PbO4.0重量%を越えた場
合,誘電率εr ,Q×f値が著しく低下することが判明
した。
On the other hand, the samples (1, 4,
5,8,9,12-14,17-19,25,26,2
8, 30, 33), the addition amount is 0.2% by weight for SiO 2 , 0.2% by weight for B 2 O 3 , and P.
When bO is smaller than 0.5% by weight, the effect of addition cannot be obtained, and the sintering temperature exceeds 1100 ° C. In addition, the addition amount is 4.0% by weight of SiO 2 and B, respectively.
It has been found that the dielectric constant ε r and Q × f value are remarkably lowered when the content of 2 O 3 exceeds 3.0 wt% and PbO of 4.0 wt%.

【0023】[0023]

【発明の効果】以上に説明した通り,本発明によれば,
誘電率εr が大きく,共振周波数の温度係数τf が零に
近く,Q×f値が大きく,しかも,融点の低いAu,A
g,Cu,及びそれらの合金等を内部電極材料に使用し
ても同時焼結できる誘電体磁器材料が得られる。
As described above, according to the present invention,
Au, A having a large dielectric constant ε r , a temperature coefficient τ f of the resonance frequency close to zero, a large Q × f value, and a low melting point
Even if g, Cu, or an alloy thereof is used as the internal electrode material, a dielectric ceramic material that can be co-sintered can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化学組成が一般式,a(Ba1-x
x )O−b(La1-yGdy 2 3 −cTiO
2 (ただし,a=11.7〜21.7モル%,b=1
1.7〜21.7モル%,a+b+c=100モル%,
0.01≦x≦0.65,0.01≦y≦0.65)で
示される主成分と,これに添加された添加物とからなる
誘電体磁器材料であって,前記添加物は,前記誘電体磁
器材料の総量に対して0.2〜4.0重量%のSiO2
と0.2〜3.0重量%のB2 3 と0.5〜4.0重
量%のPbOとからなることを特徴とする誘電体磁器材
料。
1. The chemical composition is represented by the general formula: a (Ba 1-x P
b x) O-b (La 1-y Gd y) 2 O 3 -cTiO
2 (However, a = 11.7 to 21.7 mol%, b = 1
1.7 to 21.7 mol%, a + b + c = 100 mol%,
0.01 ≤ x ≤ 0.65, 0.01 ≤ y ≤ 0.65), and a dielectric ceramic material comprising an additive added to the main component, wherein the additive is 0.2 to 4.0% by weight of SiO 2 with respect to the total amount of the dielectric ceramic material
And 0.2-3.0% by weight of B 2 O 3 and 0.5-4.0% by weight of PbO.
JP6099479A 1994-05-13 1994-05-13 Dielectric porcelain material Pending JPH07309659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6099479A JPH07309659A (en) 1994-05-13 1994-05-13 Dielectric porcelain material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6099479A JPH07309659A (en) 1994-05-13 1994-05-13 Dielectric porcelain material

Publications (1)

Publication Number Publication Date
JPH07309659A true JPH07309659A (en) 1995-11-28

Family

ID=14248453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6099479A Pending JPH07309659A (en) 1994-05-13 1994-05-13 Dielectric porcelain material

Country Status (1)

Country Link
JP (1) JPH07309659A (en)

Similar Documents

Publication Publication Date Title
US5292694A (en) Method of producing low temperature firing dielectric ceramic composition containing B2 O3
KR100292915B1 (en) Dielectric ceramic composition
US5756412A (en) Dielectric ceramic composition
KR100401942B1 (en) Dielectric Ceramic Compositions and Manufacturing Process the same
JP3011123B2 (en) Dielectric ceramic composition
JP2781500B2 (en) Dielectric ceramic composition for low temperature firing
JPH07309659A (en) Dielectric porcelain material
JPH08245262A (en) Dielectric porcelain composition
JPH10231173A (en) Dielectric porcelain composition, dielectric porcelain material and its production, and dielectric element and its production
JP3193157B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JPH0845345A (en) Dielectric porceelain material
JPH08157257A (en) Dielectric porcelain composition
KR0134532B1 (en) Dielectric ceramic composition for high frequency waves
JPH1029863A (en) Dielectric porcelain composition
JP2000109363A (en) Dielectric porcelain composition
JP3474606B2 (en) Dielectric porcelain composition
JP3420430B2 (en) Dielectric porcelain composition and electronic component
JPH09157005A (en) Dielectric porcelain composition
KR19980014910A (en) Dielectric material for CaTiO3-La (Zn1 / 2Ti1 / 2) O3-LaA103 microwave
JP3536861B2 (en) Dielectric porcelain material
JP2000007434A (en) Dielectric porcelain composition
JPH11322425A (en) Dielectric porcelain composition
JPH08198667A (en) Dielectric porcelain composition
JPH0967163A (en) Dielectric porcelain composition
JP2892203B2 (en) Dielectric circuit board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041006