JPH08198667A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH08198667A
JPH08198667A JP7008643A JP864395A JPH08198667A JP H08198667 A JPH08198667 A JP H08198667A JP 7008643 A JP7008643 A JP 7008643A JP 864395 A JP864395 A JP 864395A JP H08198667 A JPH08198667 A JP H08198667A
Authority
JP
Japan
Prior art keywords
dielectric
composition
main component
mol
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7008643A
Other languages
Japanese (ja)
Inventor
Kazuya Akiyama
和也 秋山
Akihiro Isomura
明宏 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7008643A priority Critical patent/JPH08198667A/en
Publication of JPH08198667A publication Critical patent/JPH08198667A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE: To obtain such a dielectric porcelain material that has a high dielectric const. εr , almost zero temp. coefft. τf of resonance frequency and large Q×f and can be simultaneously sintered even when metals having low melting point such as Au, Ag and Cu or alloys of these are used as the inner electrode material. CONSTITUTION: This dielectric porcelain compsn. consists of the main component comprising BaO, rare earth oxide (R2 O3 , wherein R is at least one king of rare earth element including Nd as the essential component), Bi2 O3 and TiO2 , and an additive. The main component is expressed by general formula aBaO-bR2 O3 -cBi2 O3 -dTiO2 (c=0.8 to 6.3mol% and a+b+c+d=100mol%) and (a), (b+c) and (d) are present in the area defined by the four points P, Q, R, S in the figure. The additive is B2 O3 in an amt. of 0.1-5.0wt.% to the whole weight. This porcelain compsn. contains orthorhombic crystals by >=85vol.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,主にマイクロ波帯域用
の通信や放送機器に使用される誘電体磁器材料に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic material mainly used for communication and broadcasting equipment for microwave band.

【0002】[0002]

【従来の技術】近年,通信技術の進歩による自動車電話
や携帯電話などの移動体通信の普及に伴って,通信に利
用される周波数帯域はマイクロ波帯域に及んでいる。
2. Description of the Related Art In recent years, with the spread of mobile communication such as car phones and mobile phones due to the progress of communication technology, the frequency band used for communication has reached the microwave band.

【0003】従来,このマイクロ波帯域で使用される回
路部品には,空洞共振器等が用いられていた。しかし,
これらの部品はマイクロ波の波長と同程度の大きさにな
るため,自動車用電話機,携帯電話機,小型全地球位置
発見システム(Global positioning system ,以下,G
PSと呼ぶ)装置等に適用できるような部品の小型化は
不可能であった。
Conventionally, a cavity resonator or the like has been used as a circuit component used in the microwave band. However,
Since these parts are as large as the wavelength of microwaves, they are used in automobile phones, mobile phones, and small global positioning systems (hereinafter referred to as G
It was impossible to miniaturize the parts applicable to devices such as PS).

【0004】これに対し,マイクロ波フィルタや発信器
の周波数安定化回路に,誘電体共振器を用いることによ
って,回路部品の小型化が盛んにおこなわれ,実用化さ
れつつある。
On the other hand, by using a dielectric resonator in a microwave filter or a frequency stabilizing circuit of an oscillator, miniaturization of circuit parts has been actively carried out and is being put to practical use.

【0005】このようなマイクロ波誘電体材料に要求さ
れる特性は,使用周波数帯域における誘電率εr が大き
いこと,共振周波数の温度係数τr ができるだけ零に近
いこと,マイクロ波帯域での誘電損失tanδ(=1/
Q)が小さいこと,即ち,Q値(普通Q×fの形で表現
される,fは共振周波数)が大きいこと等が挙げられ
る。
The characteristics required of such a microwave dielectric material are that the dielectric constant ε r in the operating frequency band is large, the temperature coefficient τ r of the resonance frequency is as close to zero as possible, and the dielectric constant in the microwave band is Loss tan δ (= 1 /
Q) is small, that is, the Q value (normally expressed in the form of Q × f, f is a resonance frequency) is large.

【0006】従来,高い誘電率をもつマイクロ波用誘電
体磁器材料としては,BaO−希土類酸化物−TiO2
系の材料が知られているが,これまでに開示されている
組成の材料ではεr ,Q×fのバランスが悪かった。そ
の欠点を解決するために本発明者は,BaO,SrO,
Nd2 3 ,酸化ジジム,Bi2 3 ,TiO2 の組成
を限定し,かつ,体積分率にして85%以上が斜方晶で
あるような誘電体磁器を提案している(特願平6−17
1600号参照)。
Conventionally, as a dielectric ceramic material for microwaves having a high dielectric constant, BaO-rare earth oxide-TiO 2
Although materials of the system are known, the materials having the compositions disclosed so far have a poor balance of ε r and Q × f. In order to solve the drawback, the present inventor has proposed that BaO, SrO,
A dielectric porcelain that limits the composition of Nd 2 O 3 , didymium oxide, Bi 2 O 3 , and TiO 2 and has an orthorhombic ratio of 85% or more in volume fraction is proposed (Patent application Flat 6-17
1600).

【0007】[0007]

【発明が解決しようとする課題】ところで,マイクロ波
回路のより一層の小型化を図るためには,LC素子を用
いる方法が有効であり,これは,既に実用化されている
セラミック積層技術を適用することによって実現でき
る。例えば,薄いセラミック層の上に金属パターンを形
成し,これらを何枚か重ねれば,種々の形状を持つ積層
セラミック回路部品を製作することができる。
By the way, in order to further miniaturize the microwave circuit, a method using an LC element is effective, and the ceramic lamination technology which has already been put to practical use is applied. It can be realized by doing. For example, by forming a metal pattern on a thin ceramic layer and stacking several metal patterns, a laminated ceramic circuit component having various shapes can be manufactured.

【0008】しかし,マイクロ波帯域で使用される素子
の電極部には,一般に,導電性のよいAu,Ag,C
u,及びそれらの合金等が用いられており,上記のLC
素子等を得るには,これらのような比較的融点の低い電
極材料と誘電体材料が同時焼結できることが必要であ
る。
However, the electrodes of the device used in the microwave band generally have good conductivity such as Au, Ag, and C.
u and their alloys are used, and the above LC
In order to obtain an element or the like, it is necessary that such an electrode material having a relatively low melting point and a dielectric material can be co-sintered.

【0009】しかしながら,前記した誘電体材料で,十
分な焼結密度と大きな誘電率εr を得るには,1300
〜1500℃で焼結しなければならず,内部電極材料と
してAu,Ag,Cu等が使用できないという欠点があ
った。
However, in order to obtain a sufficient sintering density and a large dielectric constant ε r with the above-mentioned dielectric material,
It had to be sintered at up to 1500 ° C, and there was a drawback that Au, Ag, Cu, etc. could not be used as internal electrode materials.

【0010】そこで,本発明の技術的課題は,誘電率ε
r が大きく,共振周波数の温度係数τf ができるだけ零
に近く,Q×f値が大きく,しかも,融点の低いAu,
Ag,Cu,及びそれらの合金等を内部電極材料に使用
しても同時焼結できる誘電体磁器材料を提供することに
ある。
Therefore, the technical problem of the present invention is that the dielectric constant ε
Au having a large r , a temperature coefficient τ f of the resonance frequency as close to zero as possible, a large Q × f value, and a low melting point,
An object of the present invention is to provide a dielectric ceramic material that can be co-sintered even when Ag, Cu, or an alloy thereof is used as an internal electrode material.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに,本発明者は,B2 3 を添加することによって,
誘電率εr が大きく,共振周波数の温度係数τf が零に
近く,Q×f値が大きく,しかも,融点の低いAu,A
g,Cu,及びそれらの合金等を内部電極材料に使用し
ても同時焼結できる誘電体磁器材料が得られることを見
出し,本発明を為すに至ったものである。
In order to solve the above problems, the present inventor has added B 2 O 3 to
Au, A having a large dielectric constant ε r , a temperature coefficient τ f of the resonance frequency close to zero, a large Q × f value, and a low melting point
The inventors have found that a dielectric ceramic material that can be co-sintered can be obtained even if g, Cu, or an alloy thereof is used as an internal electrode material, and the present invention has been accomplished.

【0012】即ち,本発明によれば,(1)BaO,R
2 3 (但し,RはNdを必須成分として含む希土類酸
化物),Bi2 3 ,及びTiO2 を含む主成分と,添
加物とからなる磁器組成物であって,前記主成分は一般
式で,aBaO−bR2 3−cBi2 3 −dTiO
2 (但し,c=0.8〜6.3モル%,a+b+c+d
=100モル%)で示され,a,(b+c),dが図1
に示すように下記表3に示すP,Q,R,Sの4点を結
んでできる範囲内にあり,前記添加物は総量に対して
0.1〜5.0重量%のB2 3 からなり,前記磁器組
成物は,体積分率にして85%以上が斜方晶であること
を特徴とする誘電体磁器組成物が得られる。
That is, according to the present invention, (1) BaO, R
A porcelain composition comprising a main component containing 2 O 3 (where R is a rare earth oxide containing Nd as an essential component), Bi 2 O 3 and TiO 2 , and an additive, the main component being generally in the formula, aBaO-bR 2 O 3 -cBi 2 O 3 -dTiO
2 (however, c = 0.8 to 6.3 mol%, a + b + c + d
= 100 mol%), and a, (b + c) and d are shown in FIG.
As shown in Table 3, P, Q, R, and S shown in Table 3 below are in a range formed by connecting them, and the additive is 0.1 to 5.0 wt% of B 2 O 3 with respect to the total amount. The above-mentioned porcelain composition is a dielectric porcelain composition having a volume fraction of 85% or more being orthorhombic.

【0013】[0013]

【表3】 [Table 3]

【0014】また,本発明によれば,(2)前記(1)
記載の誘電体磁器組成物において,前記希土類酸化物R
2 3 は実質的にNd2 3 からなることを特徴とする
誘電体磁器組成物が得られる。
According to the invention, (2) the above (1)
The dielectric ceramic composition described above, wherein the rare earth oxide R
2 O 3 dielectric ceramic composition characterized in that it consists essentially Nd 2 O 3 is obtained.

【0015】また,本発明によれば,(3)前記(2)
記載の誘電体磁器組成物において,前記希土類酸化物R
2 3 は実質的に酸化ジジム(Nd+Pr)2 3 から
なることを特徴とする誘電体磁器組成物が得られる。
According to the invention, (3) the above (2)
The dielectric ceramic composition described above, wherein the rare earth oxide R
A dielectric ceramic composition is obtained in which 2 O 3 is substantially composed of didymium oxide (Nd + Pr) 2 O 3 .

【0016】また,本発明によれば,(4)前記(1)
〜(3)記載の誘電体磁器組成物において,前記主成分
は,前記主成分の内のBaOの一部をSrOで置換し
た,一般式で,aBaO−eSrO−bR2 3 −cB
2 3 −dTiO2 (但し,e=0.1〜3.5モル
%,c=0.8〜6.3モル%,a+e+b+c+d=
100モル%),(a+e),(b+c),dが図2に
おいて下記表4のP,Q,R,Sの4点を結んでできる
範囲内にあることを特徴とする誘電体磁器組成物が得ら
れる。
According to the invention, (4) the above (1)
To (3) dielectric ceramic composition wherein the main component, a portion of BaO of the main component was replaced with SrO, with the general formula, aBaO-eSrO-bR 2 O 3 -cB
i 2 O 3 -dTiO 2 (where, e = 0.1 to 3.5 mole%, c = 0.8~6.3 mole%, a + e + b + c + d =
100 mol%), (a + e), (b + c), d are within the range formed by connecting the four points P, Q, R, and S in Table 4 in FIG. 2 below. Is obtained.

【0017】[0017]

【表4】 [Table 4]

【0018】[0018]

【作用】上記のように,本発明においては,主成分がa
BaO−bR2 3 −cBi23 −dTiO2 又はa
BaO−eSrO−bR2 3 −cBi2 3 −dTi
2 で示される磁器組成物に対してB2 3 を0.1〜
5.0重量%添加することで,最適な誘電率εr を得る
のに必要であった1300〜1500℃の焼結温度を,
1000〜1200℃まで低下させることができる。
As described above, in the present invention, the main component is a
BaO-bR 2 O 3 -cBi 2 O 3 -dTiO 2 or a
BaO-eSrO-bR 2 O 3 -cBi 2 O 3 -dTi
B 2 O 3 is added to the porcelain composition represented by O 2 at 0.1 to
By adding 5.0% by weight, the sintering temperature of 1300 to 1500 ° C., which was necessary to obtain the optimum dielectric constant ε r ,
It can be lowered to 1000 to 1200 ° C.

【0019】[0019]

【実施例】以下,本発明の実施例について,図面を参照
して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】図1は本発明の誘電体磁器組成物の主成分
一例を示す三成分系状態図である。図1を参照して,誘
電体磁器組成物は,BaO,R2 3 (但し,RはNd
を必須成分として含む希土類酸化物),Bi2 3 ,及
びTiO2 を含む主成分と,添加物とからなる磁器組成
物である。この主成分は一般式で,aBaO−bR2
3 −cBi2 3 −dTiO2 (但し,c=0.8〜
6.3モル%,a+b+c+d=100モル%)で示さ
れる。このa,(b+c),dは,下記表5に示すP,
Q,R,Sの4点を結んでできる範囲内にあり,三成分
系状態図で示すと図1のようになる。
FIG. 1 is a three-component system phase diagram showing an example of the main components of the dielectric ceramic composition of the present invention. Referring to FIG. 1, the dielectric ceramic composition was BaO, R 2 O 3 (where R is Nd
Is a porcelain composition comprising a main component containing Bi 2 O 3 and TiO 2 and an additive. The main component in the general formula, aBaO-bR 2 O
3 -cBi 2 O 3 -dTiO 2 (where, c = 0.8 to
6.3 mol%, a + b + c + d = 100 mol%). This a, (b + c), d is P, shown in Table 5 below.
It is within the range formed by connecting the four points of Q, R, and S, and it is as shown in FIG. 1 when shown in a ternary system phase diagram.

【0021】また,本発明の磁器組成物において,前記
主成分に対して添加される添加物は総量に対して0.1
〜5.0重量%のB2 3 からなる。そして,この磁器
組成物は,体積分率にして85%以上が斜方晶である。
Further, in the porcelain composition of the present invention, the amount of the additive added to the main component is 0.1 based on the total amount.
5.0 consists wt% of B 2 O 3. And, in this porcelain composition, 85% or more in volume fraction is orthorhombic.

【0022】[0022]

【表5】 [Table 5]

【0023】また,本発明の誘電体磁器組成物のもう一
つの例は,前記誘電体磁器組成物において,前記希土類
酸化物R2 3 が実質的にNd2 3 からなる。
Another example of the dielectric ceramic composition of the present invention is the dielectric ceramic composition, wherein the rare earth oxide R 2 O 3 is substantially composed of Nd 2 O 3 .

【0024】また,本発明の誘電体磁器組成物の他の一
例は,前記誘電体磁器組成物において,前記希土類酸化
物R2 3 は実質的に酸化ジジム(Nd+Pr)2 3
からなる。
Another example of the dielectric ceramic composition of the present invention is the dielectric ceramic composition, wherein the rare earth oxide R 2 O 3 is substantially didymium oxide (Nd + Pr) 2 O 3.
Consists of

【0025】また,本発明の誘電体組成物のさらに他の
例によれば,前記誘電体磁器組成物の夫々の例におい
て,前記主成分は,前記主成分の内のBaOの一部をS
rOで置換した,一般式で,aBaO−eSrO−bR
2 3 −cBi2 3 −dTiO2 (但し,e=0.1
〜3.5モル%,c=0.8〜6.3モル%,a+e+
b+c+d=100モル%)で示される。この(a+
e),(b+c),dは,下記表6のP,Q,R,Sの
4点を結んでできる範囲内にある。ここで,この主成分
は図2のように示される。
According to still another example of the dielectric composition of the present invention, in each example of the dielectric porcelain composition, the main component is a part of BaO in the main component.
In the general formula substituted with rO, aBaO-eSrO-bR
2 O 3 -cBi 2 O 3 -dTiO 2 (however, e = 0.1
~ 3.5 mol%, c = 0.8-6.3 mol%, a + e +
b + c + d = 100 mol%). This (a +
e), (b + c) and d are within the range formed by connecting the four points P, Q, R and S in Table 6 below. Here, this main component is shown as in FIG.

【0026】[0026]

【表6】 [Table 6]

【0027】本発明の誘電体磁器組成物のさらに他の例
においても,前記主成分に対して添加される添加物は総
量に対して0.1〜5.0重量%のB2 3 からなる。
そして,この磁器組成物は,体積分率にして85%以上
が斜方晶である。
In still another example of the dielectric ceramic composition of the present invention, the additive added to the main component is 0.1 to 5.0% by weight of B 2 O 3 based on the total amount. Become.
And, in this porcelain composition, 85% or more in volume fraction is orthorhombic.

【0028】次に,本発明の誘電体磁器組成物の製造の
具体例について説明する。
Next, specific examples of the production of the dielectric ceramic composition of the present invention will be described.

【0029】(実施例1)まず,BaCO3 ,Nd2
3 ,Bi2 3 ,TiO2 ,SnO2 の各粉末を各組成
に応じて秤量した後,純水を用い,バルコニアボールに
て樹脂製のボールミルで湿式混合し,混合物を得た。次
に,この混合物を乾燥させた後,大気中にて1150℃
の温度で約4時間仮焼し,仮焼物を得た。次に,B2
3 の粉末をそれぞれ下記表7の割合になるように秤量し
た後,仮焼物に加え,上記のボールミルで湿式粉砕(混
合)した。これを,直径15mm,厚さ約6mmの円盤
状に成形し,大気中にて1000〜1375℃の温度で
約2時間焼結することによって誘電体磁器材料を得た。
なお,下記表7で組成は,一般式aBaO−bNd2
3 −cBi2 3 −dTiO2 (但し,モル%,a+b
+c+d=100)のように表わした。
Example 1 First, BaCO 3 and Nd 2 O
Powders of 3 , Bi 2 O 3 , TiO 2 , and SnO 2 were weighed according to each composition, and then pure water was used to wet-mix with a ball mill made of resin with a balconia ball to obtain a mixture. Next, after drying this mixture, it was heated to 1150 ° C in the atmosphere.
It was calcined at the temperature of about 4 hours to obtain a calcined product. Next, B 2 O
The powders of 3 were weighed so as to have the ratios shown in Table 7 below, added to the calcined product, and wet-ground (mixed) with the above ball mill. This was molded into a disk shape having a diameter of 15 mm and a thickness of about 6 mm, and sintered in the atmosphere at a temperature of 1000 to 1375 ° C. for about 2 hours to obtain a dielectric ceramic material.
The composition in Table 7, the general formula aBaO-bNd 2 O
3 -cBi 2 O 3 -dTiO 2 (where the mole%, a + b
+ C + d = 100).

【0030】[0030]

【表7】 [Table 7]

【0031】次に,各組成の誘電体磁器について,誘電
体共振器法により,誘電率εr ,Q×f値,共振周波数
の温度係数τf を測定した。共振周波数の温度係数τf
は0〜+40℃の温度範囲での共振周波数fの差より次
の数1式によって求めた。
Next, with respect to the dielectric porcelain having each composition, the dielectric constant ε r , the Q × f value, and the temperature coefficient τ f of the resonance frequency were measured by the dielectric resonator method. Resonance frequency temperature coefficient τ f
Was calculated from the difference of the resonance frequency f in the temperature range of 0 to + 40 ° C. by the following formula 1.

【0032】[0032]

【数1】 [Equation 1]

【0033】それらの測定結果を上記表7に示した。な
お,共振周波数は2.5〜3.5GHzであった。
The measurement results are shown in Table 7 above. The resonance frequency was 2.5 to 3.5 GHz.

【0034】(実施例2)BaCO3 ,(Nd+Pr)
2 3 (酸化ジジム),Bi2 3 ,TiO2 ,SnO
2 の各粉末を各組成に応じて秤量し,実施例1に示した
のと同様の方法で仮焼物を得た。次に,B2 3 の粉末
をそれぞれ下記表8の割合になるように秤量した後,仮
焼物に加え,実施例1に示したのと同様のボールミルで
湿式粉砕(混合)した後,成形,焼結し,下記表8に示
す組成の誘電体磁器を得た。なお,下記表8で組成は,
aBaO−b(Nd+Pr)2 3 −cBi2 3 −d
TiO2 (モル%,a+b+c+d=100)のように
表わした。
(Example 2) BaCO 3 , (Nd + Pr)
2 O 3 (didymium oxide), Bi 2 O 3 , TiO 2 , SnO
Each powder of 2 was weighed according to each composition, and a calcined product was obtained by the same method as shown in Example 1. Next, the powders of B 2 O 3 were weighed so as to have the ratios shown in Table 8 below, added to the calcined product, wet-ground (mixed) with the same ball mill as shown in Example 1, and then molded. , And sintered to obtain dielectric porcelain having the composition shown in Table 8 below. The composition in Table 8 below is
aBaO-b (Nd + Pr) 2 O 3 -cBi 2 O 3 -d
It is expressed as TiO 2 (mol%, a + b + c + d = 100).

【0035】[0035]

【表8】 [Table 8]

【0036】次に,各組成の誘電体磁器について,実施
例1に示したものと同様の測定を行ったところ,上記表
7に示す測定結果を得た。なお,酸化ジジムの分析値は
下記表9に示す通りで,秤量はPr2 3 を1モルに換
算して行った。
Next, the same measurements as those shown in Example 1 were carried out for the dielectric ceramics having the respective compositions, and the measurement results shown in Table 7 were obtained. The analysis values of didymium oxide are shown in Table 9 below, and the weighing was performed by converting Pr 2 O 3 into 1 mol.

【0037】[0037]

【表9】 [Table 9]

【0038】(実施例3)BaCO3 ,SrO,Nd2
3 ,Bi2 3 ,TiO2 ,SnO2 の各粉末を各組
成に応じて秤量し,実施例1に示したのと同様の方法で
仮焼物を得た。次に,B2 3 の粉末をそれぞれ下記表
10の割合になるように秤量した後,仮焼物に加え,実
施例1に示したのと同様のボールミルで湿式粉砕(混
合)した後,成形,焼結し,下記表10に示す組成の誘
電体磁器を得た。なお,下記表10で組成は,aBaO
−eSrO−bNd2 3 −cBi2 3 −dTiO2
(モル%,a+e+b+c+d=100)のように表わ
した。
Example 3 BaCO 3 , SrO, Nd 2
Powders of O 3 , Bi 2 O 3 , TiO 2 , and SnO 2 were weighed according to each composition, and a calcined product was obtained by the same method as shown in Example 1. Next, the powders of B 2 O 3 were weighed so as to have the proportions shown in Table 10 below, added to the calcined product, wet-ground (mixed) with the same ball mill as shown in Example 1, and then molded. , And sintered to obtain dielectric porcelain having the composition shown in Table 10 below. The composition in Table 10 below is aBaO.
-ESrO-bNd 2 O 3 -cBi 2 O 3 -dTiO 2
It is expressed as (mol%, a + e + b + c + d = 100).

【0039】次に,各組成の誘電体磁器について,実施
例1に示したものと同様の測定を行ったところ,下記表
10に示す測定結果を得た。
Next, the dielectric porcelain having each composition was measured in the same manner as in Example 1, and the measurement results shown in Table 10 below were obtained.

【0040】[0040]

【表10】 [Table 10]

【0041】(実施例4)BaCO3 ,SrO,(Nd
+Pr)2 3 (酸化ジジム),Bi2 3 ,Ti
2 ,SnO2 の各粉末を各組成に応じて秤量し,実施
例1に示したのと同様の方法で仮焼物を得た。次に,B
2 3 の粉末をそれぞれ表11の割合になるように秤量
した後,仮焼物に加え,実施例1に示したのと同様のボ
ールミルで湿式粉砕(混合)した後,成形,焼結し,下
記表11に示す組成の誘電体磁器を得た。なお,表11
で組成は,aBaO−eSrO−b(Nd+Pr)2
3 −cBi2 3 −dTiO2 (モル%,a+e+b+
c+d=100)のように表わした。
(Example 4) BaCO 3 , SrO, (Nd
+ Pr) 2 O 3 (didymium oxide), Bi 2 O 3 , Ti
Each powder of O 2 and SnO 2 was weighed according to each composition, and a calcined product was obtained by the same method as shown in Example 1. Next, B
2 O 3 powders were weighed so as to have the proportions shown in Table 11, added to the calcined product, wet-milled (mixed) with the same ball mill as shown in Example 1, then molded and sintered, The dielectric ceramics having the compositions shown in Table 11 below were obtained. Table 11
In composition, aBaO-eSrO-b (Nd + Pr) 2 O
3 -cBi 2 O 3 -dTiO 2 (mole%, a + e + b +
c + d = 100).

【0042】次に,各組成の誘電体磁器について,実施
例1に示したものと同様の測定を行ったところ,表11
に示す測定結果を得た。なお,酸化ジジムの分析値は上
記表9に示す通りで,秤量はPr2 3 を1モルに換算
して行った。
Next, with respect to the dielectric porcelain having each composition, the same measurement as that shown in Example 1 was performed, and Table 11
The measurement results shown in are obtained. The analysis values of didymium oxide are as shown in Table 9 above, and the weighing was performed by converting Pr 2 O 3 into 1 mol.

【0043】[0043]

【表11】 [Table 11]

【0044】上記実施例1〜4より明らかなように,B
aO−R2 3 −Bi2 3 −TiO2 ,あるいはBa
O−SrO−R2 3 −Bi2 3 −TiO2 の主成分
に対し,B2 3 を0.1〜5.0重量%添加すること
で,誘電率εr が大きく,Q×f値が大きく,共振周波
数の温度係数τf が零に近く,しかも1000〜120
0℃の低温で焼結できる誘電体磁器を得ることができ
る。
As is clear from the above Examples 1 to 4, B
aO-R 2 O 3 -Bi 2 O 3 -TiO 2, or Ba
By adding 0.1 to 5.0 wt% of B 2 O 3 to the main component of O—SrO—R 2 O 3 —Bi 2 O 3 —TiO 2 , the dielectric constant ε r is large and Q × The f value is large, the temperature coefficient τ f of the resonance frequency is close to zero, and 1000 to 120
It is possible to obtain a dielectric ceramic that can be sintered at a low temperature of 0 ° C.

【0045】これに対し,本発明の実施例1〜4による
試料以外の比較例では,添加量が0.1重量%より小さ
い場合,添加の効果が得られず,焼結温度が1200℃
を越えてしまう。また,添加量が5.0重量%を越えた
場合,誘電率εr ,Q×f値が著しく低下する。
On the other hand, in Comparative Examples other than the samples according to Examples 1 to 4 of the present invention, when the addition amount was less than 0.1% by weight, the effect of the addition was not obtained and the sintering temperature was 1200 ° C.
Will exceed. Further, when the added amount exceeds 5.0% by weight, the dielectric constant ε r and Q × f value are significantly reduced.

【0046】[0046]

【発明の効果】以上に説明した通り,本発明によれば,
誘電率εr が大きく,共振周波数の温度係数τf が零に
近く,Q×f値が大きく,しかも,融点の低いAu,A
g,Cu,及びそれらの合金等を内部電極材料に使用し
ても同時焼結できる誘電体磁器組成物を提供することが
できる。
As described above, according to the present invention,
Au, A having a large dielectric constant ε r , a temperature coefficient τ f of the resonance frequency close to zero, a large Q × f value, and a low melting point
It is possible to provide a dielectric ceramic composition that can be co-sintered even when g, Cu, or an alloy thereof is used as an internal electrode material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の誘電体磁器組成物の主成分の一例の組
成範囲を示す三成分系状態図である。
FIG. 1 is a ternary system phase diagram showing a composition range of an example of a main component of a dielectric ceramic composition of the present invention.

【図2】本発明の誘電体磁器組成物の主成分の他の例の
組成範囲を示す三成分系状態図である。
FIG. 2 is a ternary system phase diagram showing a composition range of another example of the main component of the dielectric ceramic composition of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年3月13日[Submission date] March 13, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】(実施例1)まず,BaCO,Nd
,Bi,Ti各粉末を各組成に応じて秤
量した後,純水を用い,バルコニアボールにて樹脂製の
ボールミルで湿式混合し,混合物を得た。次に,この混
合物を乾燥させた後,大気中にて1150℃の温度で約
4時間仮焼し,仮焼物を得た。次に,Bの粉末を
それぞれ下記表7の割合になるように秤量した後,仮焼
物に加え,上記のボールミルで湿式粉砕(混合)した。
これを,直径15mm,厚さ約6mmの円盤状に成形
し,大気中にて1000〜1375℃の温度で約2時間
焼結することによって誘電体磁器材料を得た。なお,下
記表7で組成は,一般式aBaO−bNd−cB
−dTiO(但し,モル%,a+b+c+d
=100)のように表わした。
Example 1 First, BaCO 3 and Nd 2 O
3, Bi 2 O 3, after the respective powders of Ti O 2 were weighed according to the composition, with pure water, and wet-mixed with a resin ball mill balcony A ball, to obtain a mixture. Next, this mixture was dried and then calcined in the atmosphere at a temperature of 1150 ° C. for about 4 hours to obtain a calcined product. Next, the powders of B 2 O 3 were weighed so as to have the ratios shown in Table 7 below, added to the calcined product, and wet-ground (mixed) with the above ball mill.
This was molded into a disk shape having a diameter of 15 mm and a thickness of about 6 mm, and was sintered in the atmosphere at a temperature of 1000 to 1375 ° C. for about 2 hours to obtain a dielectric ceramic material. The composition in Table 7, the general formula aBaO-bNd 2 O 3 -cB
i 2 O 3 -dTiO 2 (where the mole%, a + b + c + d
= 100).

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】(実施例2)BaCO,(Nd+Pr)
(酸化ジジム),Bi,Ti各粉末
を各組成に応じて秤量し,実施例1に示したのと同様の
方法で仮焼物を得た。次に,Bの粉末をそれぞれ
下記表8の割合になるように秤量した後,仮焼物に加
え,実施例1に示したのと同様のボールミルで湿式粉砕
(混合)した後,成形,焼結し,下記表8に示す組成の
誘電体磁器を得た。なお,下記表8で組成は,aBaO
−b(Nd+Pr)−cBi−dTiO
(モル%,a+b+c+d=100)のように表わし
た。
(Example 2) BaCO 3 , (Nd + Pr)
Powders of 2 O 3 (didymium oxide), Bi 2 O 3 and TiO 2 were weighed according to each composition, and a calcined product was obtained by the same method as shown in Example 1. Next, the powders of B 2 O 3 were weighed so as to have the ratios shown in Table 8 below, added to the calcined product, wet-ground (mixed) with the same ball mill as shown in Example 1, and then molded. , And sintered to obtain dielectric porcelain having the composition shown in Table 8 below. The composition in Table 8 below is aBaO.
-B (Nd + Pr) 2 O 3 -cBi 2 O 3 -dTiO 2
It is expressed as (mol%, a + b + c + d = 100).

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0038[Correction target item name] 0038

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0038】(実施例3)BaCO,SrO,Nd
,Bi,Ti各粉末を各組成に応じて
秤量し,実施例1に示したのと同様の方法で仮焼物を得
た。次に,Bの粉末をそれぞれ下記表10の割合
になるように秤量した後,仮焼物に加え,実施例1に示
したのと同様のボールミルで湿式粉砕(混合)した後,
成形,焼結し,下記表10に示す組成の誘電体磁器を得
た。なお,下記表10で組成は,aBaO−eSrO−
bNd−CBi−dTiO(モル%,a
+e+b+c+d=100)のように表わした。
Example 3 BaCO 3 , SrO, Nd 2
Each powder of O 3 , Bi 2 O 3 and TiO 2 was weighed according to each composition, and a calcined product was obtained by the same method as shown in Example 1. Next, the powders of B 2 O 3 were weighed so as to have the proportions shown in Table 10 below, added to the calcined product, and wet-ground (mixed) with the same ball mill as shown in Example 1,
Molding and sintering were carried out to obtain dielectric porcelain having the composition shown in Table 10 below. In Table 10, the composition is aBaO-eSrO-
bNd 2 O 3 -CBi 2 O 3 -dTiO 2 ( mole%, a
+ E + b + c + d = 100).

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0041[Correction target item name] 0041

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0041】(実施例4)BaCO,SrO,(Nd
+Pr)(酸化ジジム),Bi,Ti
各粉末を各組成に応じて秤量し,実施例1に示したの
と同様の方法で仮焼物を得た。次に,Bの粉末を
それぞれ表11の割合になるように秤量した後,仮焼物
に加え,実施例1に示したのと同様のボールミルで湿式
粉砕(混合)した後,成形,焼結し,下記表11に示す
組成の誘電体磁器を得た。なお,表11で組成は,aB
aO−eSrO−b(Nd+Pr)−cBi
−dTiO(モル%,a+e+b+c+d=10
0)のように表わした。
(Example 4) BaCO 3 , SrO, (Nd
+ Pr) 2 O 3 (didymium oxide), Bi 2 O 3 , TiO 2
It weighed in accordance with the powders of the respective compositions to obtain a calcined product in a manner similar to that shown in the first embodiment. Next, the powders of B 2 O 3 were weighed so as to have the proportions shown in Table 11, added to the calcined product, wet-ground (mixed) with the same ball mill as shown in Example 1, and then molded, Sintering was performed to obtain dielectric porcelain having the composition shown in Table 11 below. The composition in Table 11 is aB
aO-eSrO-b (Nd + Pr) 2 O 3 -cBi 2 O
3- dTiO 2 (mol%, a + e + b + c + d = 10
0).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 BaO,希土類酸化物(R2 3 ,但
し,RはNdを必須成分として含む希土類元素の内の少
くとも一種),Bi2 3 ,及びTiO2 を含む主成分
と,添加物とからなる磁器組成物であって,前記主成分
は,一般式で,aBaO−bR2 3 −cBi2 3
dTiO2 (但し,c=0.8〜6.3モル%,a+b
+c+d=100モル%)で示され,a,(b+c),
dが図1において下記表1のP,Q,R,Sの4点を結
んでできる範囲内にあり,前記添加物は,総量に対して
0.1〜5.0重量%のB2 3 からなり,前記磁器組
成物は,体積分率にして85%以上が斜方晶であること
を特徴とする誘電体磁器組成物。 【表1】
1. A main component containing BaO, a rare earth oxide (R 2 O 3 , where R is at least one of rare earth elements containing Nd as an essential component), Bi 2 O 3 , and TiO 2 . a ceramic composition comprising a additive, the main component is a general formula, aBaO-bR 2 O 3 -cBi 2 O 3 -
dTiO 2 (however, c = 0.8 to 6.3 mol%, a + b
+ C + d = 100 mol%), a, (b + c),
d is in a range formed by connecting four points P, Q, R and S in Table 1 below in FIG. 1, and the additive is 0.1 to 5.0% by weight of B 2 O based on the total amount. 3. The dielectric porcelain composition according to claim 3 , wherein the porcelain composition is orthorhombic at a volume fraction of 85% or more. [Table 1]
【請求項2】 請求項1記載の誘電体磁器組成物におい
て,前記希土類酸化物R2 3 は実質的にNd2 3
らなることを特徴とする誘電体磁器組成物。
2. The dielectric ceramic composition according to claim 1, wherein the rare earth oxide R 2 O 3 consists essentially of Nd 2 O 3 .
【請求項3】 請求項1記載の誘電体磁器組成物におい
て,前記希土類酸化物R2 3 は実質的に酸化ジジム
(Nd+Pr)2 3 からなることを特徴とする誘電体
磁器組成物。
3. The dielectric ceramic composition according to claim 1, wherein the rare earth oxide R 2 O 3 is substantially composed of didymium oxide (Nd + Pr) 2 O 3 .
【請求項4】 請求項1〜3のいずれかに記載の誘電体
磁器組成物において, 前記主成分は,前記主成分中の
BaOの一部をSrOで置換した,一般式で,aBaO
−eSrO−bR2 3 −cBi2 3 −dTiO
2 (但し,e=0.1〜3.5モル%,c=0.8〜
6.3モル%,a+e+b+c+d=100モル%)で
示され,(a+e),(b+c),dが図2において下
記表2のP,Q,R,Sの4点を結んでできる範囲内に
あることを特徴とする誘電体磁器組成物。 【表2】
4. The dielectric ceramic composition according to claim 1, wherein the main component is a BaO in the general formula in which a part of BaO in the main component is replaced with SrO.
-ESrO-bR 2 O 3 -cBi 2 O 3 -dTiO
2 (However, e = 0.1-3.5 mol%, c = 0.8-
6.3 mol%, a + e + b + c + d = 100 mol%), and (a + e), (b + c), d are within the range formed by connecting the four points P, Q, R, and S in Table 2 below in FIG. A dielectric porcelain composition characterized by being. [Table 2]
JP7008643A 1995-01-24 1995-01-24 Dielectric porcelain composition Withdrawn JPH08198667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7008643A JPH08198667A (en) 1995-01-24 1995-01-24 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7008643A JPH08198667A (en) 1995-01-24 1995-01-24 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH08198667A true JPH08198667A (en) 1996-08-06

Family

ID=11698638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7008643A Withdrawn JPH08198667A (en) 1995-01-24 1995-01-24 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH08198667A (en)

Similar Documents

Publication Publication Date Title
KR100203515B1 (en) Dielectric ceramic composition for high frequency
JP3011123B2 (en) Dielectric ceramic composition
KR100360974B1 (en) Method for Preparing Dielectric Ceramic Compositions
JPH08198667A (en) Dielectric porcelain composition
JPH08245262A (en) Dielectric porcelain composition
KR19980014514A (en) CERAMIC COMPOSITION FOR HIGH-FREQUENCY DIELECTRIC AND PROC
JP2003146752A (en) Dielectric ceramic composition
JP3824792B2 (en) Dielectric porcelain composition
US5219808A (en) Dielectric ceramic composition
JPH06333426A (en) Dielectric ceramic composition for high frequency
JPS63117958A (en) Dielectric ceramic composition for microwave
KR0134532B1 (en) Dielectric ceramic composition for high frequency waves
KR100234018B1 (en) Dielectric ceramic compositions
JPH09157005A (en) Dielectric porcelain composition
JPH08157257A (en) Dielectric porcelain composition
KR100261549B1 (en) Dielectric ceramic composition for microwave
KR100399800B1 (en) High quality ceramic dielectric composition
KR100234019B1 (en) Dielectric ceramic compositions
JPH107457A (en) Dielectric porcelain composition
JPH1029863A (en) Dielectric porcelain composition
KR100234020B1 (en) Dielectric ceramic compositions
KR19980014910A (en) Dielectric material for CaTiO3-La (Zn1 / 2Ti1 / 2) O3-LaA103 microwave
KR100308915B1 (en) High Frequency Dielectric Magnetic Composition
KR100261550B1 (en) Microwave dielectric materials
KR100609383B1 (en) Dielectric ceramics composition with high dielectric coefficient microwave for low temperature sintering and preparing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402