JPS63285815A - Manufacture of membranous oxide superconductor - Google Patents

Manufacture of membranous oxide superconductor

Info

Publication number
JPS63285815A
JPS63285815A JP62121915A JP12191587A JPS63285815A JP S63285815 A JPS63285815 A JP S63285815A JP 62121915 A JP62121915 A JP 62121915A JP 12191587 A JP12191587 A JP 12191587A JP S63285815 A JPS63285815 A JP S63285815A
Authority
JP
Japan
Prior art keywords
thin film
oxide superconductor
substrate
superconductor
perovskite structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62121915A
Other languages
Japanese (ja)
Inventor
Kazuo Eda
江田 和生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62121915A priority Critical patent/JPS63285815A/en
Publication of JPS63285815A publication Critical patent/JPS63285815A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form a membrane of a desired form at a high speed and a high accuracy by dispersing a powder which consists of a layer-form perovskite structure oxide superconductor powder particles and a glass component in a sensitive resin solution, spreading it on a substrate, drying it, then exposing and developing in a specific form, removing the spread membrane at the parts other than the specific form, and after that, printing it on the substrate. CONSTITUTION:Layer-form perovskite structure superconductor powder particles of 40 to 98 wt% and a glass component powder of 60 to 2 wt% to harden the superconductor particles are dispersed in a molten sensitive resin. In this case, as the layer-form perovskite structure superconductor particles, an A-Ba-Cu oxide (where A is Y or a rare earth element) is used. After that, by spreading the said dispersed solution on a heat-resisting substrate and drying it, and then by exposing and developing it into a specific form in using a mask, the spread membrane at the parts other than the specific form is removed. And after that, it is heat-treated for printing on the heat-resisting substrate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は基板面上に、酸化物超電導体を、任意の形状の
薄膜状態で、高速かつ精度良く形成できる薄膜酸化物超
電導体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a thin film oxide superconductor that can form an oxide superconductor in a thin film state of any shape on a substrate surface at high speed and with high precision. It is.

従来の技術 従来の膜状酸化物超電導体の製造方法として、スパッタ
リングによる製造方法が知られている。
BACKGROUND OF THE INVENTION As a conventional method for manufacturing film-like oxide superconductors, a method using sputtering is known.

これは、酸化物超電導体焼結体、たとえば、B a P
 bo、7B io、s ○3 (BPB)をターゲッ
トとし、酸素を少し含むアルゴンガス中でスパッタリン
グにより、基板上に薄膜を形成するものである。
This is an oxide superconductor sintered body, for example, B a P
A thin film is formed on a substrate by sputtering in argon gas containing a small amount of oxygen using bo, 7B io, s ○3 (BPB) as a target.

発明が解決しようとする問題点 しかし、従来例のこのような製造方法に基づくものでは
、膜形成速度が約1μm/時間と遅いこと、また真空中
で形成しなければならないことから、大型のものが得に
くい、また加工技術上の問題から、精度のよい加工がで
きないなど、生産性に種々の問題があった。
Problems to be Solved by the Invention However, in the conventional manufacturing method, the film formation rate is slow at about 1 μm/hour, and the film must be formed in a vacuum, so it is difficult to produce large-sized films. There have been various problems with productivity, such as difficulty in obtaining high-quality materials and the inability to process with high precision due to problems in processing technology.

本発明はかかる点に霞みなされたもので、基板上に、1
000人〜数μm厚みの任意の形状の薄膜を高速、かつ
精度良く形成できる薄膜酸化物超電導体の製造方法を提
供することを目的としている。
The present invention solves this problem, and has one layer on the substrate.
It is an object of the present invention to provide a method for manufacturing a thin film oxide superconductor, which can form a thin film of any shape with a thickness of 1,000 to several μm at high speed and with high precision.

問題点を解決するための手段 本発明は上記問題点を解決するため、層状ペロブスカイ
ト構造酸化物超電導体粉末粒子40〜98重量%と、こ
れを固着するためのガラス成分60〜2重量%からなる
粉末を、溶液状感光性樹脂中に分散させ、耐熱性基板上
に塗布し乾燥後、マスクを用いて、所定の形状に露光、
現像することによって、前記所定の形状部分以外の塗布
膜を除去し、その後熱処理によって、耐熱性基板上に焼
き付けるという生産性および精度に優れた薄膜酸化物超
電導体の製造方法を提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention consists of 40 to 98% by weight of layered perovskite structured oxide superconductor powder particles and 60 to 2% by weight of a glass component for fixing the particles. The powder is dispersed in a photosensitive resin solution, applied onto a heat-resistant substrate, dried, and then exposed to light in a predetermined shape using a mask.
The present invention provides a method for manufacturing a thin film oxide superconductor with excellent productivity and precision, in which the coated film other than the predetermined shape portion is removed by development, and then baked on a heat-resistant substrate by heat treatment. .

作用 本発明は、前記した製造方法により、基板上に、任意の
形状の薄膜酸化物超電導体を精度良く、かつ高速に形成
することができる。
Function: According to the present invention, a thin film oxide superconductor having an arbitrary shape can be formed on a substrate with high precision and at high speed by the above-described manufacturing method.

実施例 (実施例1) 酸化イツトリウム(Y2O2)、酸化バリウム(B a
 O)と酸化銅(Cu O)を、Yo、4Ba0.6C
u、の比で含むようそれぞれ秤量し、混合の後、950
℃の空気中で5時間焼成した。これをもう一度粉砕、混
合した後、950℃の空気中で24時間焼成し、再度粉
砕し、830℃の空気中で1時間焼成した後、粉砕し焼
結体粉末粒子を得た。
Example (Example 1) Yttrium oxide (Y2O2), barium oxide (B a
O) and copper oxide (CuO), Yo, 4Ba0.6C
Weigh each so as to contain them in the ratio of u, and after mixing, 950
It was baked in air at ℃ for 5 hours. This was crushed and mixed once again, then fired in air at 950°C for 24 hours, crushed again, fired in air at 830°C for 1 hour, and then crushed to obtain sintered powder particles.

次に上記焼結体粉末粒子40〜98重量%と硼珪酸鉛ガ
ラス粉末60〜2重量%を、オルソジアゾキノン−ノボ
ラック(AZ) レジストに、合計で10〜50重量%
になるように加え、さらに溶剤を加えて、分散液の粘度
を調整した。溶剤は、ペーストの焼き付は時に飛散する
ものであれば特に制限はない。
Next, 40 to 98% by weight of the above sintered powder particles and 60 to 2% by weight of the lead borosilicate glass powder are added to an orthodiazoquinone-novolac (AZ) resist for a total of 10 to 50% by weight.
The viscosity of the dispersion was adjusted by further adding a solvent. There is no particular restriction on the solvent as long as it causes the paste to sometimes scatter.

次に、研磨、洗浄されたアルミナ基板を、回転台の上に
とりつけ、上から前記分散液を滴下し、すく回転させる
ことによって、分散液を、アルミナ基板」二に一様に塗
布した。その後、90℃で30分ベータし、マスクを用
いて所定形状に、露光し、現像を行うことによって、所
定形状のみを基板上に形成した。その後、800℃の空
気中で10分間焼付処理を行った。室温まで冷却後、得
られた薄膜の電気抵抗を液体窒素(77K)温度で測定
した結果、超電導性を示した。すなわちこのような方法
で形成した薄膜は、超を導体であった。さらにX線解析
で調べたところ、層状ペロブスカイト構造を示していた
Next, the polished and cleaned alumina substrate was mounted on a rotating table, and the dispersion liquid was dropped onto the alumina substrate, and the dispersion liquid was uniformly applied to the alumina substrate by rotating the alumina substrate. Thereafter, the mixture was incubated at 90° C. for 30 minutes, exposed to light in a predetermined shape using a mask, and developed, thereby forming only the predetermined shape on the substrate. Thereafter, baking treatment was performed in air at 800° C. for 10 minutes. After cooling to room temperature, the electrical resistance of the obtained thin film was measured at liquid nitrogen (77 K) temperature, and the result showed superconductivity. In other words, the thin film formed by this method was a superconductor. Further X-ray analysis showed that it had a layered perovskite structure.

第1図は本発明の薄膜酸化物超電導体を、アルミナ基板
上に形成する場合の、構造の一実施例を示したものであ
る。第1図において、1はアルミナセラミック基板、2
は本実施例の方法により形成した薄膜酸化物超電導体層
である。
FIG. 1 shows an example of a structure in which the thin film oxide superconductor of the present invention is formed on an alumina substrate. In Figure 1, 1 is an alumina ceramic substrate, 2
is a thin film oxide superconductor layer formed by the method of this example.

各層の厚みは、本実施例ではアルミナセラミック入店板
lが635μm、薄膜酸化物超電導体の厚みは1μmで
ある。基板の厚みは、機械的強度がもてば任意である。
In this example, the thickness of each layer is 635 μm for the alumina ceramic board 1, and 1 μm for the thin film oxide superconductor. The thickness of the substrate is arbitrary as long as it has mechanical strength.

薄膜の厚みは2分散液の粘度、固形分の分散量、基板回
転速度をかえたり、2度塗り、3度塗りなど多重塗りを
することによって、1000人程度から5μm程度まで
任意に形成できる。
The thickness of the thin film can be arbitrarily formed from about 1000 to about 5 μm by changing the viscosity of the two dispersions, the amount of solid content dispersed, and the rotation speed of the substrate, or by applying multiple coats such as two coats or three coats.

第2図は、本実施例の結晶構造である層状ペロブスカイ
ト構造の構成要素である、ペロブスカイト構造を示した
もので、図において、3はCu、4は0,5はYまたは
Baである。層状ペロブスカイト構造は、この構成要素
がある周期をもって、層状に積み重なったものである。
FIG. 2 shows a perovskite structure which is a component of the layered perovskite structure which is the crystal structure of this example. In the figure, 3 is Cu, 4 is 0, and 5 is Y or Ba. A layered perovskite structure is a structure in which these components are stacked in layers at a certain period.

実際超電導状態となっているものは、この構造から酸素
が適当にぬけたものと考えられる。
In fact, it is thought that the superconducting state is due to the appropriate removal of oxygen from this structure.

ガラス粉末の量が2重量%よりも少ないと薄膜の結合力
が弱く、強度的に実用的なものが得られなかった。また
60重■%を越えると、薄膜としての超電導体を得るの
が困難となった。したがって酸化物超電導体粉末粒子と
ガラス成分は、それぞれ40〜98重量%および60〜
2重景%重量囲で好ましい。
If the amount of glass powder was less than 2% by weight, the bonding strength of the thin film would be weak, and a film of practical strength could not be obtained. Moreover, when it exceeds 60% by weight, it becomes difficult to obtain a superconductor as a thin film. Therefore, the oxide superconductor powder particles and the glass component are 40-98% by weight and 60-98% by weight, respectively.
It is preferable in double view% weight range.

ガラス成分として、硼珪酸鉛ガラス以外に、硼珪酸鉛亜
鉛ガラス、硼珪酸ビスマスガラスおよび硼珪酸バリウム
ガラスで本実施例と同様の結果が得られた。
Results similar to those in this example were obtained using lead-zinc borosilicate glass, bismuth borosilicate glass, and barium borosilicate glass as glass components other than lead borosilicate glass.

(実施例2) 酸化ランタン(La20a)、酸化バリウム(B a 
O)と酸化銅(Cu O)を、La1.a4B a O
,+6c ulの比で含むようそれぞれ秤量し、混合の
後、実施例Iと同様にして、焼結体粉末粒子を得た。
(Example 2) Lanthanum oxide (La20a), barium oxide (Ba
O) and copper oxide (CuO), La1. a4B a O
, +6 cu ul, and after mixing, sintered powder particles were obtained in the same manner as in Example I.

次に、この原料粉末を用いて、実施例1と同様のプロセ
スを経て、薄膜を形成した。得られた薄膜の電気抵抗を
液体ヘリウム(4K)温度で測定した結果、超電導性を
示した。すなわちこのような方法で形成した薄膜は、超
電導体であった。さらにX線解析で調べたところ、層状
ペロブスカイト構造を示していた。
Next, using this raw material powder, a thin film was formed through the same process as in Example 1. The electrical resistance of the obtained thin film was measured at liquid helium (4K) temperature, and the result showed superconductivity. In other words, the thin film formed by this method was a superconductor. Further X-ray analysis showed that it had a layered perovskite structure.

焼結体粉末粒子とガラス成分の比を変えて作成した結果
は、やはり実施例1とほぼ同様であった。
The results obtained by changing the ratio of the sintered body powder particles to the glass component were almost the same as in Example 1.

またガラス成分を変えた場合の結果も同様であった。The results were also similar when the glass components were changed.

(実施例3) 希土類酸化物(Lu、Yb、Tm、Er、Ho。(Example 3) Rare earth oxides (Lu, Yb, Tm, Er, Ho.

Dy、Gd、Sm、Ndの酸化物)、酸化バリウム(B
 a O)と酸化!1ii(CuO)を、酸化銅lに対
し、希土類酸化物と酸化物バリウムが、0.3および0
.7になるよう種々秤量し、混合の後、実施例1と同様
にして、焼結体粉末粒子を得た。
oxides of Dy, Gd, Sm, Nd), barium oxide (B
a O) and oxidation! 1ii(CuO), rare earth oxide and barium oxide are 0.3 and 0 to copper oxide l.
.. After mixing, sintered powder particles were obtained in the same manner as in Example 1.

次に、この原料粉末を用いて、実施例1と同様のプロセ
スを経て、薄膜を形成した。得られた薄膜の電気抵抗を
液体ヘリウム(4K)温度で測定した結果、超電導性を
示した。すなわちこのような方法で形成した薄膜は、超
電導体であった。さらにX線解析で調べたところ、層状
ペロブスカイト構造を示していた。
Next, using this raw material powder, a thin film was formed through the same process as in Example 1. The electrical resistance of the obtained thin film was measured at liquid helium (4K) temperature, and the result showed superconductivity. In other words, the thin film formed by this method was a superconductor. Further X-ray analysis showed that it had a layered perovskite structure.

焼結体粉末粒子とガラス成分の比を変えて作成した結果
は、やはり実施例1とほぼ同様であった。
The results obtained by changing the ratio of the sintered body powder particles to the glass component were almost the same as in Example 1.

またガラス成分を変えた場合の結果も同様であった。The results were also similar when the glass components were changed.

以上述べた如く、本発明の方法によれば、基板上に、任
意の形状の薄膜酸化物超電導体を高速に形成することが
できる。
As described above, according to the method of the present invention, a thin film oxide superconductor of any shape can be formed on a substrate at high speed.

本実施例の製造方法によれば、層状ペロブスカイト構造
を存する酸化勃起T1導体については、いずれの材料に
ついても適用できるものである。第2図は、実施例1の
結晶構造について、示したものであるが、実施例2〜3
の場合は、この構造において、Y、Baの代りに、それ
ぞれの実施例で用いられた、Cu、O以外の元素で置き
代えたものである。
According to the manufacturing method of this embodiment, any material can be applied to the oxidized erect T1 conductor having a layered perovskite structure. FIG. 2 shows the crystal structure of Example 1, but Examples 2 to 3
In the case of , Y and Ba are replaced with elements other than Cu and O, which were used in the respective examples, in this structure.

本実施例では、基板としてアルミナ基板を用いたが、8
00℃程度の温度の熱処理に耐えるもので、化学的にも
安定なものであれば、この材料に限る必要のないことは
明らかである。
In this example, an alumina substrate was used as the substrate.
It is clear that there is no need to limit the material to this material as long as it can withstand heat treatment at a temperature of about 00° C. and is chemically stable.

また本実施例では、基板の厚み、および薄膜酸化物超電
導体の厚みとして特定の値を用いたが、基板の厚みは任
意であり、また薄膜の厚みは、1000人〜5μmで任
意の厚みが得られる。また薄膜の形状については、露光
マスクの形状を変えることにより、任意のものが得られ
る。
Further, in this example, specific values were used for the thickness of the substrate and the thickness of the thin film oxide superconductor, but the thickness of the substrate can be arbitrary, and the thickness of the thin film can be any thickness between 1000 and 5 μm. can get. Furthermore, any shape of the thin film can be obtained by changing the shape of the exposure mask.

本実施例では、感光性樹脂として、AZレジスト(ホト
レジスト)を用いたが、本発明の方法では、光に当った
部分が、光に当ったことにより、現像液に対して不溶性
、もしくは可溶性となり、現像によりマスク形状のパタ
ーンが基板上に残せ、熱処理によって燃焼または飛散し
てなくなるようなものであれば、どれでもよいことは明
らかである。
In this example, AZ resist (photoresist) was used as the photosensitive resin, but in the method of the present invention, the exposed area becomes insoluble or soluble in the developer due to exposure to the light. It is obvious that any material may be used as long as it can leave a mask-shaped pattern on the substrate by development and burns or scatters away by heat treatment.

本実施例の方法によれば、半導体などの製造プロセスで
用いられているホトリソグラフィー技術がそのまま適用
できるため、きわめて精度の高い、たとえば0.5μm
程度の微細パターンも形成できる。このような微細パタ
ーンの形成は、スクリーン印刷のような厚膜技術では不
可能であった。またスパツタリングにより形成した薄膜
を、ホトリソグラフィーとエツチング技術で加工するの
は、材料が酸化物であるため、エツチング速度の速いエ
ッチャントがなかなかないためやはり困難であった。し
たがって、極めて精度良く加工できることは、本発明の
重要な効果の一つである。
According to the method of this embodiment, since the photolithography technology used in the manufacturing process of semiconductors can be applied as is, extremely accurate
It is also possible to form very fine patterns. Formation of such fine patterns has not been possible with thick film techniques such as screen printing. Furthermore, it has been difficult to process thin films formed by sputtering using photolithography and etching techniques because the material is an oxide and there are few etchants with a high etching rate. Therefore, one of the important effects of the present invention is that it can be processed with extremely high precision.

本発明の方法は、分散液塗布、露光、現像、焼き付けと
いった手法を用いるので、高速にできる2大型のものが
できる。大量にできるなど生産性の面からも優れたもの
である。
Since the method of the present invention uses techniques such as dispersion coating, exposure, development, and baking, two large-sized products can be produced at high speed. It is also excellent in terms of productivity as it can be produced in large quantities.

発明の効果 以上述べた如く、本発明は、層状ペロブスカイト構造酸
化物超電導体粉末粒子40〜98重量%と、これを固着
するためのガラス成分60〜2重量%からなる粉末を、
溶液状感光性樹脂中に分散させ、耐熱性基板上に塗布し
乾燥後、マスクを用いて、所定の形状に露光、現像する
ことによって、前記所定の形状部分以外の塗布膜を除去
し、その後熱処理によって、耐熱性基板上に焼き付ける
ことにより、基板上に、高速に任意の形状の薄膜酸化物
超電導体を形成できるようにしたものである。
Effects of the Invention As described above, the present invention provides a powder consisting of 40 to 98% by weight of layered perovskite structure oxide superconductor powder particles and 60 to 2% by weight of a glass component for fixing the particles.
Dispersed in a photosensitive resin solution, applied onto a heat-resistant substrate, dried, exposed to light in a predetermined shape using a mask, and developed to remove the coating film other than the predetermined shape portion, and then By baking it onto a heat-resistant substrate through heat treatment, a thin film oxide superconductor of any shape can be formed on the substrate at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構造の一実施例を示す構造図、第2図
は、本発明に用いた酸化物超電導体の結晶構造である、
層状ペロブスカイト構造の構成要素である、ペロブスカ
イト構造を示した構造図であるや 1・・・・・・アルミナセラミック基板、2・・・・・
・薄膜酸化物超電導体、3・・・・・・Cu、4・・・
・・・0.5・・・・・・YまたはBa。
FIG. 1 is a structural diagram showing an example of the structure of the present invention, and FIG. 2 is a crystal structure of the oxide superconductor used in the present invention.
These are structural diagrams showing a perovskite structure, which is a constituent element of a layered perovskite structure. 1...Alumina ceramic substrate, 2...
・Thin film oxide superconductor, 3...Cu, 4...
...0.5...Y or Ba.

Claims (5)

【特許請求の範囲】[Claims] (1)層状ペロブスカイト構造酸化物超電導体粉末粒子
40〜98重量%と、これを固着するためのガラス成分
60〜2重量%からなる粉末を、溶液状感光性樹脂中に
分散させ、耐熱性基板上に塗布し乾燥後、マスクを用い
て、所定の形状に露光、現像することによって、前記所
定の形状部分以外の塗布膜を除去し、その後熱処理によ
って、前記耐熱性基板上に焼き付けてなることを特徴と
する薄膜酸化物超電導体の製造方法。
(1) A powder consisting of 40 to 98% by weight of layered perovskite structure oxide superconductor powder particles and 60 to 2% by weight of a glass component for fixing them is dispersed in a photosensitive resin solution, and a heat-resistant substrate is prepared. After coating and drying, the coating film is removed from areas other than the predetermined shape by exposing and developing it in a predetermined shape using a mask, and then baking it onto the heat-resistant substrate by heat treatment. A method for producing a thin film oxide superconductor characterized by:
(2)層状ペロブスカイト構造超電導体酸化物粉末粒子
として、A−Ba−Cu酸化物(ただしAは、Y、希土
類)を用いたことを特徴とする特許請求の範囲第(1)
項記載の薄膜酸化物超電導体の製造方法。
(2) Claim (1) characterized in that A-Ba-Cu oxide (where A is Y or a rare earth) is used as the layered perovskite structure superconductor oxide powder particles.
A method for producing a thin film oxide superconductor as described in 1.
(3)希土類として、La、Lu、Yb、Tm、Er、
Ho、Dy、Gd、Eu、Sm、Ndを用いたことを特
徴とする特許請求の範囲第(2)項記載の薄膜酸化物超
電導体の製造方法。
(3) Rare earths include La, Lu, Yb, Tm, Er,
The method for manufacturing a thin film oxide superconductor according to claim (2), characterized in that Ho, Dy, Gd, Eu, Sm, and Nd are used.
(4)ガラス成分として、硼珪酸鉛ガラス、硼珪酸鉛亜
鉛ガラス、硼珪酸ビスマスガラス、硼珪酸バリウムガラ
スを用いたことを特徴とする特許請求の範囲第(1)項
記載の薄膜酸化物超電導体の製造方法。
(4) Thin film oxide superconductor according to claim (1), characterized in that lead borosilicate glass, lead zinc borosilicate glass, bismuth borosilicate glass, or barium borosilicate glass is used as the glass component. How the body is manufactured.
(5)感光性樹脂として、ホトレジストを用いたことを
特徴とする特許請求の範囲第(1)項記載の薄膜酸化物
超電導体の製造方法。
(5) The method for producing a thin film oxide superconductor according to claim (1), characterized in that a photoresist is used as the photosensitive resin.
JP62121915A 1987-05-19 1987-05-19 Manufacture of membranous oxide superconductor Pending JPS63285815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62121915A JPS63285815A (en) 1987-05-19 1987-05-19 Manufacture of membranous oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62121915A JPS63285815A (en) 1987-05-19 1987-05-19 Manufacture of membranous oxide superconductor

Publications (1)

Publication Number Publication Date
JPS63285815A true JPS63285815A (en) 1988-11-22

Family

ID=14823060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121915A Pending JPS63285815A (en) 1987-05-19 1987-05-19 Manufacture of membranous oxide superconductor

Country Status (1)

Country Link
JP (1) JPS63285815A (en)

Similar Documents

Publication Publication Date Title
JPS63232208A (en) Manufacture of conductive or superconductive thin film
JPS63285815A (en) Manufacture of membranous oxide superconductor
JPS63233070A (en) Preparation of superconductive ceramic
JP2949500B2 (en) Manufacturing method of superconducting ceramics
JPH0251806A (en) Superconducting ceramic laminated body and manufacture thereof
JPH0248458A (en) Ceramic superconductor and production thereof
JPH0199279A (en) Manufacture of superconducting ceramic substrate
JPS63266717A (en) Manufacture of thick film oxide superconductor
JPH01226783A (en) Production of superconducting film of bi-sr-ca-cu-o system by screen printing
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JP2757869B2 (en) Manufacturing method of superconducting ceramics
JPH01234305A (en) Superconducting material and its production
JP2523687B2 (en) Method of forming superconducting film pattern
JPH0558638A (en) Production of bi-based oxide superconducting material
JPH0240992A (en) Structure of superconductor wiring
JPH02156578A (en) Manufacture of superconducting quantum interference element
KR930002579B1 (en) Manufacturing method of thick film super conductor
JPH02156579A (en) Manufacture of superconducting quantum interference element
JPS63270346A (en) Production of oxide superconductor
JPH04287980A (en) Superconductive screen printing ink and manufacture of superconductive thick film using this ink
JPS63308814A (en) Forming method for oxide superconductor
JPH084199B2 (en) Superconducting magnetic shield
JPH0793234B2 (en) Ceramic capacitor
JPH01109611A (en) Manufacture of superconductive material in pyrolysis method
JPH01246136A (en) Superconductive ceramic paste