JPH01226783A - Production of superconducting film of bi-sr-ca-cu-o system by screen printing - Google Patents

Production of superconducting film of bi-sr-ca-cu-o system by screen printing

Info

Publication number
JPH01226783A
JPH01226783A JP63052351A JP5235188A JPH01226783A JP H01226783 A JPH01226783 A JP H01226783A JP 63052351 A JP63052351 A JP 63052351A JP 5235188 A JP5235188 A JP 5235188A JP H01226783 A JPH01226783 A JP H01226783A
Authority
JP
Japan
Prior art keywords
powder
substrate
screen printing
superconducting film
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63052351A
Other languages
Japanese (ja)
Other versions
JP2817048B2 (en
Inventor
Hideomi Koinuma
秀臣 鯉沼
Takuya Hashimoto
拓也 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP63052351A priority Critical patent/JP2817048B2/en
Publication of JPH01226783A publication Critical patent/JPH01226783A/en
Application granted granted Critical
Publication of JP2817048B2 publication Critical patent/JP2817048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Abstract

PURPOSE:To form a superconducting film having high stability by kneading powder of Bi-Sr-Ca-Cu-O multiple oxide or a powdery mixture of compds. of said metals mixed in a specified ratio with an org. medium, screen-printing the resulting paste on a specified substrate, drying and sintering the paste. CONSTITUTION:Powders of Bi2O3, SrCO3, CaCO3 and CuO are mixed in 1:1:(0.5-1):(1.5-2) ratio of Bi:Sr:Ca:Cu. This powdery mixture or powder of Bi-Sr-Ca-Cu-O multiple oxide contg. Bi, Sr, Ca and Cu in said ratio is kneaded with an org. medium such as propylene glycol. The resulting paste is screen- printed on a substrate of YSZ (yttria stabilized zirconia), SrTiO3, MgO, Al2O3, sapphire, etc., dried and sintered at 800-900 deg.C. A superconducting film having superior stability is formed by screen printing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスクリーン印刷及びその後の焼結によりBi−
8r−Ca−Cu−0系高温超伝導膜を製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a method for producing Bi-
The present invention relates to a method for manufacturing an 8r-Ca-Cu-0-based high-temperature superconducting film.

(従来の技術及び解決しようとする課題)超伝導体は、
電気抵抗率ゼロ、ジョセフソン効果、完全反磁性等々の
性質を有することから、多量の電力損失があるコイル導
線、ジョセフソン接合素子、磁気シールド材料などの用
途がある。
(Conventional technology and problems to be solved) Superconductors are
Because it has properties such as zero electrical resistivity, the Josephson effect, and perfect diamagnetism, it is used in coil conductors, Josephson junction elements, magnetic shielding materials, etc., which have a large amount of power loss.

超伝導膜の形成法としては、真空蒸着、スパッタリング
、スクリーン印刷等の物理的方法と、CVD、スプレー
パイロリシス等の化学的方法があるが、要求される膜の
厚さや緻密さ、原料の入手の容易さ等に応じて選ばれる
ものである。
Methods for forming superconducting films include physical methods such as vacuum evaporation, sputtering, and screen printing, and chemical methods such as CVD and spray pyrolysis. The method is selected depending on the ease of use, etc.

これらの方法のうち、ジョセフソン素子等のデイバイス
への応用には、真空蒸着法と並び、緻密な膜の形成が可
能であると共に他種膜との連続成膜も可能な真空チャン
バーを利用する方法である真空蒸着法、スパッタリング
法が有効である。また、10μm程度或いはそれ以上の
厚膜の作製には、スクリーン印刷法が有用である。
Among these methods, when applied to devices such as Josephson elements, a vacuum chamber is used, which allows the formation of dense films as well as continuous film formation with other types of films, as well as vacuum evaporation methods. Vacuum deposition method and sputtering method are effective methods. Further, a screen printing method is useful for producing a thick film of about 10 μm or more.

高温超伝導膜の形成では、バルクに共通な問題として、
組成と結晶性の制御の問題や安定性の問題があり、膜に
特有な問題として基板との相互作用の問題がある。また
、従来の超伝導物質は概ねY等の希土類金属を含む系で
あるので、資源並びにコスト上の問題もあるが、最近、
希土類を含まないB i −S r −Ca −Cu 
−0系物質が超伝導性を有することが報告されている。
In the formation of high-temperature superconducting films, there are common problems in bulk.
There are problems in controlling the composition and crystallinity, as well as stability issues, and a problem specific to films is the interaction with the substrate. In addition, since conventional superconducting materials are generally systems containing rare earth metals such as Y, there are resource and cost issues, but recently,
B i -S r -Ca -Cu that does not contain rare earth elements
It has been reported that -0-based materials have superconductivity.

本発明は、高温超伝導膜の製造に関する上述の問題を解
決し、希土類金属を含まないBi−Sr−Ca−Cu−
0系を超伝導物質として用い、スクリーン印刷を利用し
て、その組成のコントロールが容易で、安定性のよい膜
を経済的且つ生産性よく製造する方法を提供することを
目的とするものである。
The present invention solves the above-mentioned problems regarding the production of high-temperature superconducting films, and provides rare earth metal-free Bi-Sr-Ca-Cu-
The purpose of the present invention is to provide a method for economically and productively manufacturing a film with good stability and easy control of the composition by using 0 series as a superconducting material and using screen printing. .

(課題を解決するための手段) 前記目的を達成するため、本発明者らは、スクリーン印
刷法により超伝導膜を製造する場合、基板との相互作用
が影響することに鑑みて、種々の材質の基板を使用して
Bi −5r−Ca−Cu−0系膜との関連について研
究した結果、YSZ、S r T 103、MgOなど
の基板を使用した場合に超伝導性の薄膜が得られる可能
性があることが判明した。
(Means for Solving the Problems) In order to achieve the above object, the present inventors developed a method using various materials in view of the influence of interaction with a substrate when manufacturing a superconducting film by a screen printing method. As a result of research on the relationship with Bi-5r-Ca-Cu-0 based films using substrates of It turned out that there is a sex.

そこで、スクリーン印刷後の焼結条件と超伝導性との関
連について更に研究を重ねたところ、Tc(ゼロ抵抗温
度)が65に以上の高温超伝導薄膜が得られることを見
い出したものである。
Therefore, after further research into the relationship between sintering conditions after screen printing and superconductivity, it was discovered that a high-temperature superconducting thin film with a Tc (zero resistance temperature) of 65 or higher could be obtained.

すなわち、本発明は、Bi −5r−Ca−Cu−0系
複合酸化物粉又は各金属成分の単一化合物の混合粉を有
機媒体を用いて混練してペーストとし、このペーストを
、YSZ 、SrTiO3、MgO、アルミナ及びサフ
ァイアのうちの1種からなる基板上にスクリーン印刷し
た後、乾燥し、800〜900℃の温度で焼結すること
により、超伝導膜を得ることを特徴とするスクリーン印
刷によるBi−8r−Ca−Cu−0系超伝導膜の製造
方法を要旨とするものである。
That is, in the present invention, Bi-5r-Ca-Cu-0 based composite oxide powder or mixed powder of a single compound of each metal component is kneaded using an organic medium to form a paste, and this paste is mixed with YSZ, SrTiO3 , MgO, alumina, and sapphire, and then drying and sintering at a temperature of 800 to 900°C to obtain a superconducting film. The gist of this paper is a method for manufacturing a Bi-8r-Ca-Cu-0 based superconducting film.

以下に本発明を更に詳細に説明する。The present invention will be explained in more detail below.

ペーストに用いる原料粉末は、Bi−8r−Ca−Cu
−0系複合酸化物粉であっても、或いは各金属成分の単
一化合物(酸化物、炭酸塩)の混合粉末であってもよい
。いずれの場合でも、金属成分の組成比(Bi : S
r : Ca : Cu)が原子割合で所定の比率にな
るように調整する必要がある。例えば、Bi: Sr:
 Ca: Cuが原子割合で1:1:(0,5〜1):
(1,5〜2)とするのが望ましい。
The raw material powder used for the paste is Bi-8r-Ca-Cu
It may be a -0 type composite oxide powder or a mixed powder of a single compound (oxide, carbonate) of each metal component. In either case, the composition ratio of the metal components (Bi:S
r:Ca:Cu) must be adjusted to a predetermined atomic ratio. For example, Bi: Sr:
Ca: Cu in atomic ratio 1:1:(0,5-1):
It is desirable to set it as (1,5-2).

そのためには、Bi、03.5rCO,、CaCO,及
びCuOの各粉末を所定の割合で混合し、その混合粉の
ままで供するか、或いはこの混合粉を800’CX12
hrの仮焼により複合化合物(複合酸化物)とすること
ができる。特に、混合粉を利用できるので、組成比のコ
ントロールが一層容易である。
To do this, it is necessary to mix Bi, 03.5rCO, CaCO, and CuO powders in a predetermined ratio and serve the mixed powder as is, or to use the 800'CX12
A composite compound (composite oxide) can be obtained by calcining for hr. In particular, since a mixed powder can be used, it is easier to control the composition ratio.

これらをペースト状にするための有機媒体としては、適
宜のものを使用できるが、沸点が150〜200℃で乾
燥し易く、成る程度粘性があり、印刷し易いものがよく
、例えば、オクチルアルコール、プロピレングリコール
、ヘプチルアルコールなどを使用する。
Any suitable organic medium can be used to make these pastes, but those with a boiling point of 150 to 200°C, easy to dry, have a certain degree of viscosity, and are easy to print on are preferred, such as octyl alcohol, Use propylene glycol, heptyl alcohol, etc.

基板(サブストレート)として如何なる材料のものを用
いるかは、超伝導膜を得るうえで重要である。
What kind of material is used as the substrate is important in obtaining a superconducting film.

すなわち、石英では焼結条件の如何に拘わらず超伝導性
そのものが得られず、また、YSz、SrTiO3、M
gO、アルミナやサファイアを使用しても、焼結条件を
適切に選定しなければ超伝導性が得られないことが判明
した。
In other words, superconductivity itself cannot be obtained with quartz regardless of the sintering conditions, and YSz, SrTiO3, M
It has been found that even if gO, alumina, or sapphire is used, superconductivity cannot be obtained unless the sintering conditions are appropriately selected.

スクリーン印刷に際しては、上記の如<Bi−5r−C
a−Cu−0系複合酸化物粉又は混合粉をペースト状に
して、通常使用されているスクリーン印刷機により上記
材質の基板上に適当な厚さで印刷する。
When screen printing, as described above, <Bi-5r-C
The a-Cu-0 based composite oxide powder or mixed powder is made into a paste and printed to an appropriate thickness on a substrate made of the above material using a commonly used screen printer.

スクリーン印刷後、乾燥し、焼結するが、焼結は8oO
〜900℃、好ましくは840〜850℃の温度で行う
。混合組成がB i、 S r、 Ca1,2Cu。
After screen printing, dry and sinter, but the sintering is 8oO
It is carried out at a temperature of -900°C, preferably 840-850°C. The mixed composition is B i, S r, Ca1,2Cu.

〜4の原料粉を用いた場合、840℃未満では、基板材
料との相互反応は少なくなるものの、Bi−5r−Ca
 −Cu−Ox系粉末の焼結速度も遅い。
When using the raw material powder of
The sintering speed of the -Cu-Ox powder is also slow.

850℃を超えると、Bi−Sr−Ca−Cu−Ox系
粉末が部分的に溶融を誘発し、溶融部が基板と密接に接
触して膜の結晶構造及び配向性に影響を及ぼす。7なお
、乾燥は大気中又は真空雰囲気中で行う。また焼結時間
は加熱温度に応じて決めればよく、10分〜10時間の
範囲を目安とする1例えば、800℃のときは10時間
、840〜850℃のときは1時間、900℃のときは
10分加熱する。
When the temperature exceeds 850° C., the Bi-Sr-Ca-Cu-Ox powder partially induces melting, and the melted portion comes into close contact with the substrate, affecting the crystal structure and orientation of the film. 7. Note that drying is performed in the air or in a vacuum atmosphere. In addition, the sintering time can be determined according to the heating temperature, and should be in the range of 10 minutes to 10 hours.1For example, 10 hours at 800°C, 1 hour at 840-850°C, and 1 hour at 900°C. Heat for 10 minutes.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) Bi2O,,5rCO1、CaC0,及びCuOの各粉
末の所定量を混合したものを800℃X12hrで仮焼
し、B i、 S r、 Ca1Cu20X(粉末A)
と、Bi。
(Example) A mixture of predetermined amounts of each powder of Bi2O, 5rCO1, CaC0, and CuO was calcined at 800°C for 12 hours to produce Bi, Sr, Ca1Cu20X (powder A).
And Bi.

Sr、Ca、Cu2Ox(粉末B)の2種類のセラミッ
ク粉を準備した。また、Bi: Sr: Ca: Cu
が1:1:1:2の原子割合となるように前記原料酸化
物及び炭酸塩を単に混合した混合粉末(粉末C)も準備
した。
Two types of ceramic powders were prepared: Sr, Ca, and Cu2Ox (powder B). Also, Bi: Sr: Ca: Cu
A mixed powder (powder C) was also prepared by simply mixing the raw material oxide and carbonate in an atomic ratio of 1:1:1:2.

これらの粉末1gをオクチルアルコール0.5mQと共
にめのう乳鉢中で混練してペースト状にし、各種材質(
石英、アルミナ、YSZ(2,5%Yで安定化したジル
コニア)、SrTiO3単結晶)の基板上に150メツ
シユスクリーンにて印刷した。
1 g of these powders was kneaded with 0.5 mQ of octyl alcohol in an agate mortar to form a paste, and various materials (
Printing was performed using a 150 mesh screen on substrates of quartz, alumina, YSZ (zirconia stabilized with 2.5% Y, SrTiO3 single crystal).

120℃、真空中で3時間乾燥した後、これらの印刷膜
を所定の温度(830〜900℃)で1時間焼結した。
After drying in vacuum at 120°C for 3 hours, these printed films were sintered at a predetermined temperature (830-900°C) for 1 hour.

なお、膜厚は焼結後で1o±2μmとなるように決定し
た。
The film thickness was determined to be 10±2 μm after sintering.

得られた膜について、室温での電気抵抗率(ρrt)と
、電気抵抗の温度依存性を調べた。それらの結果を第1
図及び第2図に示す。
Regarding the obtained film, the electrical resistivity (ρrt) at room temperature and the temperature dependence of the electrical resistance were investigated. those results first
As shown in Fig. and Fig. 2.

基板として石英を用いた場合は上記の条件では伝導性が
得られなかった。
When quartz was used as the substrate, conductivity could not be obtained under the above conditions.

一方、基板としてSrTiO3を用いた場合、焼結温度
が840℃のとき、11にで電気抵抗ゼロとなった。し
かし、焼結温度が850℃では、室温での電気抵抗率が
低いにも拘わらず、超伝導性にならなかった(第1図)
On the other hand, when SrTiO3 was used as the substrate, the electrical resistance became zero at 11 when the sintering temperature was 840°C. However, at a sintering temperature of 850°C, superconductivity did not occur despite the low electrical resistivity at room temperature (Figure 1).
.

また、基板としてYSZを用いた場合、焼結温度が84
0℃で超伝導性が得られ、22にで抵抗ゼロとなり、更
に850℃に高めるとT c (ゼロ)が改善され、 
63K(測定電流密度0.64A/cm” )、65K
(測定電流密度0 、07 A/Cm”)で電気抵抗ゼ
ロとなり、粉末Bを用いるとTc(ゼロ)が68K(0
,64A/cm”)が得られた(第2図)。
Furthermore, when YSZ is used as the substrate, the sintering temperature is 84
Superconductivity is obtained at 0°C, resistance becomes zero at 22°C, and T c (zero) is improved when the temperature is further increased to 850°C.
63K (measured current density 0.64A/cm"), 65K
(measured current density 0,07 A/Cm"), the electrical resistance becomes zero, and when powder B is used, Tc (zero) becomes 68K (0
, 64 A/cm") was obtained (Fig. 2).

すなわち、上記の条件では、基板材料として、石英やア
ルミナよりもS r T i O3の方が好ましく、更
にはYSZの方が好ましい。しかし、基板がYSZの場
合でも、焼結温度が860℃以上になると、Tcは低下
し始める。更に焼結温度が900℃の場合、得られた膜
は半導体であった。
That is, under the above conditions, S r T i O3 is more preferable than quartz or alumina, and YSZ is more preferable as the substrate material. However, even when the substrate is YSZ, when the sintering temperature reaches 860° C. or higher, Tc starts to decrease. Further, when the sintering temperature was 900°C, the obtained film was a semiconductor.

また、粉末C(混合物粉)を用い、YSZの基板の場合
も、焼結温度850℃で超伝導性が得られたが、Tc(
ゼロ)は11K(測定電流密度0.07A/cm”)で
あり、焼結原料粉を用いた場合の63によりもかなり低
い。
In addition, superconductivity was obtained at a sintering temperature of 850°C using Powder C (mixture powder) and a YSZ substrate, but Tc (
zero) is 11 K (measured current density 0.07 A/cm''), which is considerably lower than 63 when using sintered raw material powder.

(発明の効果) 以上詳述したように、本発明によれば、スクリーン印刷
に使用する基板の材質と印刷後の焼結条件を規制するの
で、Bi−8r−Ca−Cu−0系超伝導膜を得ること
ができ、T c (ゼロ)が120に程度まで達成可能
である。
(Effects of the Invention) As detailed above, according to the present invention, since the material of the substrate used for screen printing and the sintering conditions after printing are regulated, Bi-8r-Ca-Cu-0 based superconducting Membranes can be obtained and T c (zero) as low as 120 can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1@及び第2図は基板上のスクリーン印刷・焼結膜に
おける電気抵抗の温度依存性を示す図であって、第1図
はSrTiO3基板の場合、第2図はYSZ基板の場合
を示している。 特許出願人   新技術開発事業団 代理人弁理士  中  村   尚
Figures 1@ and 2 are diagrams showing the temperature dependence of electrical resistance in screen-printed and sintered films on substrates. Figure 1 shows the case of a SrTiO3 substrate, and Figure 2 shows the case of a YSZ substrate. There is. Patent applicant Takashi Nakamura, patent attorney, New Technology Development Corporation

Claims (5)

【特許請求の範囲】[Claims] (1)Bi−Sr−Ca−Cu−O系複合酸化物粉又は
各金属成分の単一化合物の混合粉を有機媒体を用いて混
練してペーストとし、このペーストを、イットリア(Y
)安定化ジルコニア(YSZ)、SrTiO_3、Mg
O、アルミナ及びサファイアのうちの1種からなる基板
上にスクリーン印刷した後、乾燥し、800〜900℃
の温度で焼結することにより、超伝導膜を得ることを特
徴とするスクリーン印刷によるBi−Sr−Ca−Cu
−O系超伝導膜の製造方法。
(1) Bi-Sr-Ca-Cu-O complex oxide powder or a mixed powder of a single compound of each metal component is kneaded using an organic medium to make a paste, and this paste is mixed with yttria (Yttria).
) Stabilized zirconia (YSZ), SrTiO_3, Mg
After screen printing on a substrate made of one of O, alumina and sapphire, drying and heating at 800-900°C
Bi-Sr-Ca-Cu by screen printing, characterized in that a superconducting film is obtained by sintering at a temperature of
-A method for producing an O-based superconducting film.
(2)前記化合物粉及び混合物粉は、金属成分組成比(
原子割合)Bi:Sr:Ca:Cuが1:1:(0.5
〜1):(1.5〜2)となるように調整されたもので
ある請求項1記載の方法。
(2) The compound powder and mixture powder have a metal component composition ratio (
Atomic ratio) Bi:Sr:Ca:Cu is 1:1:(0.5
1): (1.5 to 2).
(3)前記化合物粉及び混合物粉は、Bi_2O_3、
SrCO_3、CaCO_3及びCuOから作成する請
求項1又は2記載の方法。
(3) The compound powder and mixture powder are Bi_2O_3,
3. The method according to claim 1, wherein the method is made from SrCO_3, CaCO_3 and CuO.
(4)基板がYSZ又はMgOの場合、スクリーン印刷
後、800〜900℃で焼結する請求項1記載の方法。
(4) When the substrate is YSZ or MgO, the method according to claim 1, wherein the substrate is sintered at 800 to 900°C after screen printing.
(5)基板がSrTiO_3の場合、スクリーン印刷後
、850℃以下で焼結する請求項1記載の方法。
(5) The method according to claim 1, wherein when the substrate is SrTiO_3, sintering is performed at 850° C. or lower after screen printing.
JP63052351A 1988-03-04 1988-03-04 Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing Expired - Fee Related JP2817048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63052351A JP2817048B2 (en) 1988-03-04 1988-03-04 Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63052351A JP2817048B2 (en) 1988-03-04 1988-03-04 Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing

Publications (2)

Publication Number Publication Date
JPH01226783A true JPH01226783A (en) 1989-09-11
JP2817048B2 JP2817048B2 (en) 1998-10-27

Family

ID=12912386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63052351A Expired - Fee Related JP2817048B2 (en) 1988-03-04 1988-03-04 Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing

Country Status (1)

Country Link
JP (1) JP2817048B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234305A (en) * 1988-03-11 1989-09-19 I M C:Kk Superconducting material and its production
JPH01235103A (en) * 1988-03-15 1989-09-20 Toray Ind Inc Superconducting material
US6809042B2 (en) 2001-11-22 2004-10-26 Dowa Mining Co., Ltd. Oxide superconductor thick film and method for manufacturing the same
CN105575545A (en) * 2015-12-29 2016-05-11 北京英纳超导技术有限公司 Bi2223 oxide film and industrial preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201060A (en) * 1988-02-05 1989-08-14 Showa Denko Kk Production of superconductor
JPH01208360A (en) * 1988-02-15 1989-08-22 Showa Denko Kk Production of superconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201060A (en) * 1988-02-05 1989-08-14 Showa Denko Kk Production of superconductor
JPH01208360A (en) * 1988-02-15 1989-08-22 Showa Denko Kk Production of superconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234305A (en) * 1988-03-11 1989-09-19 I M C:Kk Superconducting material and its production
JPH01235103A (en) * 1988-03-15 1989-09-20 Toray Ind Inc Superconducting material
US6809042B2 (en) 2001-11-22 2004-10-26 Dowa Mining Co., Ltd. Oxide superconductor thick film and method for manufacturing the same
CN105575545A (en) * 2015-12-29 2016-05-11 北京英纳超导技术有限公司 Bi2223 oxide film and industrial preparation method thereof

Also Published As

Publication number Publication date
JP2817048B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US4908346A (en) Crystalline rare earth alkaline earth copper oxide thick film circuit element with superconducting onset transition temperature in excess of 77%
KR930004727B1 (en) Structure of super conductive wiring strip
JPS63232208A (en) Manufacture of conductive or superconductive thin film
JPH01226783A (en) Production of superconducting film of bi-sr-ca-cu-o system by screen printing
Sacchi et al. High T c superconductivity in Y‐Ba‐Cu‐O screen‐printed films
JPS63288944A (en) Production of high temperature superconductor
EP0367571B1 (en) Superconducting thick film circuit board, production thereof, thick film superconductor and production thereof
JPH0764560B2 (en) Layered copper oxide
Wada et al. New Tl-based copper oxide containing double-MO2-unit fluorite block:(Tl, Cu) Sr2 (R, Ce) 3Cu2O11 (R: rare earth element)
KR910004861B1 (en) Paste for forming superconductive ceramic film
KR930002579B1 (en) Manufacturing method of thick film super conductor
JPH0251806A (en) Superconducting ceramic laminated body and manufacture thereof
JPS63279521A (en) Superconductor device
JPH0744323B2 (en) Superconducting ceramic substrate
JPH0199279A (en) Manufacture of superconducting ceramic substrate
JP3272349B2 (en) Manufacturing method of superconducting wiring
JP2523687B2 (en) Method of forming superconducting film pattern
JPH0248458A (en) Ceramic superconductor and production thereof
JPS63285811A (en) Manufacture of oxide superconductor heavy membrane
JP2889595B2 (en) Method for forming electrode of oxide superconductor film
JPH02162616A (en) Manufacture of oxide high-temperature superconducting film
Ho et al. Electrophoretic deposition of Bi-based superconductors with T/sub c/near 80 K
JPH03263392A (en) Superconducting thick-film circuit board and manufacture thereof
JPH0269990A (en) Manufacture of ceramic superconductor wiring board
Bhattacharya et al. Structural and electrical properties of screen-printed thick films of YBa2Cu3O7− x superconductors

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees