JPH04113513A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH04113513A
JPH04113513A JP23259790A JP23259790A JPH04113513A JP H04113513 A JPH04113513 A JP H04113513A JP 23259790 A JP23259790 A JP 23259790A JP 23259790 A JP23259790 A JP 23259790A JP H04113513 A JPH04113513 A JP H04113513A
Authority
JP
Japan
Prior art keywords
layer
magnetic
thin film
nonmagnetic layer
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23259790A
Other languages
Japanese (ja)
Inventor
Tsutomu Isobe
勤 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP23259790A priority Critical patent/JPH04113513A/en
Publication of JPH04113513A publication Critical patent/JPH04113513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve durability of a magnetic recording medium by forming a first nonmagnetic layer on a metal magnetic thin film on a supporting body in a manner that this first nonmagnetic layer contains carbon and at least one structural component of the metal magnetic thin film and then forming a second nonmagnetic layer containing carbon as the main structural component on the first nonmagnetic layer. CONSTITUTION:On a supporting body 1, a metal magnetic layer 2 is formed by a method of forming a thin film, on which a first nonmagnetic layer 3 containing carbon and at least one structural component of the metal magnetic thin film 2 as the structural components by a method of forming a thin film. Then a second nonmagnetic layer 4 essentially comprising carbon is formed on the first nonmagnetic layer 3. Thereby, adhesion strength between the magnetic layer 2 and the carbon layer 4 is improved, which improves durability of the magnetic disk.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えばCo−Cr系の金属薄膜型の磁気記録
媒体及びその製造方法に関するものである。
The present invention relates to, for example, a Co--Cr based metal thin film type magnetic recording medium and a method for manufacturing the same.

【先行技術】[Prior art]

高密度記録の観点から、最近においては、いわゆる塗布
型の磁気記録媒体から金属薄膜型の磁気記録媒体に注目
が集まっている。 ところで、磁気記録媒体の記録層としてCo系磁性薄膜
等の金属磁性薄膜が用いられた場合、磁気ヘッドとの摺
接状態を長期間に亘って良好に維持する為に、例えばハ
ードディスクでは第4図に示す如く、非磁性の基板6上
に設けられた数百〜数千人厚の金属磁性薄膜7上に約2
0〜30人厚の保護膜8を設け、さらにその上により高
い潤滑性を付与するためにフッソ系潤滑液9等を塗布し
ている。 すなわち、従来においては、金属磁性薄膜7上に設けら
れる保護膜は、カーボンやSiO□等の材料がスパッタ
リング等の手段により作成され、磁気記録媒体の耐久性
向上が図られている。 しかしながら、最近では、磁気ヘッドの構成材料として
AI、O,・TiCなど高硬度材料が用いられるように
なって来たことから、前記のような保護膜では充分なる
耐久性の確保が困難になって来ている。 又、薄膜が設けられたフロッピーディスクやテープでは
、それらが磁気ヘッドと共に外気に接している為、塵や
埃が磁気記録媒体と磁気ヘッド間に入り込み、保護膜を
削り、最悪の場合には傷が磁性層にまで達し、情報の記
録再生が不可能になってしまう。 又、再生出力を高める為には磁性層と磁気ヘッドをでき
るだけ近づける必要があり、これら保護膜8や潤滑液9
の層の厚みをできるかぎり薄くすることが望まれる。
From the viewpoint of high-density recording, attention has recently been shifting from so-called coating-type magnetic recording media to metal thin film-type magnetic recording media. By the way, when a metal magnetic thin film such as a Co-based magnetic thin film is used as the recording layer of a magnetic recording medium, in order to maintain good sliding contact with the magnetic head over a long period of time, for example, in a hard disk, the magnetic thin film shown in FIG. As shown in FIG.
A protective film 8 having a thickness of 0 to 30 people is provided, and a fluorine-based lubricant 9 or the like is applied thereon to provide higher lubricity. That is, conventionally, the protective film provided on the metal magnetic thin film 7 is made of a material such as carbon or SiO□ by sputtering or the like to improve the durability of the magnetic recording medium. However, recently, as high hardness materials such as AI, O, and TiC have come to be used as constituent materials for magnetic heads, it has become difficult to ensure sufficient durability with the above-mentioned protective film. It's coming. In addition, since floppy disks and tapes with thin films are exposed to the outside air along with the magnetic head, dust and dust can enter between the magnetic recording medium and the magnetic head, scraping the protective film, and in the worst case, causing scratches. reaches the magnetic layer, making it impossible to record and reproduce information. In addition, in order to increase the reproduction output, it is necessary to bring the magnetic layer and the magnetic head as close as possible, and the protection film 8 and lubricant 9
It is desirable to make the thickness of the layer as thin as possible.

【発明の開示】[Disclosure of the invention]

本発明者は、上記の問題点の解決について、特にCo、
Crを主成分(CoとC「ではCoの方がリッチ)とし
たCo−Cr系の金a薄膜型の磁気記録媒体における耐
久性の問題についての検討を進めて行った結果、Co、
Crを主成分としたCo−Cr系の磁性層(以下、Co
−Cr磁性層)とその上に設けられる保護膜層の付着力
の向上によって改善されるとの啓示が得られ、これに沿
っての研究が鋭意押し進められた。 ところで、第3図に、Co−Cr磁性層上にカーボン膜
のみをスパッタリングにより形成した場合の膜表面から
深さ方向へのオージェ電子分光分析の結果を示すが、こ
れによればCo−Cr磁性層とカーボン層の界面に約2
0〜30人に亘ってCo−Cr磁性材とカーボンの混合
層が形成されていることが判る。 そして、この混合層の存在によってCo−Cr磁性層と
カーボン層の付着力が大きな影響を受けていることが判
明して来た。 そこで、本発明者は、Co−Cr磁性層とカーボン層の
付着力をより強固にする為、第1図に示す如く、PET
等のポリマーからなる樹脂やアルミニウム合金等の金属
材料からなる非磁性基板1上のCo−Cr磁性層2と保
@膜としてのカーボン層4との連続性を考慮し、Co−
Cr磁性層2上にCo−Cr磁性層2の主要な構成原子
の一つであるCrと保護膜材料のカーボンによる層(C
r−0層、Cr:Cは例えば15:1〜1:l)3を形
成し、Cr−0層3上にカーボン層(0層)4を形成さ
せることを案出した。 そして、このものについてのオージェ電子分光分析(第
2図にその結果を示す)を行ったところ、第1図に示す
如くの磁気記録媒体にあっては、Cr及びCがそれぞれ
の層に重複して形成されていることが判り、これにより
Co−Cr磁性層2とカーボン層4との付着力の改善の
得られたことが判った。 上記の知見を基にして本発明は達成されたものであり、
支持体上の金属磁性薄膜の上に、この金属磁性薄膜の少
なくとも一構成成分と炭素とを構成成分とする第1の非
磁性層が構成され、この第1の非磁性層上に炭素を主な
構成成分とする第2の非磁性層が構成されてなることを
特徴とする磁気記録媒体を提案するものである。 又、支持体上に金属磁性層を薄膜形成手段で構成する金
属磁性薄膜形成工程と、前記金属磁性薄膜層上にこの金
属磁性薄膜層の少なくとも一構成成分と炭素とを構成成
分とする第1の非磁性層を薄膜形成手段で構成する第1
の非磁性層形成工程と、前記第1の非磁性層上に炭素を
主な構成成分とする第2の非磁性層を薄膜形成手段で構
成する第2の非磁性層形成工程とを有することを特徴と
する磁気記録媒体の製造方法を提案するものである。 尚、上記の磁気記録媒体の製造方法において、第1の非
磁性層形成工程は、金属磁性薄膜層の構成成分からなる
ターゲットと炭素を構成成分とするターゲットとを用い
た二元同時スパッタリングであるものが好ましい。 又、支持体上の金属磁性薄膜の上に構成される第1の非
磁性層の厚さは約50〜100人程度あることが好まし
く、そして第1の非磁性層上に構成される第2の非磁性
層の厚さは約50〜300人程度あることが好ましい。 そして、本発明におけるスパッタリング条件の一例とし
ては、下記に示されるものが挙げられるる。 電極開路11M80mm 電 源RF300W Arガス圧 5mTorr
In order to solve the above-mentioned problems, the present inventors have particularly focused on Co,
As a result of our investigation into the durability issue of Co-Cr-based gold-alpha thin film type magnetic recording media whose main component is Cr (Co and C, Co is richer), we found that Co,
Co-Cr-based magnetic layer containing Cr as the main component (hereinafter referred to as Co-Cr)
It was discovered that this could be improved by improving the adhesion of the -Cr magnetic layer) and the protective film layer provided thereon, and research in this direction was carried out. By the way, Fig. 3 shows the results of Auger electron spectroscopy in the depth direction from the film surface when only a carbon film was formed by sputtering on a Co-Cr magnetic layer. Approximately 2 at the interface between the layer and the carbon layer
It can be seen that a mixed layer of Co--Cr magnetic material and carbon was formed for 0 to 30 people. It has been found that the presence of this mixed layer greatly influences the adhesion between the Co--Cr magnetic layer and the carbon layer. Therefore, in order to strengthen the adhesion between the Co-Cr magnetic layer and the carbon layer, the inventors developed a PET film as shown in FIG.
Considering the continuity of the Co-Cr magnetic layer 2 on the non-magnetic substrate 1 made of a metal material such as a polymer such as a resin or a metal material such as an aluminum alloy, and the carbon layer 4 as a protective film,
On the Cr magnetic layer 2, a layer (C
It was devised to form an r-0 layer, Cr:C having a ratio of, for example, 15:1 to 1:l)3, and to form a carbon layer (0 layer) 4 on the Cr-0 layer 3. When we performed Auger electron spectroscopy on this material (results are shown in Figure 2), we found that in a magnetic recording medium like the one shown in Figure 1, Cr and C overlap in each layer. It was found that the adhesive force between the Co--Cr magnetic layer 2 and the carbon layer 4 was improved by this. The present invention has been achieved based on the above findings,
A first non-magnetic layer containing at least one component of the metal magnetic thin film and carbon as constituent components is formed on the metal magnetic thin film on the support; The present invention proposes a magnetic recording medium characterized by comprising a second non-magnetic layer having the following constituent components. Further, a metal magnetic thin film forming step of forming a metal magnetic layer on a support by a thin film forming means, and a first metal magnetic thin film forming step of forming a metal magnetic thin film layer on the metal magnetic thin film layer, the metal magnetic thin film layer having at least one constituent component of the metal magnetic thin film layer and carbon as constituent components. The first non-magnetic layer is formed by thin film forming means.
and a second nonmagnetic layer forming step of forming a second nonmagnetic layer containing carbon as a main component on the first nonmagnetic layer using a thin film forming means. The present invention proposes a method for manufacturing a magnetic recording medium characterized by the following. In the above method for manufacturing a magnetic recording medium, the first nonmagnetic layer forming step is dual simultaneous sputtering using a target consisting of a constituent of the metal magnetic thin film layer and a target containing carbon as a constituent. Preferably. The thickness of the first nonmagnetic layer formed on the metal magnetic thin film on the support is preferably about 50 to 100, and the thickness of the second nonmagnetic layer formed on the first nonmagnetic layer is preferably about 50 to 100. The thickness of the nonmagnetic layer is preferably about 50 to 300 mm. Examples of sputtering conditions in the present invention include those shown below. Electrode open circuit 11M80mm Power source RF300W Ar gas pressure 5mTorr

【実施例1】 第1図に示される如く、無電解N1−Pメツキが施され
、研磨されたアルミニウム合金製の非磁性基板1上にC
o−Cr磁性層2をスパッタリングにより2000人厚
さ成膜し、このCo−Cr磁性層2上にCr2Cz合金
ターゲット(純度99.0%)を用いてスパッタリング
によりCr−C層(CrとCとの原子比は15:I)3
を100人厚さ成膜し、その上にスパッタリングにより
0層4を100人厚さ成膜し、ハードディスクを構成し
た。
[Example 1] As shown in Fig. 1, C
An o-Cr magnetic layer 2 was formed to a thickness of 2,000 layers by sputtering, and a Cr-C layer (Cr and C) was formed on this Co-Cr magnetic layer 2 by sputtering using a Cr2Cz alloy target (99.0% purity). The atomic ratio of is 15:I)3
A 100-layer thick film was formed, and a 100-layer thick film was formed thereon by sputtering to form a hard disk.

【実施例2】 実施例1におけるCr−C層3の厚さを50人厚に制御
した。
[Example 2] The thickness of the Cr--C layer 3 in Example 1 was controlled to be 50 mm thick.

【比較例1】 実施例1におけるアルミニウム合金製の非磁性基板1上
の2000人厚のCo−Cr磁性層2上に、スパッタリ
ングにより0層4を200人厚さ成膜してハードディス
クを構成した。
[Comparative Example 1] A hard disk was constructed by forming a 0 layer 4 with a thickness of 200 layers by sputtering on the Co-Cr magnetic layer 2 of 2000 layers on the non-magnetic substrate 1 made of aluminum alloy in Example 1. .

【比較例2】 実施例2におけるアルミニウム合金製の非磁性基板1上
の2000人厚のCo−Cr@性層2上に、スパッタリ
ングにより0層4を150人厚さ成膜してハードディス
クを構成した。
[Comparative Example 2] A hard disk was constructed by forming a 0 layer 4 to a thickness of 150 layers by sputtering on the Co-Cr layer 2 of 2000 layers on the non-magnetic substrate 1 made of aluminum alloy in Example 2. did.

【実施例3】 実施例1におけるアルミニウム合金製の非磁性基板l上
の2’000人厚のCo−Cr磁性層2上に、Crター
ゲットとカーボンターゲットとを用いて二元同時スパッ
タリングによりCr−C層(Cr : C=約1.5:
1)3を100人厚さ成膜し、その上にスパッタリング
により0層4を100人厚さ成膜し、ハードディスクを
構成した。
[Example 3] On the Co--Cr magnetic layer 2 with a thickness of 2'000 on the aluminum alloy non-magnetic substrate l in Example 1, Cr- was deposited by dual simultaneous sputtering using a Cr target and a carbon target. C layer (Cr: C=approximately 1.5:
1) Layer 3 was formed to a thickness of 100 layers, and layer 0 was formed thereon to a thickness of 100 layers by sputtering, thereby constructing a hard disk.

【実施例4】 実施例3におけるCr−C層3の厚さを50人厚に制御
した。
Example 4 The thickness of the Cr--C layer 3 in Example 3 was controlled to be 50 mm thick.

【特性】 上記各偶で得られた金属薄膜型の磁気ディスクについて
、耐久性(Contact  5tartand  5
top)テストを行ったので、その結果を表に示す。 尚、C3Sテスト条件は次の通りである。 ヘッド材      :Alオ0.・TiCヘッド位置
    :媒体半径4(1+−の位置媒体回転のサイク
ル: Orpm 〜3600rpm(5sec)(CS
31回)    3600rpm (1sec)360
0rpm 〜D rpm (55ec)Orpm(15
ec) 媒体潤滑液    :塗布せず 表 二の表からC層とCo−Cr層との間にCr−C層を設
けていると、磁気ディスクの耐久性が格段に向上するこ
とが判る。 尚、Cr−C層を50人と薄くした場合でもその耐久性
には殆ど変化がない。 Cr−C層の形成にCrlCg合金ターゲットを用いた
場合には、CrとCでスパッタリング率がCrのほうが
10倍以上高く、できたCr−C膜もCrリッチなもの
になってしまう、又、Cr3C2合金ターゲットはその
製造上不純物を含み易く、したがって高純度のCr−C
層が得られ難く、磁気特性の低下の恐れがある。 これに対して、CrとCを別々に同時に成膜できる二元
同時スパッタリングによりCr−C層の成膜を行った実
施例3及び実施例4のものは、上記の恐れがないのみか
、磁気ディスクの耐久性も格段に向上していることが判
る。 尚、Cr−C層におけるCr:Cは15:1〜1:1の
割合のものであれば良く、特に好ましくは約t、S:t
〜1:1の割合のものであった。
[Characteristics] The durability (Contact 5 tartand 5
top) We conducted a test and the results are shown in the table. The C3S test conditions are as follows. Head material: AlO0.・TiC head position: Media radius 4 (1+- position) Medium rotation cycle: Orpm ~3600 rpm (5 sec) (CS
31 times) 3600rpm (1sec) 360
0 rpm ~D rpm (55ec) Orpm (15
ec) Media lubricant: It can be seen from Table 2 that the durability of the magnetic disk is significantly improved when a Cr--C layer is provided between the C layer and the Co--Cr layer without coating. Note that even when the Cr--C layer is made thinner by 50 people, there is almost no change in its durability. When a CrlCg alloy target is used to form a Cr-C layer, the sputtering rate of Cr is more than 10 times higher than that of C, and the resulting Cr-C film is also rich in Cr. Cr3C2 alloy targets tend to contain impurities due to their manufacturing process, and therefore high-purity Cr-C
It is difficult to obtain a layer, and there is a risk of deterioration of magnetic properties. On the other hand, in Examples 3 and 4, in which the Cr-C layer was formed by binary simultaneous sputtering, in which Cr and C can be formed separately and simultaneously, the above-mentioned fear does not exist, or the magnetic It can be seen that the durability of the disc has also been significantly improved. Incidentally, the ratio of Cr:C in the Cr-C layer may be 15:1 to 1:1, particularly preferably about t, S:t
The ratio was ~1:1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁気記録媒体の1実施例の断面を
示す概略図、第2図は第1図のタイプの磁気記録媒体の
オージェ電子分光分析の結果を示すグラフ、第3図は従
来タイプの磁気記録媒体のオージェ電子分光分析の結果
を示すグラフ、第4図は従来の磁気記録媒体の断面を示
す概略図であl・・・非磁性基板、 2・・・Co−Cr磁性層、 3・・・Cr−C層、 4・・・カーボン層。
FIG. 1 is a schematic diagram showing the cross section of one embodiment of the magnetic recording medium according to the present invention, FIG. 2 is a graph showing the results of Auger electron spectroscopy of the magnetic recording medium of the type shown in FIG. 1, and FIG. A graph showing the results of Auger electron spectroscopy of a conventional magnetic recording medium. FIG. 4 is a schematic diagram showing a cross section of a conventional magnetic recording medium. 1...Nonmagnetic substrate, 2...Co-Cr magnetic layer, 3... Cr-C layer, 4... carbon layer.

Claims (4)

【特許請求の範囲】[Claims] (1)支持体上の金属磁性薄膜の上に、この金属磁性薄
膜の少なくとも一構成成分と炭素とを構成成分とする第
1の非磁性層が構成され、この第1の非磁性層上に炭素
を主な構成成分とする第2の非磁性層が構成されてなる
ことを特徴とする磁気記録媒体。
(1) A first non-magnetic layer containing carbon and at least one component of the metal magnetic thin film is formed on the metal magnetic thin film on the support. A magnetic recording medium comprising a second nonmagnetic layer containing carbon as a main component.
(2)支持体上に金属磁性層を薄膜形成手段で構成する
金属磁性薄膜形成工程と、前記金属磁性薄膜層上にこの
金属磁性薄膜層の少なくとも一構成成分と炭素とを構成
成分とする第1の非磁性層を薄膜形成手段で構成する第
1の非磁性層形成工程と、前記第1の非磁性層上に炭素
を主な構成成分とする第2の非磁性層を薄膜形成手段で
構成する第2の非磁性層形成工程とを有することを特徴
とする磁気記録媒体の製造方法。
(2) a metal magnetic thin film forming step of forming a metal magnetic layer on a support using a thin film forming means; a first nonmagnetic layer forming step of forming a first nonmagnetic layer using a thin film forming means; and forming a second nonmagnetic layer containing carbon as a main component on the first nonmagnetic layer using a thin film forming means. A method for manufacturing a magnetic recording medium, comprising: a second nonmagnetic layer forming step.
(3)特許請求の範囲第2項記載の磁気記録媒体の製造
方法において、第1の非磁性層形成工程が、金属磁性薄
膜層の構成成分からなるターゲットと炭素を構成成分と
するターゲットとを用いた二元同時スパッタリングであ
るもの。
(3) In the method for manufacturing a magnetic recording medium according to claim 2, the first nonmagnetic layer forming step includes a target made of a constituent of the metal magnetic thin film layer and a target made of carbon as a constituent. Two-dimensional simultaneous sputtering was used.
(4)特許請求の範囲第2項記載の磁気記録媒体の製造
方法において、金属磁性層がCo−Cr系のものであり
、第1の非磁性層がCr−C系であるもの。
(4) In the method of manufacturing a magnetic recording medium according to claim 2, the metal magnetic layer is Co--Cr based, and the first non-magnetic layer is Cr--C based.
JP23259790A 1990-09-04 1990-09-04 Magnetic recording medium and its production Pending JPH04113513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23259790A JPH04113513A (en) 1990-09-04 1990-09-04 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23259790A JPH04113513A (en) 1990-09-04 1990-09-04 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH04113513A true JPH04113513A (en) 1992-04-15

Family

ID=16941857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23259790A Pending JPH04113513A (en) 1990-09-04 1990-09-04 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPH04113513A (en)

Similar Documents

Publication Publication Date Title
JPH0556565B2 (en)
JPH10228620A (en) Perpendicular magnetic recording medium
JPS62103823A (en) Magnetic disk
JPH04113513A (en) Magnetic recording medium and its production
JP3564707B2 (en) Magnetic recording media
JPS61222024A (en) Magnetic disk
JPS61210521A (en) Production of magnetic disk
JPS61220119A (en) Magnetic disk
JPH0612568B2 (en) Magnetic recording medium
JP2725502B2 (en) Magnetic recording media
JP2990975B2 (en) Magnetic recording media
JPH065574B2 (en) Magnetic recording medium
JPH03102616A (en) Magnetic recording medium
JPS61278012A (en) Magnetic recording medium
JPS6280826A (en) Magnetic disk
JP2004046948A (en) Method for manufacturing magnetic recording medium
JPH02226515A (en) Magnetic recording medium
JPH0447521A (en) Magnetic recording medium
JPH03283016A (en) Magnetic recording medium
JP2000268342A (en) Magnetic recording medium
JPS6015817A (en) Vertical magnetic recording medium
JPH05189740A (en) Magnetic recording medium
JPH04281212A (en) Magnetic recording medium and its production
JPH0364932B2 (en)
JPH0533457B2 (en)