JPH04281212A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH04281212A
JPH04281212A JP4356191A JP4356191A JPH04281212A JP H04281212 A JPH04281212 A JP H04281212A JP 4356191 A JP4356191 A JP 4356191A JP 4356191 A JP4356191 A JP 4356191A JP H04281212 A JPH04281212 A JP H04281212A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
alloy
magnetic layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4356191A
Other languages
Japanese (ja)
Other versions
JP2760906B2 (en
Inventor
Shigeo Fujii
重男 藤井
Hideo Murata
英夫 村田
Hajime Shinohara
篠原 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3043561A priority Critical patent/JP2760906B2/en
Publication of JPH04281212A publication Critical patent/JPH04281212A/en
Application granted granted Critical
Publication of JP2760906B2 publication Critical patent/JP2760906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To offer a magnetic recording medium consisting of magnetic layers having a easy magnetization direction in a plane formed on a non-magnetic base plate, and provided with a thin ground layer made of Cr or Cr alloy between the base plate and a magnetic layer and a magnetic film having the high coercive force to be >=1500Oe. CONSTITUTION:A Co-Cr-Ta based alloy magnetic layer having 300-600Angstrom average crystal grain size is continuously formed on the ground layer made of Cr or alloy consisting mainly of Cr and formed on the non-magnetic base material. By this forming method, the magnetic recording medium having the coercive force of more than 1500Oe of parallel component to a film plane in the Co-Cr-Ta based alloy magnetic layer is realized. As above-mentioned magnetic layer, a Co-based alloy magnetic layer consisting of Cr of 5-15atom% Cr, 1-8atom% Ta and balance of Co substantially and growing by vapor deposition on the Cr or Cr alloy ground layer is preferably.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば磁気ヘッドとの
間において情報の記録および再生を行うための磁気記録
媒体に関するものであり、特に膜面内の保磁力を大きく
したCo系合金磁性層を有する磁気記録媒体に関するも
のである。
[Field of Industrial Application] The present invention relates to a magnetic recording medium for recording and reproducing information between, for example, a magnetic head, and in particular a Co-based alloy magnetic layer with a large in-plane coercive force. The present invention relates to a magnetic recording medium having a magnetic recording medium.

【0002】0002

【従来の技術】従来より、磁気記録媒体上に情報を記録
し、もしくは媒体上に記録した情報を再生出力するため
に、磁気ディスク装置が広く使用されている。そして、
より高密度の情報の記録・再生を行うために、最近では
、磁気ヘッドと磁気記録媒体との間隔を、例えば0.2
〜0.3μm程度の微小な間隔に保持するのが通常であ
る。このため、磁気ヘッドと磁気記録媒体の衝突に伴う
損傷をできるだけ防止するように、浮動型の磁気ヘッド
スライダが使用されている。磁気ヘッドスライダは、磁
気記録媒体との相対速度によってスライダと記録媒体と
の間隙部分に発生する流体力学的浮上力を利用して両者
の微小間隔を保持するように構成されており、それによ
って磁気記録媒体との接触による摩擦、摩耗を低減する
2. Description of the Related Art Conventionally, magnetic disk drives have been widely used to record information on a magnetic recording medium or to reproduce and output information recorded on the medium. and,
In order to record and reproduce information with higher density, the distance between the magnetic head and the magnetic recording medium has recently been increased to 0.2, for example.
It is normal to maintain a minute interval of about 0.3 μm. Therefore, a floating magnetic head slider is used to prevent damage caused by collision between the magnetic head and the magnetic recording medium as much as possible. The magnetic head slider is configured to maintain a small distance between the slider and the recording medium by using the hydrodynamic levitation force generated in the gap between the slider and the recording medium due to the relative speed of the slider and the recording medium. Reduces friction and wear caused by contact with recording media.

【0003】一方、近年の磁気記録媒体に要求される仕
様は次第に厳しくなってきており、より記録密度の高い
磁性膜を用いることが要求されている。このような磁性
膜としては、非磁性基板上にCr下地層を介してCo−
Ni−Cr層を成膜したものがある。しかし、この磁性
膜は、保磁力がCr下地層の厚みに大きく依存し、膜厚
が厚くなるに従い保磁力が増加する。高密度化のために
は記録媒体の高保磁力化が必要であるが、この磁性膜を
形成した記録媒体においては、1000Oe以上の保磁
力を得るためには2000Å以上のCr膜を形成しなけ
ればならず、膜形成に要する時間が長くなり生産性を低
下させるという問題がある。
On the other hand, the specifications required for magnetic recording media in recent years have become increasingly strict, and the use of magnetic films with higher recording densities is required. As such a magnetic film, Co-
There is one in which a Ni-Cr layer is formed. However, the coercive force of this magnetic film largely depends on the thickness of the Cr underlayer, and the coercive force increases as the film thickness increases. In order to increase the density, it is necessary to increase the coercive force of the recording medium, but in order to obtain a coercive force of 1000 Oe or more in a recording medium on which this magnetic film is formed, a Cr film of 2000 Å or more must be formed. However, there is a problem in that the time required for film formation becomes longer and productivity is lowered.

【0004】0004

【発明が解決しようとする課題】このような欠点を除く
ために、上記と同様に、非磁性基板上にCr層を介して
Co−Cr−Ta膜を形成したものが提唱された(IE
EE Trans.Magn.MAG−23,122,
1987)。この媒体は1000ÅのCr膜厚でも10
00Oe以上の保磁力が得られるという利点がある。し
かしながら、1500Oe以上の高保磁力は得られてい
ない。
[Problems to be Solved by the Invention] In order to eliminate such drawbacks, a method in which a Co-Cr-Ta film is formed on a non-magnetic substrate with a Cr layer interposed therebetween has been proposed (IE).
EE Trans. Magn. MAG-23, 122,
1987). Even with a Cr film thickness of 1000 Å, this medium has a
It has the advantage that a coercive force of 00 Oe or more can be obtained. However, a high coercive force of 1500 Oe or more has not been obtained.

【0005】また、高保磁力の磁性膜を得るために、ス
パッタ時に基板にバイアス電圧を印加することも知られ
ている(信学技報CPM88,1988)。しかし、こ
の報告においても、高保磁力を得るためにはCr下地膜
の膜厚が1500Å以上を要している。さらに、より薄
層のCr膜での検討も行われているが(日本応用磁気学
会誌,14,53,1990)、Co−Cr−Ta系合
金磁性層では1500Oe以上の高保磁力は達成されて
いない。
It is also known to apply a bias voltage to the substrate during sputtering in order to obtain a magnetic film with high coercive force (IEICE Technical Report CPM88, 1988). However, even in this report, the film thickness of the Cr underlayer needs to be 1500 Å or more in order to obtain a high coercive force. Furthermore, studies have been conducted on thinner Cr films (Journal of the Japan Society of Applied Magnetics, 14, 53, 1990), but a high coercive force of 1500 Oe or more has not been achieved with a Co-Cr-Ta alloy magnetic layer. do not have.

【0006】Co−Cr−Ta系合金磁性層は、基板面
に平行な方向(トラック方向)に磁化されて記録を行う
。したがって、この面密度を上げて高密度記録をするた
めには、磁性層の保磁力を高めることが必要である。 そして、このためにはCr下地層上のCo−Cr−Ta
系合金層をエピタキシャル成長させる必要があるとされ
ている(USP 4,652,499)。このとき、下
地層のCr結晶とCo−Cr−Ta系合金結晶の結晶粒
はほぼ同じ大きさとなる。また、Crの結晶粒径は、膜
厚が厚くなるとともに成長する。
The Co--Cr--Ta alloy magnetic layer performs recording by being magnetized in a direction parallel to the substrate surface (track direction). Therefore, in order to increase this areal density and perform high-density recording, it is necessary to increase the coercive force of the magnetic layer. For this purpose, Co-Cr-Ta on the Cr underlayer is
It is said that it is necessary to epitaxially grow the alloy layer (USP 4,652,499). At this time, the crystal grains of the Cr crystal of the underlayer and the Co--Cr--Ta alloy crystal have approximately the same size. Further, the crystal grain size of Cr grows as the film thickness increases.

【0007】本発明の目的とするところは、非磁性基板
上に形成した磁性層からなる磁気記録媒体であって、こ
の磁性層は面内に磁化容易方向を有し、この基板と磁性
層の間のCrまたはCr合金からなる下地層の厚さが薄
いときでも、1500Oe以上の高い保磁力を有するも
のを提供することにある。なお、面内に磁化容易方向を
有するとは、磁性層が基板面と平行な方向、すなわち長
手方向に磁化することが出来ることを意味し、Co−C
r−Ta系合金磁性層が六方晶結晶構造を有する場合、
そのC軸の磁性層面内成分の大きいことを意味する。本
発明の他の目的は、磁気記録媒体を製造するときに、生
産性のよい下地層の薄い媒体を提供することにある。
The object of the present invention is to provide a magnetic recording medium consisting of a magnetic layer formed on a non-magnetic substrate, where the magnetic layer has an in-plane direction of easy magnetization, and where the substrate and the magnetic layer It is an object of the present invention to provide a device having a high coercive force of 1500 Oe or more even when the thickness of the underlying layer made of Cr or Cr alloy is thin. Note that having an easy magnetization direction in the plane means that the magnetic layer can be magnetized in a direction parallel to the substrate surface, that is, in the longitudinal direction.
When the r-Ta alloy magnetic layer has a hexagonal crystal structure,
This means that the in-plane component of the C-axis of the magnetic layer is large. Another object of the present invention is to provide a medium with a thin underlayer that is highly productive when manufacturing a magnetic recording medium.

【0008】[0008]

【課題を解決するための手段】本発明は、非磁性基体上
に形成されたCrまたはCrを主体とする合金からなる
下地層上に、平均結晶粒径300〜600ÅのCo−C
r−Ta系合金磁性層を連続して形成してあることを特
徴とするものであり、それによってCo−Cr−Ta系
合金磁性層における膜面に平行な成分の保磁力が150
0Oeを超える磁気記録媒体を実現できるのである。本
発明において、上記磁性層としては、CrあるいはCr
合金下地層上に蒸着成長させるもので、5〜15原子%
のCr、1〜8原子%のTa、および残部実質的にCo
からなる組成のCo系合金磁性層のものが適切である。
[Means for Solving the Problems] The present invention provides Co--C with an average crystal grain size of 300 to 600 Å on a base layer made of Cr or an alloy mainly composed of Cr formed on a non-magnetic substrate.
It is characterized by continuously forming an r-Ta alloy magnetic layer, so that the coercive force of the component parallel to the film surface of the Co-Cr-Ta alloy magnetic layer is 150.
This makes it possible to realize a magnetic recording medium that exceeds 0 Oe. In the present invention, the magnetic layer is made of Cr or Cr.
It is grown by vapor deposition on the alloy base layer, and the content is 5 to 15 at%.
of Cr, 1 to 8 atom % of Ta, and the balance substantially of Co.
A Co-based alloy magnetic layer having a composition of:

【0009】また、本発明において、CrまたはCrを
主体とする合金からなる下地層の膜厚は400Å以上で
あることが望ましい。これは、300〜600Åの結晶
粒のCo−Cr−Ta系合金層を磁性層として実現しよ
うとする場合、400Å未満の厚さでは結晶粒径が30
0Å以上になりにくいためである。CrまたはCr合金
下地層の厚みは400Å以上であれば良く、その上限は
特に限定されるものではないが、生産性の点からは10
00Å以下とするのが適当である。本発明の磁気記録媒
体において、基板としては3〜6重量%のMgを含むア
ルミニウム合金やガラスまたはセラミックなどの非磁性
基板が適切であり、さらに基板上にNi−Pメッキ膜な
どの非晶質金属下地層が設けられていてもよい。
Further, in the present invention, the thickness of the underlayer made of Cr or an alloy mainly composed of Cr is preferably 400 Å or more. This means that when trying to realize a Co-Cr-Ta alloy layer with crystal grains of 300 to 600 Å as a magnetic layer, if the thickness is less than 400 Å, the crystal grain size will be 30 Å.
This is because it is difficult for the thickness to exceed 0 Å. The thickness of the Cr or Cr alloy base layer may be 400 Å or more, and the upper limit is not particularly limited, but from the viewpoint of productivity it should be 10 Å or more.
It is appropriate that the thickness be 00 Å or less. In the magnetic recording medium of the present invention, a non-magnetic substrate such as an aluminum alloy, glass, or ceramic containing 3 to 6% by weight of Mg is suitable as the substrate, and an amorphous substrate such as a Ni-P plating film on the substrate is suitable. A metal underlayer may also be provided.

【0010】上記構成の本発明による磁気記録媒体は、
非磁性基板を150℃以上に加熱し、かつ非磁性基板上
に負の電圧を印加しながら、CrまたはCrを主体とす
る合金からなる下地層と、この下地層上にCo−Cr−
Ta系合金からなる磁性層を蒸着成長させて形成するこ
とにより製造できる。
The magnetic recording medium according to the present invention having the above structure has the following features:
While heating the nonmagnetic substrate to 150° C. or higher and applying a negative voltage on the nonmagnetic substrate, a base layer made of Cr or an alloy mainly composed of Cr and a Co-Cr-
It can be manufactured by depositing and growing a magnetic layer made of a Ta-based alloy.

【0011】[0011]

【作用】通常の方法ではCr下地膜の膜厚を3000Å
程度に厚くしないと粒径制御(粗大化)が出来ないが、
本発明においては、Cr下地膜の膜厚は400〜150
0Åの範囲内程度でありながら、基板温度を上げるとと
もにバイアス電圧を印加することによって結晶粒径を制
御できるのである。また、本発明においては、Cr下地
層およびCo−Cr−Ta系合金磁性層は連続的に形成
され、そのときの基板温度は150℃以上に保持される
るとともに、成膜中は基板面に負のバイアス電圧が印加
されることによって、1500Oe以上の保磁力が得ら
れ、高密度記録に適した媒体となるのである。
[Operation] In the normal method, the film thickness of the Cr underlayer is 3000 Å.
It is not possible to control the particle size (coarsening) unless it is thick enough, but
In the present invention, the film thickness of the Cr underlayer is 400 to 150
Although it is within the range of 0 Å, the crystal grain size can be controlled by increasing the substrate temperature and applying a bias voltage. In addition, in the present invention, the Cr underlayer and the Co-Cr-Ta alloy magnetic layer are formed continuously, and the substrate temperature at that time is maintained at 150°C or higher, and during film formation, there is no negative impact on the substrate surface. By applying a bias voltage of 1,500 Oe or more, a coercive force of 1,500 Oe or more can be obtained, making the medium suitable for high-density recording.

【0012】0012

【実施例】以下、本発明について実施例および比較例等
に基づいて詳述する。ただし、本発明の範囲が、これら
実施例により限定されるものではない。
[Examples] The present invention will be described in detail below based on Examples and Comparative Examples. However, the scope of the present invention is not limited by these Examples.

【0013】(実施例1)表面にNi−Pメッキ膜が5
〜15μm形成された、4重量%のマグネシウムを含む
3.5インチアルミニウム合金基板(外径95mm、内
径25mm、厚み1.27mm)を鏡面加工する。次に
、磁気記録媒体の起動時および停止時における磁気ヘッ
ドもしくはスライダとの接触摺動(Contact S
tart and Stop, 以下CSSと記す)特
性を確保するためにテクスチャ加工を施す。
(Example 1) Five Ni-P plating films were formed on the surface.
A 3.5-inch aluminum alloy substrate (outer diameter 95 mm, inner diameter 25 mm, thickness 1.27 mm) containing 4% by weight of magnesium and having a thickness of ~15 μm is mirror-finished. Next, contact sliding with the magnetic head or slider when starting and stopping the magnetic recording medium (Contact S
Texture processing is applied to ensure the tart and stop (hereinafter referred to as CSS) characteristics.

【0014】この基板を洗浄後、例えばDCマグトロン
スパッタ装置により、表1に示すように種々の膜厚のC
rからなる下地層と、Co−Cr−Ta合金からなる磁
性層と、カ−ボンからなる保護層とを順次積層して成膜
する。この場合、下地層の成膜には、スパッタ室内を1
×10−5Torr以下に排気後、Arガスを導入して
スパッタ室内を5mTorrに保持し、投入電力200
0W、成膜速度400Å/分の条件の下で、異なる膜厚
のCr下地層を成膜する。次に、この下地層の上にCo
−Cr−Ta合金からなる磁性層を、上記下地層の成膜
と同様の雰囲気下で、投入電力2000W、成膜速度1
000Å/分の条件で500Åの膜厚に成膜する。また
、両層のスパッタ時には、基板を他の部分より電気的に
浮かせ、DC電源により負のバイアス電圧を印加する。 さらに、保護層としてのカーボン膜を、投入電力100
0W、成膜速度80Å/分の条件で、前記磁性層上に膜
厚300Å成膜する。
After cleaning this substrate, use a DC magtron sputtering device, for example, to coat C with various film thicknesses as shown in Table 1.
A base layer made of r, a magnetic layer made of a Co-Cr-Ta alloy, and a protective layer made of carbon are sequentially laminated to form a film. In this case, when forming the base layer, the sputtering chamber is
After exhausting to below ×10-5 Torr, Ar gas was introduced to maintain the inside of the sputtering chamber at 5 mTorr, and the input power was 200 mTorr.
Cr underlayers of different thicknesses are deposited under conditions of 0 W and a deposition rate of 400 Å/min. Next, Co
-A magnetic layer made of a Cr-Ta alloy was formed in the same atmosphere as for forming the underlayer, with an input power of 2000 W and a film formation rate of 1.
A film is formed to a thickness of 500 Å at a rate of 000 Å/min. Further, when sputtering both layers, the substrate is electrically floated above other parts, and a negative bias voltage is applied by a DC power source. Furthermore, the carbon film as a protective layer was
A film with a thickness of 300 Å is formed on the magnetic layer under conditions of 0 W and a film formation rate of 80 Å/min.

【0015】得られた磁気記録媒体における磁性膜の磁
気特性および平均結晶粒径を表1に示す。Cr下地膜厚
が薄い比較例No.1は平均結晶粒径が小さく保磁力も
小さい。これに対し、Cr下地膜厚が400Å以上であ
る本発明磁気記録媒体は、Co−Cr−Ta系合金磁性
膜の平均結晶粒径が300〜600Åの範囲にあり、1
500Oeを超える優れた保磁力となることがわかる。 なお、図1および図2は本発明に係る試料No.5およ
び比較例試料No.1についてのTEMによる組織観察
写真である。
Table 1 shows the magnetic properties and average crystal grain size of the magnetic film in the obtained magnetic recording medium. Comparative example No. with a thin Cr underlayer film thickness. No. 1 has a small average grain size and a small coercive force. On the other hand, in the magnetic recording medium of the present invention in which the Cr underlayer film thickness is 400 Å or more, the average crystal grain size of the Co-Cr-Ta alloy magnetic film is in the range of 300 to 600 Å, and 1
It can be seen that the coercivity is excellent, exceeding 500 Oe. Note that FIGS. 1 and 2 show sample No. 1 according to the present invention. 5 and Comparative Example Sample No. 1 is a TEM microstructure observation photograph of No. 1.

【0016】[0016]

【表1】[Table 1]

【0017】(実施例2)Cr下地膜厚を620Åとし
、基板温度を表2に示すように変化させたほかは実施例
1と同様にして、Co−Cr−Ta合金磁性層および保
護膜を形成する。得られた磁性層の磁気特性および結晶
粒径を表2に示す。さらに、基板温度が低い条件で成膜
した比較例No.7および8の磁性層の平均結晶粒径は
300Å未満であり、保磁力も1500Oe未満である
。これに対し、基板を150℃以上に加熱した本発明例
No.9〜11のものは、平均結晶粒径が400Å以上
であり、その保磁力も1500Oe以上と好ましい特性
が得られている。
(Example 2) A Co-Cr-Ta alloy magnetic layer and a protective film were formed in the same manner as in Example 1, except that the Cr underlayer thickness was 620 Å and the substrate temperature was changed as shown in Table 2. Form. Table 2 shows the magnetic properties and crystal grain size of the obtained magnetic layer. Furthermore, Comparative Example No. 1 was formed under conditions where the substrate temperature was low. The average crystal grain size of the magnetic layers No. 7 and No. 8 is less than 300 Å, and the coercive force is also less than 1500 Oe. On the other hand, inventive example No. 1 in which the substrate was heated to 150° C. or higher. Samples Nos. 9 to 11 have an average crystal grain size of 400 Å or more and a coercive force of 1500 Oe or more, which are favorable characteristics.

【0018】[0018]

【表2】[Table 2]

【0019】(実施例3)Cr下地膜厚を620Å、基
板温度を200℃とし、バイアス電圧を表3に示すよう
に変化させたほかは実施例1と同様にして、Co−Cr
−Ta合金磁性層および保護膜を形成する。得られた磁
性層の磁気特性および結晶粒径を表3に示す。表3の比
較例(No.12)からわかるように、基板温度が高く
ても無バイアス時には、平均結晶粒径は小さく、保磁力
も低い。これに対し、バイアス電圧を印加して作成した
No.13〜15のものは、平均結晶粒径が300μm
以上となり磁気特性も良好であることがわかる。
(Example 3) Co--Cr
- Form a Ta alloy magnetic layer and a protective film. Table 3 shows the magnetic properties and crystal grain size of the obtained magnetic layer. As can be seen from the comparative example (No. 12) in Table 3, even when the substrate temperature is high, when no bias is applied, the average crystal grain size is small and the coercive force is low. On the other hand, No. 1, which was created by applying a bias voltage. 13 to 15 have an average crystal grain size of 300 μm
It can be seen that the magnetic properties are also good.

【0020】[0020]

【表3】[Table 3]

【0021】(実施例4)基板温度、バイアス電圧、お
よびCr下地膜厚は変えずに、Co−Cr−Ta合金磁
性層の組成を表4に示すように変化させ、実施例1と同
様にして、Co−Cr−Ta合金磁性層および保護膜を
形成する。得られた磁性層の磁気特性および結晶粒径を
表4に示す。CrおよびTaの含有量が適正な本発明の
磁気記録媒体(No.19〜24)の磁性層の平均結晶
粒径は300〜600Åの範囲にあり、保磁力も150
0Oe以上と良好である。これに対し、Taが過剰に含
有されたもの(No.16)、Taが含有されていない
もの(No.17)は、Cr下地層の厚さが適当であっ
ても、平均結晶粒径が小さく、保磁力も小さい。また、
Crの含有量が5原子%未満のもの(No.25)は、
Cr下地層の厚さが適当であっても結晶粒径が600Å
を越えており、十分な保磁力が得られない。さらにまた
、CrまたはTa量が過剰のもの(No.16、18)
は4πMsが低く、Ta+Cr量の低いもの(No.2
5)は保磁力が低いこともわかる。
(Example 4) The composition of the Co-Cr-Ta alloy magnetic layer was changed as shown in Table 4 without changing the substrate temperature, bias voltage, and Cr underlayer thickness, and the same procedure as in Example 1 was carried out. Then, a Co-Cr-Ta alloy magnetic layer and a protective film are formed. Table 4 shows the magnetic properties and crystal grain size of the obtained magnetic layer. The average crystal grain size of the magnetic layer of the magnetic recording media (Nos. 19 to 24) of the present invention with appropriate contents of Cr and Ta is in the range of 300 to 600 Å, and the coercive force is also in the range of 150 Å.
0 Oe or more, which is good. On the other hand, in the case of the one containing excessive Ta (No. 16) and the one containing no Ta (No. 17), even if the thickness of the Cr underlayer is appropriate, the average grain size is It is small and has low coercive force. Also,
The one with a Cr content of less than 5 at% (No. 25) is
Even if the thickness of the Cr underlayer is appropriate, the grain size is 600 Å.
is exceeded, and sufficient coercive force cannot be obtained. Furthermore, those with an excessive amount of Cr or Ta (No. 16, 18)
has a low 4πMs and a low amount of Ta+Cr (No. 2
It can also be seen that 5) has a low coercive force.

【0022】[0022]

【表4】[Table 4]

【0023】(参考例1)また、比較のために、従来か
ら磁性層として広く使用されているCo63Ni30C
r7合金、およびCo86Cr12Ta2合金について
、基板加熱温度200℃、無バイアスとし、Cr下地膜
の膜厚を変化させて実施例1と同様にして成膜した場合
の磁性層の磁気特性および結晶粒径について調べた結果
を表5に示す。従来材のCo63Ni30Cr7 はC
r下地層を2000Å以上に厚くすることによって保磁
力が上げられることがわかる。しかし、1500Oeを
超える保磁力は得られない。なお、この組成系のものは
基本的に結晶粒径が大きいため、Cr下地膜の粒径も必
然的に600Å以上程度に大きくしているのが通常であ
る。また、Co−Cr−Ta材を従来の製造方法で成膜
した場合は、同一膜厚においてCo63Ni30Cr7
 を凌ぐ保磁力が得られるものの、1500Oe以上の
保磁力とするにはCr膜厚として1500Å以上が必要
であることがわかる。
(Reference Example 1) For comparison, Co63Ni30C, which has conventionally been widely used as a magnetic layer, is
Regarding the magnetic properties and crystal grain size of the magnetic layer for r7 alloy and Co86Cr12Ta2 alloy, when the film was formed in the same manner as in Example 1 with the substrate heating temperature of 200 ° C., no bias, and changing the film thickness of the Cr underlayer. The results of the investigation are shown in Table 5. The conventional material Co63Ni30Cr7 is C
It can be seen that the coercive force can be increased by increasing the thickness of the r underlayer to 2000 Å or more. However, a coercive force exceeding 1500 Oe cannot be obtained. Incidentally, since the crystal grain size of this composition type is basically large, the grain size of the Cr underlayer is also usually increased to about 600 Å or more. In addition, when Co-Cr-Ta material is formed into a film by the conventional manufacturing method, Co63Ni30Cr7 at the same film thickness.
Although a coercive force exceeding 1,500 Oe can be obtained, it is clear that the Cr film thickness must be 1,500 Å or more in order to obtain a coercive force of 1,500 Oe or more.

【0024】[0024]

【表5】[Table 5]

【0025】以上述べたように、本発明においては、基
板温度とバイアス電圧の相乗作用がない場合あるいはC
r膜厚が薄すぎるときは結晶粒径300Å未満となり、
十分な特性が得られなくなる。また、Co−Cr−Ta
系合金磁性層として、5〜15原子%のCrおよび1〜
8原子%のTaを含むCo合金磁性層を形成した場合に
は、いずれも600Å以下の結晶粒径のものが得られ易
いことがわかる。
As described above, in the present invention, if there is no synergistic effect between substrate temperature and bias voltage, or if C
r When the film thickness is too thin, the crystal grain size will be less than 300 Å,
It becomes impossible to obtain sufficient characteristics. Also, Co-Cr-Ta
As a system alloy magnetic layer, 5 to 15 atomic % of Cr and 1 to
It can be seen that when a Co alloy magnetic layer containing 8 atomic % of Ta is formed, crystal grains with a crystal grain size of 600 Å or less are easily obtained.

【0026】上記実施例においては、下地層を形成する
材料としてCrを使用した例を示したが、本発明におい
ては、Crの他に、Cr−Mo、Cr−V、Cr−Mn
,Cr−WなどのCr合金によって形成してもよい。 また、磁性層を形成する材料としては、Cr5〜15%
、Ta1〜8%、残部Coを基本組成とする合金に他の
元素を含有させたCo−Cr−Ta系合金を使用するこ
とができる。さらに、基板を形成する非磁性材料として
は、上記実施例に記載した以外の他の金属材料および非
金属材料を使用することができる。
In the above embodiment, an example was shown in which Cr was used as the material for forming the underlayer, but in the present invention, in addition to Cr, Cr-Mo, Cr-V, Cr-Mn
, Cr-W, or other Cr alloy. In addition, the material for forming the magnetic layer is 5 to 15% Cr.
, 1 to 8% of Ta and the balance of Co can be used as a Co-Cr-Ta based alloy containing other elements. Further, as the non-magnetic material forming the substrate, other metal materials and non-metal materials than those described in the above embodiments can be used.

【0027】[0027]

【発明の効果】以上詳述したように、従来知られている
通常の方法ではCr膜厚を3000Åのように厚くしな
いと粒径制御(粗大化)が出来ないが、本発明によれば
Cr膜厚が薄くても基板温度、バイアス電圧の相乗効果
により粒径制御することができるため、優れた特性の磁
気記録媒体が実現できる。また、本発明磁気記録媒体は
、Co−Cr−Ta系合金を磁性層としているため耐蝕
性に優れており、かつCr下地膜厚が薄くても十分であ
るため下地膜の形成が容易であり、生産性を向上させる
ことができる。
Effects of the Invention As described in detail above, in conventional methods known in the art, grain size control (coarsening) cannot be achieved unless the Cr film is thickened to 3000 Å, but according to the present invention, Cr Even if the film thickness is small, the grain size can be controlled by the synergistic effect of substrate temperature and bias voltage, so a magnetic recording medium with excellent characteristics can be realized. In addition, the magnetic recording medium of the present invention has excellent corrosion resistance because the magnetic layer is made of a Co-Cr-Ta alloy, and the Cr underlayer can be formed easily even if it is thin. , productivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の一実施例における磁性膜のTE
Mによる金属組織観察写真である。
FIG. 1 shows the TE of a magnetic film in one embodiment of the present invention.
This is a metal structure observation photograph taken by M.

【図2】図2は比較例の磁性膜のTEMによる金属組織
観察写真である。
FIG. 2 is a TEM photograph of the metal structure of a magnetic film of a comparative example.

【符号の説明】[Explanation of symbols]

なし none

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】非磁性基体上に形成されたCrまたはCr
を主体とする合金からなる下地層上に、Co系合金から
なる磁性層が連続して形成されている磁気記録媒体にお
いて、Co系合金磁性層が平均結晶粒径300〜600
ÅのCo−Cr−Ta系合金磁性層からなることを特徴
とする磁気記録媒体。
Claim 1: Cr or Cr formed on a non-magnetic substrate
In a magnetic recording medium in which a magnetic layer made of a Co-based alloy is continuously formed on an underlayer made of an alloy mainly composed of
1. A magnetic recording medium comprising a Co-Cr-Ta based alloy magnetic layer having a thickness of 1.5 Å.
【請求項2】請求項1記載のものにおいて、上記Co−
Cr−Ta系合金磁性層が5〜15原子%のCrおよび
1〜8原子%のTaを含むCo系合金であることを特徴
とする磁気記録媒体。
2. The product according to claim 1, wherein the Co-
A magnetic recording medium characterized in that the Cr-Ta based alloy magnetic layer is a Co based alloy containing 5 to 15 atomic % of Cr and 1 to 8 atomic % of Ta.
【請求項3】請求項1記載のものにおいて、下地層の膜
厚が400Å以上であることを特徴とする磁気記録媒体
3. The magnetic recording medium according to claim 1, wherein the underlayer has a thickness of 400 Å or more.
【請求項4】請求項1記載のものにおいて、Co−Cr
−Ta系合金磁性層における膜面に平行な成分の保磁力
が1500Oeを超えることを特徴とする磁気記録媒体
4. The product according to claim 1, wherein Co-Cr
- A magnetic recording medium characterized in that the coercive force of the component parallel to the film surface of the Ta-based alloy magnetic layer exceeds 1500 Oe.
【請求項5】非磁性基板を150℃以上に加熱し、かつ
非磁性基板上に負の電圧を印加しながら、CrまたはC
rを主体とする合金からなる下地層と、Co−Cr−T
a系合金からなる磁性層を形成することを特徴とする磁
気記録媒体の製造方法。
5. While heating the non-magnetic substrate to 150° C. or higher and applying a negative voltage on the non-magnetic substrate, Cr or
A base layer made of an alloy mainly composed of r, and a Co-Cr-T
A method for manufacturing a magnetic recording medium, comprising forming a magnetic layer made of an a-based alloy.
JP3043561A 1991-03-08 1991-03-08 Magnetic recording medium and method of manufacturing the same Expired - Lifetime JP2760906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3043561A JP2760906B2 (en) 1991-03-08 1991-03-08 Magnetic recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3043561A JP2760906B2 (en) 1991-03-08 1991-03-08 Magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04281212A true JPH04281212A (en) 1992-10-06
JP2760906B2 JP2760906B2 (en) 1998-06-04

Family

ID=12667162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3043561A Expired - Lifetime JP2760906B2 (en) 1991-03-08 1991-03-08 Magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2760906B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154322A (en) * 1988-12-06 1990-06-13 Mitsubishi Kasei Corp Production of magnetic recording medium
JPH02154323A (en) * 1988-12-06 1990-06-13 Mitsubishi Kasei Corp Production of magnetic recording medium
JPH02161617A (en) * 1988-03-15 1990-06-21 Ulvac Corp Production of magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02161617A (en) * 1988-03-15 1990-06-21 Ulvac Corp Production of magnetic recording medium
JPH02154322A (en) * 1988-12-06 1990-06-13 Mitsubishi Kasei Corp Production of magnetic recording medium
JPH02154323A (en) * 1988-12-06 1990-06-13 Mitsubishi Kasei Corp Production of magnetic recording medium

Also Published As

Publication number Publication date
JP2760906B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JPH10188278A (en) Production of high-performance low-noise isotropic magnetic medium having chromium lower layer
US20010024742A1 (en) High performance thin film disk
US6524730B1 (en) NiFe-containing soft magnetic layer design for multilayer media
US6403241B1 (en) CoCrPtB medium with a 1010 crystallographic orientation
JP2006155865A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording/reproducing device
US5118564A (en) Longitudinal magnetic recording media with fine grain crystal magnetic layer
JPS63237210A (en) Magnetic recording medium
JPH10334444A (en) Magnetic recording medium
US6348276B1 (en) Magnetic recording media with a surface-oxidized nial sub-seedlayer
US6878439B2 (en) Magnetic recording medium, its production process and magnetic recording device
JP2760906B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0773433A (en) Magnetic recording medium, its production and magnetic recorder
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP3045797B2 (en) Perpendicular magnetic recording media
JP2845974B2 (en) In-plane magnetic recording medium and magnetic storage device using the same
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JPH0512647A (en) Magnetic recording medium
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JP2527616B2 (en) Metal thin film magnetic recording medium
JP3901755B2 (en) Magnetic recording medium
JPH04291017A (en) Magnetic recording medium and magnetic memory device
JPH1041134A (en) Magnetic recording medium and its manufacturing method
JPH0793738A (en) Magnetic recording medium
EP1111595A1 (en) Base for magnetic recording medium, magnetic recording medium, method for producing the same, and magnetic recorder
JPH0268712A (en) Thin film magnetic recording medium