JPH04109509A - Organic insulating material - Google Patents

Organic insulating material

Info

Publication number
JPH04109509A
JPH04109509A JP22870090A JP22870090A JPH04109509A JP H04109509 A JPH04109509 A JP H04109509A JP 22870090 A JP22870090 A JP 22870090A JP 22870090 A JP22870090 A JP 22870090A JP H04109509 A JPH04109509 A JP H04109509A
Authority
JP
Japan
Prior art keywords
density polyethylene
insulating material
alpha
formula
organic insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22870090A
Other languages
Japanese (ja)
Other versions
JP2666543B2 (en
Inventor
Takanori Yamazaki
孝則 山崎
Kiyoshi Watanabe
清 渡辺
Hideki Yagyu
柳生 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP22870090A priority Critical patent/JP2666543B2/en
Publication of JPH04109509A publication Critical patent/JPH04109509A/en
Application granted granted Critical
Publication of JP2666543B2 publication Critical patent/JP2666543B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To inhibit the generation of scorch and thereby increase an AC breakdown voltage of an insulating material by using polyolefin crosslinked by the use of 1-(1-t-butyldioxyisopropyl)-4-isopropylbenzene as a crosslinking agent. CONSTITUTION:The compound, 1-(1-t-butyldioxyisopropyl)-4-isopropylbenzene, is expressed by Structural Formula I. An unsaturated dimer of alpha-aromatic substitution-alpha-methylalkene is expressed by Formula II. In Formula II, R represents an aryl group, an alkaryl group or a methyl group, and R<1> and R<2> represent an aryl group or an alkaryl group, wherein the aryl group and the alkaryl group may be substituted with halogen, respectively. The compound expressed by Formula II is the unsaturated dimer such as alpha-methylstylene and ar-chrolo-ar-methyl-alpha-methylstylene. An organic insulating material crosslinks polyolefine by the use of the compound represented by Structural Formula I so that no scorch can be generated in spite of crosslinking middle density polyethylene, high density polyethylene and straight chain type low density or super low density polyethylene each inherently having a high molding temperature in addition to low density polyethylene.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は有機絶縁材料、特に電線、ケーブル、およびそ
れらの付属品の絶縁に有用な有機絶縁材料に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to organic insulating materials, particularly those useful for insulating electrical wires, cables, and their accessories.

〔従来の技術〕[Conventional technology]

有機絶縁材料のうちポリエチレン等のポリオレフィンは
、電線、ケーブルおよびそれらの付属品の絶縁材料とし
て広く用いられている。ポリエチレンは電気絶縁性にす
ぐれ、低密度ポリエチレン、中密度ポリエチレン、高密
度ポリエチレンに大別される。高密度ポリエチレンは低
密度および中密度ポリエチレンより成形温度が高く、1
45°C以上である。低密度ポリエチレンには、直鎖状
低密度ポリエチレン、直鎖状超低密度ポリエチレンが含
まれるが、これらは低密度であるにかかわらず成形温度
が比較的高い(140’C以上)。
Among organic insulating materials, polyolefins such as polyethylene are widely used as insulating materials for electric wires, cables, and their accessories. Polyethylene has excellent electrical insulation properties and is broadly classified into low-density polyethylene, medium-density polyethylene, and high-density polyethylene. High-density polyethylene has a higher molding temperature than low-density and medium-density polyethylene;
The temperature is 45°C or higher. Low-density polyethylene includes linear low-density polyethylene and linear very low-density polyethylene, but these have relatively high molding temperatures (140'C or higher) despite their low density.

これらのポリエチレンを架橋した架橋ポリエチレンは、
未架橋のポリエチレンより耐熱性にすくれ、有用である
。ポリエチレンを架橋するための架橋剤としては、一般
にジクミルペルオキシド(dicumyl perox
ide)が用いられ、架橋ポリエチレンの成形は通常1
30°C前後で行われている。
Cross-linked polyethylene made by cross-linking these polyethylenes is
It is more heat resistant than uncrosslinked polyethylene and is useful. Dicumyl peroxide is generally used as a crosslinking agent for crosslinking polyethylene.
ide) is used, and the molding of crosslinked polyethylene is usually 1
It is carried out at around 30°C.

〔発明が解決しようとする課題] しかし、架橋剤としてジクミルペルオキシド(DCP)
を用いる従来の架橋ポリエチレンは、成形時間の短縮や
押し出しの高速化のため、成形温度を高(すると、成形
時に架橋剤の一部が分解し、スコーチ(焼け)が発生し
て、交流破壊電圧が低下する。特に、もともと成形温度
の高い中密度ポリエチレン、高密度ポリエチレン、直鎖
状低密度または極低密度ポリエチレンにDCPを用いて
架橋すると、スコーチの発生が大きく、また成形が困難
であった。
[Problem to be solved by the invention] However, dicumyl peroxide (DCP) as a crosslinking agent
Conventional cross-linked polyethylene uses a high molding temperature in order to shorten molding time and speed up extrusion. In particular, when DCP is used to crosslink medium-density polyethylene, high-density polyethylene, linear low-density polyethylene, or very low-density polyethylene, which originally has a high molding temperature, scorch occurs significantly and molding is difficult. .

それ故、本発明の目的は、交流破壊電圧の低下を招くス
コーチの発生が防止された、架橋ポリオレフィンから成
る有機絶縁材料を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an organic insulating material made of crosslinked polyolefin, which prevents the generation of scorch that causes a decrease in AC breakdown voltage.

本発明の他の目的は、成形温度の高いポリオレフィンを
架橋した、成形容易な架橋ポリオレフィンから成る有機
絶縁材料を提供することである。
Another object of the present invention is to provide an organic insulating material composed of a crosslinked polyolefin that can be easily molded by crosslinking a polyolefin that has a high molding temperature.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明では、交流破壊電圧の低下を招くスコーチの発生
が防止され、また成形温度の高いポリオレフィンを架橋
した成形容易な架橋ポリオレフィンから成る有機絶縁材
料を提供するため、架橋剤としてL(1−t−ブチルジ
オキシイソプロビル)−4イソプロビルヘンゼンを用い
てポリオレフィンを架橋した。1−(1−t−ブチルジ
オキシイソプロビル)4−イソプロピルベンゼンは別名
1−(1−t−ブチルペルオキシイソプロピル)−4−
イソプロピルベンゼン、より正式な化合物命名法によれ
ば4゛−イソプロピル−1,1−ジメチルベンジル t
−ブチル ペルオキシドで、過酸化物の一つである。こ
の過酸化物とα−芳香族置換−α−メチルアルケンの不
飽和二量体を組み合わせて用いてもよい。
In the present invention, L(1-t The polyolefin was crosslinked using Hensen-butyldioxyisopropyl)-4isopropyl. 1-(1-t-butyldioxyisopropyl)4-isopropylbenzene is also known as 1-(1-t-butylperoxyisopropyl)-4-
Isopropylbenzene, more formally known as 4′-isopropyl-1,1-dimethylbenzyl
-Butyl peroxide, one of the peroxides. This peroxide and an unsaturated dimer of α-aromatically substituted α-methylalkene may be used in combination.

本発明で用いる架橋ポリオレフィンは、低密度ポリエチ
レン、中密度ポリエチレン、高密度ポリエチレン、直鎖
状低密度または超低密度ポリエチレンの重合体のほか、
エチレンを共重合比50%以上含むエチレン共重合体、
例えば酢酸ビニル、アルキルアクリレートまたはアルキ
ルメタアクリレート(例えばエチルアクリレート)、プ
ロピレン等とエチレンとの共重合体を包含し、これらの
一種または二種以上から成る。
The crosslinked polyolefin used in the present invention includes polymers of low density polyethylene, medium density polyethylene, high density polyethylene, linear low density or very low density polyethylene,
Ethylene copolymer containing ethylene at a copolymerization ratio of 50% or more,
Examples include copolymers of vinyl acetate, alkyl acrylates, alkyl methacrylates (eg, ethyl acrylate), propylene, etc., and ethylene, and are composed of one or more of these.

1−ci−t−ブチルジオキシイソプロビル)−4−イ
ソプロピルベンゼンは、下記構造式■を有する化合物で
ある。
1-ci-t-butyldioxyisopropyl)-4-isopropylbenzene is a compound having the following structural formula (2).

■ α−芳香族置換−α−メチルアルケンの不飽和二量体は
下記一般式■で表される。
(2) The unsaturated dimer of α-aromatically substituted-α-methylalkene is represented by the following general formula (2).

式中Rはアリール基、アルカリール基またはメチル基を
表し、R+、Rzはアリール基またはアルカリール基を
表し、これらのアリール基、アルカリール基はそれぞれ
ハロゲン置換されていてもよい。一般式■の化合物は例
えば、α−メチルスチレン、p−メチル−α−メチルス
チレン、p−エチル−α−メチルスチレン、p−イソプ
ロピル−α−メチルスチレン、トメチル−α−メチルス
チレン、m−エチル−α−メチルスチレン、ar−ジメ
チルα−メチルスチレン、ar−ジエチル−α−メチル
スチレン、ar−メチル−ar−イソプロピル−α−メ
チルスチレン、ar−クロロ−α−メチルスチレン、a
r−ジクロロ−α−メチルスチレン、ar−クロロ−a
r−メチル−α−メチルスチレンの不飽和二量体である
。化合物の具体例として、α−メチルスチレンの不飽和
二量体である2、4−ジフェニル−4−メチル−1−ペ
ンテンを挙げることができる。上記不飽和二量体は2種
以上を用いてもよい。
In the formula, R represents an aryl group, an alkaryl group, or a methyl group, and R+ and Rz represent an aryl group or an alkaryl group, and each of these aryl groups and alkaryl groups may be substituted with halogen. Compounds of general formula (2) include, for example, α-methylstyrene, p-methyl-α-methylstyrene, p-ethyl-α-methylstyrene, p-isopropyl-α-methylstyrene, tomethyl-α-methylstyrene, m-ethyl -α-methylstyrene, ar-dimethylα-methylstyrene, ar-diethyl-α-methylstyrene, ar-methyl-ar-isopropyl-α-methylstyrene, ar-chloro-α-methylstyrene, a
r-dichloro-α-methylstyrene, ar-chloro-a
It is an unsaturated dimer of r-methyl-α-methylstyrene. A specific example of the compound is 2,4-diphenyl-4-methyl-1-pentene, which is an unsaturated dimer of α-methylstyrene. Two or more types of the above unsaturated dimers may be used.

架橋剤の添加量は特に限定しないが、架橋度が好ましく
は60%以上、特に70%以上になるような量を選ぶ。
The amount of crosslinking agent added is not particularly limited, but the amount is selected such that the degree of crosslinking is preferably 60% or more, particularly 70% or more.

それにより、電線、ケーブル等の浸水課電特性が向上す
る。従来用いられたジクミルペルオキシド、1.3−ビ
ス−(t−ブチルペルオキシイソプロピル)−4−イソ
プロピルベンゼン、2,5−ジメチル−2,5−ジーt
er t−ブチルヘキシン−3等を併用することもでき
るが、その添加量は上記構造式Iの化合物の1/2未満
の量にすることが好ましい。
This improves the submerged charging characteristics of electric wires, cables, etc. Conventionally used dicumyl peroxide, 1,3-bis-(t-butylperoxyisopropyl)-4-isopropylbenzene, 2,5-dimethyl-2,5-di-t
Although er t-butylhexyne-3 or the like can be used in combination, the amount added is preferably less than 1/2 of the amount of the compound of structural formula I above.

本発明の有機絶縁材料には、酸化防止剤、滑剤、着色剤
等を添加することができる。
Antioxidants, lubricants, colorants, etc. can be added to the organic insulating material of the present invention.

本発明の有機絶縁材料は、電線、ケーブル、それらの付
属品等の、導体または導体遮蔽層(例えば内部半導電層
)の外周に設ける絶縁層として、あるいは絶縁用プラス
チック成形品として有用である。
The organic insulating material of the present invention is useful as an insulating layer provided on the outer periphery of a conductor or conductor shielding layer (for example, an internal semiconducting layer) of electric wires, cables, accessories thereof, etc., or as an insulating plastic molded product.

〔作用〕[Effect]

本発明の有機絶縁材料は、上記構造式■の化合物を用い
てポリオレフィンを架橋するため、低密度ポリエチレン
はもとより、成形温度のもともと高い中密度ポリエチレ
ン、高密度ポリエチレン、直鎖状低密度または超低密度
ポリエチレン等を架橋しても、スコーチが発生しない。
Since the organic insulating material of the present invention cross-links polyolefin using the compound of the above structural formula Scorch does not occur even when high-density polyethylene is crosslinked.

エチレン共重合体でも同様である。スコーチの発生がな
いので、本発明の有機絶縁材料は、同じ厚さで高い交流
破壊電圧を示す。上記構造式Jの化合物とα−芳香族置
換−α−メチルアルケンの不飽和二量体を組み合わせる
と、押し出し成形時に起きるポリエチレンの過度の架橋
が防止されるため、スコーチが発生しない。また、中密
度ポリエチレン、高密度ポリエチレン、直鎖状低密度ま
たは極低密度ポリエチレンに対して、構造式Iの化合物
のみを用いる場合より高いゲル分率が容易に得られる。
The same applies to ethylene copolymers. Due to the absence of scorch, the organic insulating material of the present invention exhibits a high AC breakdown voltage at the same thickness. When the compound of structural formula J is combined with an unsaturated dimer of α-aromatically substituted α-methylalkene, excessive crosslinking of polyethylene that occurs during extrusion molding is prevented, so that scorch does not occur. Further, higher gel fractions can be easily obtained for medium density polyethylene, high density polyethylene, linear low density or very low density polyethylene than when only the compound of structural formula I is used.

以下、実施例により本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

〔実施例1〜6〕 本発明の有機絶縁材料を用いた電力用ケーブルの断面を
図に示す。ケーブル1は、導体2の外周に、厚さ0.7
mmの内部半導電層3、厚さ4mmの絶縁層4、厚さ0
.7 mmの外部半導電層5を有し、導体2は断面積6
0rM12の軟銅撚線、絶縁層4は本発明による架橋ポ
リエチレンから成る。
[Examples 1 to 6] The cross-sections of power cables using the organic insulating material of the present invention are shown in the figures. The cable 1 has a thickness of 0.7 on the outer periphery of the conductor 2.
mm internal semiconducting layer 3, 4 mm thick insulating layer 4, thickness 0
.. With an external semiconducting layer 5 of 7 mm, the conductor 2 has a cross-sectional area of 6
Annealed copper strands of 0 rM12, the insulating layer 4 consisting of crosslinked polyethylene according to the invention.

図に示すケーブルは、以下のようにして製造した。The cable shown in the figure was manufactured as follows.

第1表に示す6種の組成物を、22インチミキシングロ
ールで混練し、シートとし、ペレタイザでベレット化し
、押し出し機により溶融、145°Cで押し出しを行い
、内部半導電層3の外周に被覆し、さらに外部半導電層
5を常法により押し出し被覆する。押し出し後、直ちに
窒素ガスを熱媒体とする乾式架橋管内で架橋し、その後
、加圧冷却することによってケーブル1を完成させた。
The six compositions shown in Table 1 were kneaded using a 22-inch mixing roll, formed into a sheet, made into pellets using a pelletizer, melted using an extruder, extruded at 145°C, and coated on the outer periphery of the internal semiconductive layer 3. Then, an outer semiconducting layer 5 is extruded and coated using a conventional method. After extrusion, the cable 1 was immediately crosslinked in a dry crosslinking pipe using nitrogen gas as a heating medium, and then cooled under pressure to complete the cable 1.

これらのケーブルを次のようにして評価した。These cables were evaluated as follows.

(1)押し出し加工性 ケーブルの押し出し後の外観すなわちスコーチ(焼け)
の発生の有無を観察する。
(1) Appearance of extrudable cable after extrusion, that is, scorch (burnt)
Observe whether or not this occurs.

(2)交流破壊電圧 供試ケーブルを常温で20 k V/ 10m1nの割
合で電圧を上昇し、絶縁破壊電圧を測定した。
(2) AC breakdown voltage The voltage of the test cable was increased at a rate of 20 kV/10 m1n at room temperature, and the dielectric breakdown voltage was measured.

試験結果を第1表に、押し出し時の組成とともに示した
。なお第1表中、組成は重量比を、各ポリエチレンの下
の数字はそれぞれの密度を、化合物■は 1− (1−
t−ブチルジオキシイソプロビル)4−イソプロピルベ
ンゼンを示す。
The test results are shown in Table 1 along with the composition at the time of extrusion. In Table 1, the composition is the weight ratio, the number below each polyethylene is the density, and compound ■ is 1- (1-
t-Butyldioxyisopropyl) 4-isopropylbenzene.

第1表 第1表から明らかなように、実施例1〜6の絶縁材料は
いずれも、240kV以上の高い交流破壊電圧を示し、
ゲル分率が70%以上で、押し出し加工性も良い。
Table 1 As is clear from Table 1, the insulating materials of Examples 1 to 6 all exhibited a high AC breakdown voltage of 240 kV or more,
The gel fraction is 70% or more and the extrusion processability is also good.

〔実施例7〜12] 実施例1〜6における押し出し組成物を、第2表に示す
α−メチルスチレンニ量体を含む組成のものに置き換え
、それ以外は実施例1〜6と同様の方法でケーブルを製
造し、評価した。その結果を、押し出し組成とともに第
2表に示す。
[Examples 7 to 12] The extrusion composition in Examples 1 to 6 was replaced with one containing the α-methylstyrene dimer shown in Table 2, and the method was the same as in Examples 1 to 6 except for that. A cable was manufactured and evaluated. The results are shown in Table 2 along with the extrusion composition.

第2表から明らかなように、実施例7〜12の絶縁材料
はいずれも、210kV以上の高い交流破壊電圧を示し
、ゲル分率が70%以上で、押し出し加工性も良い。
As is clear from Table 2, all of the insulating materials of Examples 7 to 12 exhibited a high AC breakdown voltage of 210 kV or more, had a gel fraction of 70% or more, and had good extrusion processability.

〔実施例13〜14〕 実施例1〜6における押し出し組成物を、第3表に示す
組成のものに置き換え、その他は実施例1〜6と同様の
操作でケーブルを製造し、評価した。その結果を押し出
し組成とともに第3表に示す。なお、比較のため実施例
8を併せて示した。
[Examples 13-14] Cables were manufactured and evaluated in the same manner as in Examples 1-6 except that the extrusion compositions in Examples 1-6 were replaced with those having the compositions shown in Table 3. The results are shown in Table 3 along with the extrusion composition. Note that Example 8 is also shown for comparison.

第3表から明らかなように、実施例13〜14の絶縁材
料はいずれも、浸水課電に対し230kV以上の高い交
流破壊電圧を示し、ゲル分率が70%以上で、押し出し
加工性も良い。
As is clear from Table 3, all of the insulating materials of Examples 13 to 14 exhibited a high AC breakdown voltage of 230 kV or more when immersed in water, had a gel fraction of 70% or more, and had good extrusion processability. .

第2表 第3表 〔比較例1〜4〕 実施例1〜6における押し出し組成物を、第4表に示す
従来の組成のものに置き換え、その他は実施例1〜6と
同様の操作でケーブルを製造し、評価した。その結果を
押し出し組成とともに第4表に示す。
Table 2 Table 3 [Comparative Examples 1 to 4] The extrusion compositions in Examples 1 to 6 were replaced with those of the conventional compositions shown in Table 4, and the cables were made in the same manner as in Examples 1 to 6. was manufactured and evaluated. The results are shown in Table 4 along with the extrusion composition.

第4表に示されるように、比較例1〜4の絶縁材料はい
ずれも、ゲル分率は70%以上を示すが、押し出し加工
が困難で、ケーブルについての交流破壊電圧測定は不可
能であった。
As shown in Table 4, all of the insulating materials of Comparative Examples 1 to 4 have a gel fraction of 70% or more, but extrusion processing is difficult and AC breakdown voltage measurement of cables is impossible. Ta.

〔発明の効果〕〔Effect of the invention〕

本発明による架橋ポリオレフィンから成る有機絶縁材料
は、スコーチが発生しないため、これを用いて成形した
絶縁物の交流破壊電圧が高い。
Since the organic insulating material made of the crosslinked polyolefin according to the present invention does not generate scorch, an insulator formed using the same has a high AC breakdown voltage.

また、本発明による有機絶縁材料は、成形温度の高いポ
リオレフィンを架橋したものであるが、成形が容易であ
る。
Further, the organic insulating material according to the present invention is a crosslinked polyolefin having a high molding temperature, and is easy to mold.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の実施例で製造された電力用ケーブルの断
面図である。 符号の説明 1−・−・−−−−−−−ケーブル 2−・−−−一一一−−導体 3・−−−−−−−−一・内部半導電層4−−−−一・
・−絶縁層 5−・・−・−・−・−外部半導電層
The figure is a cross-sectional view of a power cable manufactured in an example of the present invention. Explanation of symbols 1 - - - - - - - Cable 2 - - - - 1 - - Conductor 3 - - - - - - - - - 1 - Internal semiconducting layer 4 - - - - 1・
・−Insulating layer 5−・・−・−・−・−External semiconducting layer

Claims (2)

【特許請求の範囲】[Claims] (1)架橋剤として1−(1−t−ブチルジオキシイソ
プロピル)−4−イソプロピルベンゼンを用いて架橋さ
れたポリオレフィンから成ることを特徴とする、有機絶
縁材料。
(1) An organic insulating material comprising a polyolefin crosslinked using 1-(1-t-butyldioxyisopropyl)-4-isopropylbenzene as a crosslinking agent.
(2)架橋剤として1−(1−t−ブチルジオキシイソ
プロピル)−4−イソプロピルベンゼンを用い、α−芳
香族置換−α−メチルアルケンの不飽和二量体の存在下
に架橋されたポリオレフィンから成ることを特徴とする
、有機絶縁材料。
(2) Polyolefin crosslinked using 1-(1-t-butyldioxyisopropyl)-4-isopropylbenzene as a crosslinking agent in the presence of an unsaturated dimer of α-aromatically substituted α-methylalkene An organic insulating material characterized by comprising:
JP22870090A 1990-08-29 1990-08-29 Electric wires and cables Expired - Lifetime JP2666543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22870090A JP2666543B2 (en) 1990-08-29 1990-08-29 Electric wires and cables

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22870090A JP2666543B2 (en) 1990-08-29 1990-08-29 Electric wires and cables

Publications (2)

Publication Number Publication Date
JPH04109509A true JPH04109509A (en) 1992-04-10
JP2666543B2 JP2666543B2 (en) 1997-10-22

Family

ID=16880433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22870090A Expired - Lifetime JP2666543B2 (en) 1990-08-29 1990-08-29 Electric wires and cables

Country Status (1)

Country Link
JP (1) JP2666543B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101093736B (en) * 2006-06-21 2010-04-21 江苏中煤电缆股份有限公司 Rubber insulation material and insulating sheath material for mine cable

Also Published As

Publication number Publication date
JP2666543B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
CA2303600C (en) A crosslinkable polyethylene composition
US7435908B2 (en) Low voltage power cable with insulation layer comprising polyolefin having polar groups, hydrolysable silane groups, and including a silanol condensation catalyst
KR20010031265A (en) Electric cable and a method and composition for the production thereof
JP7349440B2 (en) Polyolefin and polyvinylpyrrolidone blends
JPH04109509A (en) Organic insulating material
CA2301305C (en) A polyethylene crosslinkable composition
JP2014096252A (en) Wire and cable using silane crosslinked polyethylene and method of producing the same
JP2921090B2 (en) Semiconductive resin composition
JP3858511B2 (en) Electric wire / cable
JP2921091B2 (en) Electric wires and cables
TWI564334B (en) Crosslinkable resin composition and an electric wire and a cable
JP2814715B2 (en) Electric wires and cables
JP2871011B2 (en) Power cable
JPH04306504A (en) Insulation material and manufacture of insulator
JP2001266650A (en) Electric insulating composition and electric cable
JP7209019B2 (en) Polyolefin blend with poly(2-alkyl-2-oxazoline)
JP2001256833A (en) Composition for electrical insulation and electric wire and cable
JP3773569B2 (en) DC power cable
JPH06309931A (en) Electrically insulative composition and electric wire/ cable
JPH04184814A (en) Rubber plastic insulation power cable
JPH08222026A (en) Composition for electrical insulation and electric cable
JPH06275129A (en) Electric insulating composition and electric wire/cable
JPH07282631A (en) Electric insulation composition and electric wire/cable
JPS5851415A (en) Flame resistant insulated wire
JPS61225715A (en) Heatproof crosslinked polyolefin insulation cable

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 14