JPS61225715A - Heatproof crosslinked polyolefin insulation cable - Google Patents

Heatproof crosslinked polyolefin insulation cable

Info

Publication number
JPS61225715A
JPS61225715A JP60065304A JP6530485A JPS61225715A JP S61225715 A JPS61225715 A JP S61225715A JP 60065304 A JP60065304 A JP 60065304A JP 6530485 A JP6530485 A JP 6530485A JP S61225715 A JPS61225715 A JP S61225715A
Authority
JP
Japan
Prior art keywords
polyolefin
insulator
crosslinked
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60065304A
Other languages
Japanese (ja)
Inventor
清 中山
伸一 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60065304A priority Critical patent/JPS61225715A/en
Publication of JPS61225715A publication Critical patent/JPS61225715A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐熱架橋ポリオレフィン絶縁ケーブルに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a heat-resistant crosslinked polyolefin insulated cable.

〔従来の技術〕[Conventional technology]

従来、耐熱架橋ポリオレフィン絶縁ケーブルの構造は、
耐熱温度を上昇させるために導体上に内部半導電層を被
覆し、その上に架橋ポリオレフィン絶縁体を被覆したも
のになっている。
Conventionally, the structure of heat-resistant cross-linked polyolefin insulated cables is as follows:
In order to increase the heat resistance, an internal semiconducting layer is coated on the conductor, and a crosslinked polyolefin insulator is coated on top of the internal semiconducting layer.

而して、この架橋ポリオレフィン絶縁体の形成は、融点
が120℃以上の中密度ポリエチレンに周知の有機過酸
化物、例えばジクミルノ々−オキサイド、t−プチルク
ミルノや−オキサイド。
The crosslinked polyolefin insulator can be formed by using well-known organic peroxides such as dicumyl oxide, t-butyl cumyl oxide, and t-butyl cumyl oxide on medium density polyethylene having a melting point of 120 DEG C. or higher.

1.3−ビス(1−ブチルパーオキサイド−イソプロピ
レン)−ベンゼン、2.5−ジメチル−2゜5−ジー(
1−プルチルパーオキサイド)−ヘキシン−3を所望量
添加した混和物を内部半導電層上に押出被覆し、これを
加熱架橋することにより形成している。
1.3-bis(1-butylperoxide-isopropylene)-benzene, 2.5-dimethyl-2゜5-di(
It is formed by extrusion coating a mixture to which a desired amount of 1-purutyl peroxide)-hexyne-3 is added onto the internal semiconductive layer, and crosslinking the mixture by heating.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述のような構造のケーブルは、有機過
酸化物の架橋温度が低いため、絶縁体を形成するための
押出成形を例えば135℃以下の温度で行わ表いと、所
蝋の架橋工程以前の段階で早期架橋所謂スコーチが起き
る問題がある。この点を考慮して絶縁体を押出形成する
際の樹脂温度を135℃以下の低温に設定して、かつ、
低速回転で押出成形を行うと、ポリオレフィン混和物が
充分に練られず、押出成形された絶縁体の外観肌荒れを
引き起こす。その結果、ケーブルの電気特性、特に耐電
圧特性を低下させる問題があった。
However, since the cross-linking temperature of the organic peroxide is low, cables with the above-mentioned structure require extrusion molding to form the insulator at a temperature of, for example, 135°C or lower, and the wax must be extruded before the cross-linking process. There is a problem that early crosslinking, so-called scorch, occurs at this stage. Considering this point, the resin temperature when extruding the insulator is set to a low temperature of 135°C or less, and
When extrusion molding is performed at low speed rotation, the polyolefin mixture is not sufficiently kneaded, resulting in a rough appearance of the extruded insulator. As a result, there was a problem in that the electrical properties of the cable, particularly the withstand voltage properties, were deteriorated.

本発明は、かかる点に鑑みてなされたものであり、電気
特性の良好な耐熱架橋?リオレフィン絶縁電カケ−プル
を開発したものである。
The present invention has been made in view of these points, and is a heat-resistant cross-linked material with good electrical properties. This is a lyolefin insulated electrical cable developed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、導体上に融点が120℃以上の4ジオレフィ
ン100重量部にアゾ化合物を0.5〜5重量部配合し
た組成物を押出被覆し、加熱架橋せしめて絶縁体層を形
成したことを特徴とする耐熱架橋Iリオレフイン絶縁ケ
ーブルである。
The present invention is to extrusion coat a conductor with a composition containing 0.5 to 5 parts by weight of an azo compound mixed with 100 parts by weight of 4-diolefin having a melting point of 120°C or higher, and crosslink it by heating to form an insulating layer. This is a heat-resistant cross-linked I-lyolefin insulated cable characterized by:

本発明の耐熱架橋ポリオレフィン絶縁ケーブルの製造は
、図に示す如く、撚線導体1の上に内部半導電層2.架
橋性ポリオレフィン絶縁体3、外部半導電層4を順次押
出成形し、これに加熱架橋を施した後冷却し、然る後、
その外周ニ銅テープ等の金属遮蔽層5.ビニルシース等
のシース6を形成することによシ行われる。
The heat-resistant cross-linked polyolefin insulated cable of the present invention is manufactured by forming an inner semiconducting layer 2 on a stranded conductor 1, as shown in the figure. The crosslinkable polyolefin insulator 3 and the external semiconductive layer 4 are sequentially extruded, crosslinked by heating, and then cooled.
5. Metal shielding layer such as copper tape around its outer periphery. This is done by forming a sheath 6 such as a vinyl sheath.

ここで、架橋性ポリオレフィン絶縁体は、融点が120
℃以上のポリオレフィン100重量部に対して、下記一
般式で示されるアゾ化合物を0.5〜5重量部添加した
混和物の押出被覆により形成される。
Here, the crosslinkable polyolefin insulator has a melting point of 120
It is formed by extrusion coating of a mixture in which 0.5 to 5 parts by weight of an azo compound represented by the following general formula is added to 100 parts by weight of polyolefin having a temperature of 100 parts by weight or higher.

(式) (但し、R1,R2”’!5IR4はアルキル基)融点
が120℃以上のポリオレフィンとしては、線状低密度
ポリエチレン、中密度ポリエチレン。
(Formula) (However, R1, R2"'!5IR4 are alkyl groups) Examples of polyolefins having a melting point of 120°C or higher include linear low density polyethylene and medium density polyethylene.

高密度ポリエチレン、或はこれらの混合物、これらのポ
リオレフィンにエチレン酢酸ビニル共重合体、エチレン
−エチルアクリレート共重合体等の共重合体を添加した
ポリオレフィンを使用することができる。なお、融点は
、示差走査熱量計(DSC)による試料の吸熱曲線のピ
ークとして与えられるものを言い、10′c/r111
nの昇温速度での値のものである。また、融点が120
℃未満のポリオレフィン、例えば低密度ポリエチレンを
用いたケーブルでは120℃程度の導体温度になると絶
縁体が熱変形を起こし、耐熱ケーブルとして使用できな
い。
High-density polyethylene, a mixture thereof, and a polyolefin obtained by adding a copolymer such as ethylene-vinyl acetate copolymer or ethylene-ethyl acrylate copolymer to these polyolefins can be used. The melting point refers to the peak of the endothermic curve of the sample measured by differential scanning calorimeter (DSC), and is 10'c/r111.
This is the value at a temperature increase rate of n. Also, the melting point is 120
Cables made of polyolefin, such as low-density polyethylene, whose temperature is less than 120 degrees Celsius, have thermal deformation in their insulators when the conductor temperature reaches about 120 degrees Celsius, making them unusable as heat-resistant cables.

架橋剤としてアゾ化合物を用いる理由は、従来の有機過
酸化物に比べて架橋化温度が約50℃程度高いので、組
成物の押出成形の温度を充分に高くすることができ、例
えば160℃程度の温度で絶縁体の押出成形をしてもス
コーチを起こすことなく、成形品の肌荒れ等をなくして
外観を良好にすると共に、電気特性を改善できるからで
ある。
The reason for using an azo compound as a crosslinking agent is that the crosslinking temperature is about 50°C higher than that of conventional organic peroxides, so the extrusion temperature of the composition can be made sufficiently high, for example about 160°C. This is because even if the insulator is extruded at a temperature of 100 to 100 mL, no scorch will occur, and the molded product will have a good appearance by eliminating rough skin and the like, as well as improving its electrical properties.

アゾ化合物の添加量は、0.5重量部未満では充分な架
橋度が得られず、5重量部を越えると架橋度が変化しな
いため、実用的には0.5〜5重量部の範囲に設定して
いる。
If the amount of the azo compound added is less than 0.5 parts by weight, a sufficient degree of crosslinking will not be obtained, and if it exceeds 5 parts by weight, the degree of crosslinking will not change. It is set.

本発明では、架橋ポリオレフィン絶縁体に周知の酸化防
止剤、無機充填剤、顔料等を少量含有させても良い。ま
た、内部半導電層2.外部半導電層4に架橋剤として従
来の有機過酸化物のかわりに上述のアゾ化合物を添加し
ても良いことは勿論である。
In the present invention, the crosslinked polyolefin insulator may contain small amounts of well-known antioxidants, inorganic fillers, pigments, and the like. Moreover, the internal semiconducting layer 2. Of course, the above-mentioned azo compound may be added to the outer semiconductive layer 4 as a crosslinking agent instead of the conventional organic peroxide.

〔発明の作用効果〕[Function and effect of the invention]

本発明の耐熱架橋/ IJオレフィン絶縁ケーブルは架
橋ポリオレフィン絶縁体層を融点が120℃以上のポリ
オレフィン100重量部にアゾ化合物を0.5〜5重量
部配合した組成物を押出被覆し、加熱架橋して形成した
ことにより、絶縁体の押出成形時に組成物のスコーチが
起きるのを阻止して肌荒れを防止すると共に良好な外観
を得、更に耐電圧特性等の電気特性を向上できるもので
ある。
The heat-resistant crosslinked/IJ olefin insulated cable of the present invention has a crosslinked polyolefin insulating layer coated by extrusion with a composition containing 100 parts by weight of a polyolefin with a melting point of 120°C or higher and 0.5 to 5 parts by weight of an azo compound, and then crosslinked by heating. This prevents the composition from scorching during extrusion molding of the insulator, prevents rough skin, provides a good appearance, and improves electrical properties such as withstand voltage properties.

〔実施例・比較例〕[Example/Comparative example]

以下、本発明に係る耐熱架橋ポリオレフィン絶縁ケーブ
ルの実施例1〜4及びこれと比較するだめに行った比較
例1〜5について説明する。
Examples 1 to 4 of heat-resistant crosslinked polyolefin insulated cables according to the present invention and Comparative Examples 1 to 5, which were carried out for comparison, will be described below.

断面が60 m”の撚線導体上に厚さが1mの内部半導
電層を形成し、その表面に下記表に示す配合組成の架橋
性ポリオレフィン組成物を押出温度を160℃にして押
出成形により被覆して絶縁体とした。次いで、この絶縁
体上に厚さ0.5mの外部半導電層を形成し、250℃
の加熱加圧管中で加熱架橋し、冷却後、ケーブルコアを
得た。然る後、ケーブルコア上に銅テープをラッグ巻し
、更にビニルシースを形成して実施例1〜4.比較例1
〜5のケーブルを得た。
An internal semiconductive layer with a thickness of 1 m was formed on a stranded conductor with a cross section of 60 m'', and a crosslinkable polyolefin composition having the composition shown in the table below was extruded on the surface at an extrusion temperature of 160°C. This insulator was then coated with an external semiconducting layer of 0.5 m thick and heated at 250°C.
After heating and crosslinking in a heating and pressurizing tube, and cooling, a cable core was obtained. Thereafter, a copper tape was wrapped around the cable core, and a vinyl sheath was further formed to form Examples 1 to 4. Comparative example 1
~5 cables were obtained.

このようにして得たケーブルの各々にケーブルコアの5
の長さl)5kgの荷重を135℃の温度下で10分間
加えたところ、比較例1〜30ケーブルは何れも絶縁体
が50%位変形してしまい耐熱架橋ポリオレフィン絶縁
ケーブルとして使用できないことが判った。これら以外
の実施例1〜4及び比較例4,50ケーブルでは、絶縁
体の変形は僅なものでありた。また、実施例2と比較例
40ケーブルの絶縁体の変形程度がほぼ同じであること
から、アゾ化合物の量は実施例2の量で充分であること
が判った。一方、比較例2及び比較例5のケーブルは、
絶縁体形成のための押出成形時に組成物にスコーチを起
こしてしまい、従って得られた絶縁体は表面に凹凸が発
生して外観不良が見られ、使用に供することができない
ものであった。
Each of the cables thus obtained has five cable cores.
Length l) When a load of 5 kg was applied for 10 minutes at a temperature of 135°C, the insulators of all cables of Comparative Examples 1 to 30 were deformed by about 50%, indicating that they could not be used as heat-resistant crosslinked polyolefin insulated cables. understood. In the cables of Examples 1 to 4 and Comparative Examples 4 and 50 other than these, the deformation of the insulator was slight. Furthermore, since the degree of deformation of the insulators of the cables of Example 2 and Comparative Example 40 was almost the same, it was found that the amount of the azo compound in Example 2 was sufficient. On the other hand, the cables of Comparative Example 2 and Comparative Example 5 are
Scorch occurred in the composition during extrusion molding to form the insulator, and the resulting insulator had irregularities on its surface and had a poor appearance, making it unusable.

次に、比較例5のケーブルを押出温度を120℃とした
以外は上述と同様にして製造した。得られたケーブルの
架橋ポリエチレン絶縁体の表面には肌荒れが認められた
。このケーブルにインノ9ルス破壊試験を施したところ
80 kVで破壊した。これに対して実施例2で得たケ
ーブルに同様のインAルス破壊試験を施したところ、破
壊値は180 kVであり絶縁耐圧が充分に向上してい
ることが判った。
Next, a cable of Comparative Example 5 was manufactured in the same manner as described above except that the extrusion temperature was 120°C. Roughness was observed on the surface of the crosslinked polyethylene insulator of the obtained cable. When this cable was subjected to an Inno9Rs destruction test, it was destroyed at 80 kV. On the other hand, when the cable obtained in Example 2 was subjected to a similar in-A pulse breakdown test, the breakdown value was 180 kV, indicating that the dielectric strength voltage was sufficiently improved.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明の一実施例の断面図である。 1・・・撚線導体、2・・・内部半導電層、3・・・架
橋?リオレフィン絶縁体、4・・・外部半導電層、5・
・・金属遮蔽層、6・・・シース。
The figure is a sectional view of one embodiment of the present invention. 1...Twisted wire conductor, 2...Inner semiconducting layer, 3...Bridging? Lyolefin insulator, 4... External semiconducting layer, 5.
...metal shielding layer, 6... sheath.

Claims (1)

【特許請求の範囲】 導体上に融点が120℃以上のポリオレフィン100重
量部に下記式で示すアゾ化合物を0.5〜5重量部配合
した組成物を押出被覆し、加熱架橋せしめて架橋ポリオ
レフィンからなる絶縁体層を有することを特徴とする耐
熱架橋ポリオレフィン絶縁ケーブル。 (式) ▲数式、化学式、表等があります▼ (但し、R_1、R_2、R_3、R_4は、アルキル
基)
[Scope of Claims] A composition prepared by blending 0.5 to 5 parts by weight of an azo compound represented by the following formula with 100 parts by weight of a polyolefin having a melting point of 120°C or higher is extrusion coated onto a conductor, and crosslinked by heating to form a crosslinked polyolefin. A heat-resistant cross-linked polyolefin insulated cable characterized by having an insulating layer. (Formula) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (However, R_1, R_2, R_3, R_4 are alkyl groups)
JP60065304A 1985-03-29 1985-03-29 Heatproof crosslinked polyolefin insulation cable Pending JPS61225715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065304A JPS61225715A (en) 1985-03-29 1985-03-29 Heatproof crosslinked polyolefin insulation cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065304A JPS61225715A (en) 1985-03-29 1985-03-29 Heatproof crosslinked polyolefin insulation cable

Publications (1)

Publication Number Publication Date
JPS61225715A true JPS61225715A (en) 1986-10-07

Family

ID=13283033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065304A Pending JPS61225715A (en) 1985-03-29 1985-03-29 Heatproof crosslinked polyolefin insulation cable

Country Status (1)

Country Link
JP (1) JPS61225715A (en)

Similar Documents

Publication Publication Date Title
US6395989B2 (en) Cross-linkable semiconductive composition, and an electric cable having a semiconductive coating
US3096210A (en) Insulated conductors and method of making same
US3100136A (en) Method of making polyethylene-insulated power cables
JPH04106B2 (en)
JPS61225715A (en) Heatproof crosslinked polyolefin insulation cable
JPH0952985A (en) Composition for semiconducting layer of power cable
JPS5846517A (en) Crosslinked polyolefin insulated power cable
JP2666543B2 (en) Electric wires and cables
JP2814715B2 (en) Electric wires and cables
JPH06309931A (en) Electrically insulative composition and electric wire/ cable
JP2921091B2 (en) Electric wires and cables
JPH0467283B2 (en)
JPH09245520A (en) Composition for semiconductive layer of power cable
JPH11329077A (en) Composition for semi-conductive layer and power cable
JP3884598B2 (en) Heat resistant electrical insulation composition and heat resistant electric wire cable
JPS5956441A (en) Semiconductive composition
JPS6271115A (en) Manufacturing crosslinked polyolefin-insulated power cable
JPS58212007A (en) Semiconductive composition for power cable
JPS586241B2 (en) plastic insulated wire
JPS5991607A (en) Polyolefin insulated cable
JPS6290805A (en) Power cable
JPH04218545A (en) Semi-conductive resin composition and rubber-plastic insulated power cable using the same
JPH02215012A (en) Semiconductor layer of cross-linked polyethylene electric cable
JPS61183817A (en) Manufacture of crosslinked polyolefin insulated power cable
JPH0366768B2 (en)