JPH0366768B2 - - Google Patents

Info

Publication number
JPH0366768B2
JPH0366768B2 JP12582482A JP12582482A JPH0366768B2 JP H0366768 B2 JPH0366768 B2 JP H0366768B2 JP 12582482 A JP12582482 A JP 12582482A JP 12582482 A JP12582482 A JP 12582482A JP H0366768 B2 JPH0366768 B2 JP H0366768B2
Authority
JP
Japan
Prior art keywords
insulating layer
tpx
layer
temperature
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12582482A
Other languages
Japanese (ja)
Other versions
JPS5918516A (en
Inventor
Susumu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP12582482A priority Critical patent/JPS5918516A/en
Publication of JPS5918516A publication Critical patent/JPS5918516A/en
Publication of JPH0366768B2 publication Critical patent/JPH0366768B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐熱性、低温可撓性に優れた電力ケ
ーブルに関する。 近年、高電圧電力ケーブルの樹脂絶縁体として
ポリエチレンが使用され、耐電圧特性、誘電特
性、加工特性等に長所を有することが知られてい
る。このポリエチレンは、融点が低く、高温度で
の使用が困難なことから、通常架橋処理を施した
架橋ポリエチエン(以下XLPEとする)を用いる
が、高電圧電力ケーブルでは絶縁体が厚いため、
電子線照射に替えて過酸化物を用いた化学架橋に
依つている。 この場合、使用されるポリエチレンは、押出時
の架橋剤によるスコーチを防止するために、低温
押出が可能な融点の低い(110℃程度)低密度ポ
リエチレン(LDPE)としている。押出後の架橋
は過酸化架橋剤による絶縁体の発泡を防ぐため高
温高圧の熱媒体雰囲気が必要となりそのために煩
雑な製造設備が要求される。 架橋によつて融点以上の高温度で絶縁体が流動
することはなくなるが融点を超えると絶縁体の熱
変形が著るしく大きくなるため、XLPEを用いた
電力ケーブルは、その使用温度が瞬時で120〜130
℃、通常70〜80℃以下に限定される欠点があつ
た。 以上の欠点に鑑み本発明は、煩雑な架橋設備を
用いなくとも耐熱性の良い電力ケーブルを提供せ
んとするもので、その要旨とするところは、導体
上に内部半導電層、絶縁層を順次設けた電力ケー
ブルにおいて、前記絶縁体としてポリ−4−メチ
ルペンテン−1 100重量部に対し、初留温度300
℃以下の炭化水素系化合物を30重量部以下配合し
た混和物を用いたとを特徴とするものである。 以下、図面に依り本発明を詳細に説明する。 第1図において、1は導体、2は内部半導電
層、3は絶縁層である。 この絶縁層3に用いられる樹脂は、高融点で、
かつ誘電特性、耐電圧特性を満足するものとして
ポリ−4−メチルペンテン−1(以下TPXとす
る)等が掲げられる。しかし、このTPXは室温
付近の低温可撓性に困難が生じることから、炭化
水素系化合物を配合することで、耐熱性を損ねる
ことなく低温可撓性が著るしく改善され、肉厚絶
縁層に加工可能であり、更に電気的特性に於ても
充分満足できる特性であることを確認した。 通常、TPXに或る種の炭化水素系ビニル化合
物を適当量、共重合成分として含んだ種々のグレ
ードが知られている。しかし、肉厚に加工可能な
程優れたものでなく、本発明の炭化水素系化合物
により、始めてTPXの使用が可能となつた。 本発明で用いられる炭化水素化合物としては、
無極性のアルキルベンゼン系、ポリブテン系、鉱
油系、ジフエニルエタン系、アルキルナフタレン
系等が好ましく、更に良好な電気的特性を期待す
る場合には絶縁油グレードの上記炭化水素系化合
物を用いれば良い。また、この炭化水素系化合物
は、TPXの押出加工温度250〜260℃以上である
ことから、加工上の必要上初留温度300℃以上の
ものが良い。炭化水素系化合物の配合部数は、
TPX100重量部に対し30重量部を超えると配合し
た炭化水素系化合物がブリードを起すため好まし
くなく、下限については、1〜2重量部程度の少
量の配合であつても低温可撓性の効果を有する。 これは、TPXが無極性の炭化水素ポリマーで
あり、230〜240℃の高融点を有する結晶性のポリ
マーであることから、化学構造の類似する炭化水
素化合物と親和性が良好であり、一種の可塑化効
果を与えることによつて低温可撓性を発揮すると
考えられる。 なお、炭化水素系化合物を配合したTPXに、
必要に応じて参加防止剤、銅害防止剤、難燃剤、
充填剤、或いはコーボンブラツク等の添加剤を加
えても、効果が同様であることは勿論である。 また、第2図の如く、絶縁層3上に外部半導電
層4、遮蔽層5を設けた高電圧電力ケーブル構造
とすこともできる。 半導電層としてはカーボン紙、半導電布、押出
半導電層用コンパウンド等が用いられるが、この
うち押出半導電層用コンパウンドを用いた場合、
最も安定した耐電圧特性を与える。 本発明の場合、押出半導電層用コンパウンドに
架橋剤を添加しておくことで絶縁層3と内外半導
電層の密着を向上させることも可能である。 以上のように、通常高電圧電力ケーブルには高
耐電圧と低誘導電損失であることが要求される
が、絶縁層として用いたポリ−4−メルルペンテ
ン−1は、炭化水素系化合物を配合することによ
りガラス転移温度に帰因した誘電分散が通常40〜
50℃から室温以下にシフトし、誘電特性上も有利
となる。 また、通常の架橋ポリエチレン電力ケーブルで
は、ケーブルジヨイント或いは端末部に絶縁層を
形成する剤、絶縁層が架橋されているためレジン
と一体に融着させることが難かしく、境界部に密
着不良部やボイド等を生じ易く、部分放電の原因
ともなつていたが、本発明では絶縁層に用いた樹
脂の融点が高く、未架橋で使用することができ、
ジヨイントや端末部の絶縁層の形成に有利であ
る。 〔実施例〕 本発明に用いる絶縁層用レジンは、TPXとし
て低温可撓性に富む粉末状のMX−001(三井石油
化学製造)に、炭化水素系化合物として初留温度
400℃の重質ヘビーアルケン10重量部を配合し、
100〜110℃のヘンシエルミキサーで混合し、この
混合時に老化防止剤、銅害防止剤を加えて、押出
ペレツトに形成した。 そこで、導体(500mm2)上に、内部半導電層と
して、予め架橋剤を練り込んだ押出半導電コンパ
ウンドを押出被覆し、その上から絶縁層として上
記レジンを厚さ12mm、押出温度280℃で施し、更
に外部半導電層(上記押出半導電コンパウンド)
遮蔽層、シースを順次施して電力ケーブルを製造
した。 これに対し、試験的に、絶縁層として炭化水素
系化合物を含まないTPX(MX−001)を用い、
本発明の同構造の電力ケーブル製造を試みたが、
可撓性が悪いためにドラムに巻き取ることができ
ず、製品を得ることが出来なかつた。 また、比較用の電力ケーブルは、絶縁層として
ポリエチレン押出被覆後、高温高圧の窒素ガス雰
囲気の架橋ゾーンを通して架橋を行い、半導電層
として架橋剤を含まない押出半導電コンパウンド
を用い、その他本発明と同構造のものを得た。 上記各電力ケーブルについて諸特性を測つた結
果を表に示す。表中、曲げ弾性率、融点、脆化温
度、引張強度、伸びは、各電力ケーブルの絶縁層
から切り取つた試料により測つたものであるが、
炭化水素系化合物を含まないTPXについてはケ
ーブル加工が不可能であつたので、熱プレスによ
り成形したシート試料で測定した。また絶縁層の
覧中、Aは炭化水素系化合物を配合した、TPX、
Bは炭化水素系化合物を含まないTPX、Cは架
橋ポリエチレンを示す。
The present invention relates to a power cable with excellent heat resistance and low-temperature flexibility. In recent years, polyethylene has been used as a resin insulator for high-voltage power cables, and is known to have advantages in voltage resistance, dielectric properties, processability, etc. This polyethylene has a low melting point and is difficult to use at high temperatures, so cross-linked polyethylene (hereinafter referred to as XLPE), which has undergone cross-linking treatment, is usually used, but in high-voltage power cables, the insulation is thick, so
It relies on chemical crosslinking using peroxide instead of electron beam irradiation. In this case, the polyethylene used is low density polyethylene (LDPE), which has a low melting point (approximately 110°C) and can be extruded at low temperatures, in order to prevent scorch caused by the crosslinking agent during extrusion. Crosslinking after extrusion requires a high-temperature, high-pressure heating medium atmosphere to prevent foaming of the insulator due to the peroxide crosslinking agent, which requires complicated manufacturing equipment. Cross-linking prevents the insulator from flowing at temperatures above the melting point, but the thermal deformation of the insulator significantly increases when the melting point is exceeded. 120-130
℃, usually limited to 70 to 80 ℃ or less. In view of the above drawbacks, the present invention aims to provide a power cable with good heat resistance without using complicated crosslinking equipment. In the provided power cable, an initial boiling temperature of 300% was added to 100 parts by weight of poly-4-methylpentene-1 as the insulator.
It is characterized in that it uses a mixture containing 30 parts by weight or less of a hydrocarbon compound having a temperature of 0.degree. C. or less. Hereinafter, the present invention will be explained in detail with reference to the drawings. In FIG. 1, 1 is a conductor, 2 is an internal semiconducting layer, and 3 is an insulating layer. The resin used for this insulating layer 3 has a high melting point,
Poly-4-methylpentene-1 (hereinafter referred to as TPX) and the like can be cited as a material that satisfies dielectric properties and withstand voltage properties. However, this TPX has difficulty in low-temperature flexibility near room temperature, so by blending a hydrocarbon compound, the low-temperature flexibility is significantly improved without compromising heat resistance, and the thick insulating layer It was confirmed that the material can be processed into a variety of materials, and that its electrical properties are also fully satisfactory. Generally, various grades are known in which TPX contains an appropriate amount of a certain type of hydrocarbon vinyl compound as a copolymer component. However, it is not so good that it can be processed into thick walls, and the hydrocarbon compound of the present invention has made it possible to use TPX for the first time. Hydrocarbon compounds used in the present invention include:
Nonpolar alkylbenzene-based, polybutene-based, mineral oil-based, diphenylethane-based, alkylnaphthalene-based, etc. are preferable, and when even better electrical properties are expected, the above-mentioned hydrocarbon compounds of insulating oil grade may be used. Further, since the extrusion processing temperature of TPX is 250 to 260°C or higher, this hydrocarbon compound preferably has an initial boiling temperature of 300°C or higher due to processing requirements. The number of parts of the hydrocarbon compound is
If the amount exceeds 30 parts by weight per 100 parts by weight of TPX, the blended hydrocarbon compound will cause bleeding, which is undesirable.As for the lower limit, even if the blend is as small as 1 to 2 parts by weight, the effect of low-temperature flexibility will not be achieved. have This is because TPX is a nonpolar hydrocarbon polymer and is a crystalline polymer with a high melting point of 230 to 240°C, so it has good affinity with hydrocarbon compounds with similar chemical structures, and is a type of It is thought that low-temperature flexibility is exhibited by providing a plasticizing effect. In addition, TPX containing hydrocarbon compounds,
Participation inhibitors, copper damage inhibitors, flame retardants, as necessary.
Of course, the same effect can be obtained even if fillers or additives such as corbon black are added. Further, as shown in FIG. 2, a high voltage power cable structure may be provided in which an external semiconducting layer 4 and a shielding layer 5 are provided on an insulating layer 3. As the semiconductive layer, carbon paper, semiconductive cloth, compound for extruded semiconductive layer, etc. are used. Among these, when compound for extruded semiconductive layer is used,
Provides the most stable withstand voltage characteristics. In the case of the present invention, it is also possible to improve the adhesion between the insulating layer 3 and the inner and outer semiconductive layers by adding a crosslinking agent to the extruded semiconductive layer compound. As mentioned above, high-voltage power cables are normally required to have high withstand voltage and low inductive loss, but the poly-4-merlepentene-1 used as the insulating layer is compounded with hydrocarbon compounds. As a result, the dielectric dispersion due to the glass transition temperature is typically 40~
The temperature is shifted from 50°C to below room temperature, which is advantageous in terms of dielectric properties. In addition, with ordinary cross-linked polyethylene power cables, since the insulating layer and the agent that forms the insulating layer at the cable joint or terminal part are cross-linked, it is difficult to fuse them together with the resin, and there are areas with poor adhesion at the boundary. However, in the present invention, the resin used for the insulating layer has a high melting point and can be used uncrosslinked.
This is advantageous for forming insulating layers at joints and terminal parts. [Example] The resin for the insulating layer used in the present invention is a powdery MX-001 (manufactured by Mitsui Petrochemical Manufacturing Co., Ltd.) which is highly flexible at low temperatures as TPX, and a hydrocarbon compound with an initial boiling temperature.
Contains 10 parts by weight of heavy alkene at 400℃,
The mixture was mixed in a Henschel mixer at 100 to 110°C, and an antiaging agent and a copper damage inhibitor were added during this mixing to form extruded pellets. Therefore, the conductor (500 mm 2 ) was extruded and coated with an extruded semiconductive compound mixed with a crosslinking agent as an internal semiconductive layer, and then the above resin was coated on top of it as an insulating layer at a thickness of 12 mm at an extrusion temperature of 280°C. coating and further outer semiconducting layer (extruded semiconducting compound above)
A power cable was manufactured by sequentially applying a shielding layer and a sheath. In contrast, we experimentally used TPX (MX-001), which does not contain hydrocarbon compounds, as an insulating layer.
I tried to manufacture a power cable with the same structure of the present invention, but
Due to its poor flexibility, it could not be wound onto a drum, making it impossible to obtain a product. In addition, the power cable for comparison was coated with extruded polyethylene as an insulating layer, then crosslinked through a crosslinking zone in a high temperature and high pressure nitrogen gas atmosphere, and as a semiconducting layer an extruded semiconducting compound containing no crosslinking agent was used. I got one with the same structure. The results of measuring various characteristics of each of the above power cables are shown in the table. In the table, the flexural modulus, melting point, embrittlement temperature, tensile strength, and elongation were measured using samples cut from the insulation layer of each power cable.
Since cable processing was not possible for TPX, which does not contain hydrocarbon compounds, measurements were made using sheet samples formed by hot pressing. In addition, in the list of insulating layers, A is TPX containing a hydrocarbon compound,
B indicates TPX containing no hydrocarbon compound, and C indicates crosslinked polyethylene.

【表】 表から、本発明はTPXに炭化水素系化合物を
配合することによつて、低温可撓性が著るしく改
善される結果、曲げ弾性率も架橋ポリエチレンに
近い水準の値が測定され、厚肉絶縁層への加工が
容易なことがわかる。 また、本発明は架橋ポリエチレンケーブルより
高融点なことから、加熱変形率が格段に小さく、
耐熱性が良好なことがわかり、また電気特性に於
ても架橋ポリエチレンケーブルとそん色のない値
が得られ、高電圧絶縁層電力ケーブルとして良好
なことが認められた。
[Table] From the table, the low temperature flexibility of the present invention is significantly improved by blending a hydrocarbon compound into TPX, and as a result, the flexural modulus was measured to be close to that of cross-linked polyethylene. , it can be seen that processing into thick insulating layers is easy. In addition, since the present invention has a higher melting point than cross-linked polyethylene cables, the thermal deformation rate is significantly lower.
It was found that the heat resistance was good, and in terms of electrical properties, values comparable to those of cross-linked polyethylene cables were obtained, indicating that it is good as a high-voltage insulated layer power cable.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図はその正
面断面図、第2図は別の実施例の正面断面図であ
る。 1……導体、2…内部半導電層、3……絶縁
層。
The drawings show an embodiment of the invention, with FIG. 1 being a front sectional view thereof and FIG. 2 being a front sectional view of another embodiment. 1... Conductor, 2... Internal semiconducting layer, 3... Insulating layer.

Claims (1)

【特許請求の範囲】[Claims] 1 導体上に内部半導電層、絶縁層を順次設けた
電力ケーブルにおいて、前記絶縁層としてポリ−
4−メチルペンテン−1 100重量部に対し、初
留温度300℃以上の炭化水素系化合物を30重量部
以下配合した混和物を用いたことを特徴とする電
力ケーブル。
1. In a power cable in which an internal semiconducting layer and an insulating layer are sequentially provided on a conductor, the insulating layer is made of polyamide.
A power cable characterized by using a mixture of 100 parts by weight of 4-methylpentene-1 and 30 parts by weight or less of a hydrocarbon compound having an initial boiling temperature of 300°C or higher.
JP12582482A 1982-07-21 1982-07-21 Power cable Granted JPS5918516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12582482A JPS5918516A (en) 1982-07-21 1982-07-21 Power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12582482A JPS5918516A (en) 1982-07-21 1982-07-21 Power cable

Publications (2)

Publication Number Publication Date
JPS5918516A JPS5918516A (en) 1984-01-30
JPH0366768B2 true JPH0366768B2 (en) 1991-10-18

Family

ID=14919842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12582482A Granted JPS5918516A (en) 1982-07-21 1982-07-21 Power cable

Country Status (1)

Country Link
JP (1) JPS5918516A (en)

Also Published As

Publication number Publication date
JPS5918516A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
CA1221146A (en) Flame retarded cladding
US3096210A (en) Insulated conductors and method of making same
EP0605000B1 (en) Telephone cables
JP2000053815A (en) Electrical insulating resin composition and electric wire and cable using the composition
JPH039140B2 (en)
JPH10245456A (en) Flame retardant polyolefin composition, and power cable using the composition
CA1118855A (en) Electric cables presenting low hazard under fire conditions
WO1983000488A1 (en) Flame retardant compositions, method of preparation and wire and cable products thereof
GB2170646A (en) Flame retardant cable
US5766761A (en) Telephone cables
JPH0366768B2 (en)
JPS6054732B2 (en) Insulator for oil-immersed insulation
JP4227244B2 (en) Insulated cable for direct current using a semiconductive composition
KR20200078402A (en) Cable comprising an easily peelable semi-conductive layer
JP3341593B2 (en) Electrical insulating composition and electric wires and cables
JPH03276515A (en) Water-tree resisting electric wire and cable
JPS5851415A (en) Flame resistant insulated wire
JP2001266650A (en) Electric insulating composition and electric cable
JP2001256833A (en) Composition for electrical insulation and electric wire and cable
JPH10269855A (en) Crosslinking polyethylene insulating wire or cable
JPH11329077A (en) Composition for semi-conductive layer and power cable
JP3884598B2 (en) Heat resistant electrical insulation composition and heat resistant electric wire cable
JPS61203508A (en) Manufacture of insulating material
CN115244627A (en) Cable comprising a semi-conducting layer with a smooth surface
JPS6356645B2 (en)