JPS61183817A - Manufacture of crosslinked polyolefin insulated power cable - Google Patents

Manufacture of crosslinked polyolefin insulated power cable

Info

Publication number
JPS61183817A
JPS61183817A JP2332285A JP2332285A JPS61183817A JP S61183817 A JPS61183817 A JP S61183817A JP 2332285 A JP2332285 A JP 2332285A JP 2332285 A JP2332285 A JP 2332285A JP S61183817 A JPS61183817 A JP S61183817A
Authority
JP
Japan
Prior art keywords
crosslinked polyolefin
weight
group
power cable
insulated power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2332285A
Other languages
Japanese (ja)
Other versions
JPH0743969B2 (en
Inventor
植杉 賢司
木村 人司
健一 大谷
秀美 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2332285A priority Critical patent/JPH0743969B2/en
Publication of JPS61183817A publication Critical patent/JPS61183817A/en
Publication of JPH0743969B2 publication Critical patent/JPH0743969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、架橋ポリオレフィン絶#電力ケーブルの製造
方法に係り、特に、高電圧シラン架橋ポリオレフィンケ
ーブルにおける内部半導゛電層と絶縁層との間の空隙を
なくし密着性を改良することにより絶縁破壊強度を向上
せしめたシラン架橋ポリオレフィン絶縁電力ケーブルの
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a crosslinked polyolefin insulation power cable, and in particular, to eliminate gaps between an internal semiconductive layer and an insulating layer in a high voltage silane crosslinked polyolefin cable to improve adhesion. The present invention relates to a method for manufacturing a silane-crosslinked polyolefin insulated power cable whose dielectric breakdown strength is improved by improving the silane-crosslinked polyolefin insulated power cable.

従来、架橋ポリエチレン、架橋EPRを中心とする架橋
ポリオレフィン絶縁裏型圧電カケ−プルは、導体上に、
導電性カーボンブラックを配合して体積抵抗率が100
〜10’Ω−ぼになるように調整された半導電性樹脂組
成物にて、内部半導電層、必要に応じて絶縁体層上に外
部半導電層を順次押出被覆することにより、製造されて
いる。この場合、架橋方式として種々あるが、シラン架
橋法は、架橋のだめの設備が簡単で済む利点がある。し
がして、シラン架橋ポリオレフィン系樹脂成形体を得る
方法としては、例えば、特公昭48−1711号公報に
よる方法にみることができるが、このシラン架橋法は押
出被覆後、従来の有機過酸化物架橋の如く、加圧下で加
熱架橋するための連続架橋管が必要でない。そのため、
シラン架橋ポリオレフィン絶縁電力ケーブルが次第に多
く製造され、使用されるようになってきた。
Conventionally, cross-linked polyolefin insulated back-type piezoelectric cables mainly made of cross-linked polyethylene and cross-linked EPR have been
Volume resistivity is 100 by blending conductive carbon black
It is manufactured by sequentially extruding and coating an inner semiconducting layer and, if necessary, an insulator layer, with an outer semiconducting layer using a semiconducting resin composition adjusted to have a resistance of ~10'Ω. ing. In this case, there are various crosslinking methods, but the silane crosslinking method has the advantage of requiring simple equipment for crosslinking. However, as a method for obtaining a silane-crosslinked polyolefin resin molded article, for example, the method disclosed in Japanese Patent Publication No. 1711/1983 can be seen, but this silane crosslinking method uses conventional organic peroxide coating after extrusion coating. Unlike physical crosslinking, continuous crosslinking tubes for heat crosslinking under pressure are not required. Therefore,
Silane crosslinked polyolefin insulated power cables are increasingly being manufactured and used.

しかしながら、このように連続架橋管を用いないで製造
するシラン架橋ポリオレフィン絶縁ケーブルにおいて、
低電圧ケーブルの場合は、問題はなかったが、高電圧ケ
ーブルにおいては、内部半導電層と必要に応じて外部半
導電層とが設けられるが、この半導電層を押出型の架橋
型半導電性組成物にて形成すると架橋処理時に加圧しな
いことにより、半導電層と絶縁体層との界面の密着度が
悪く、空隙が存在し特にその個所が内部半導電層と絶縁
体層との間である場合には絶縁破壊強度を大巾に低下さ
せる原因となっていた。
However, in silane crosslinked polyolefin insulated cables manufactured without using continuous crosslinked pipes,
There was no problem with low-voltage cables, but high-voltage cables are provided with an inner semiconducting layer and an outer semiconducting layer if necessary, but this semiconducting layer is formed using an extruded cross-linked semiconducting layer. When formed using a semiconductive composition, no pressure is applied during the crosslinking treatment, resulting in poor adhesion at the interface between the semiconducting layer and the insulating layer, and voids exist, especially at those locations. If it is between 1 and 2, it causes a significant decrease in dielectric breakdown strength.

本発明の目的は、このような従来法にみられた欠点を除
去するためになされたものであって、高電圧シラン架橋
ポリオレフィン絶縁ケーブルにおける内部半導電層と絶
縁体層との間の空隙をなくし密着性を、良好に改善する
ことにより絶縁破壊強度を向上させた架橋ポリオレフィ
ン絶縁戒カケープルの製造方法を提供しようとするもの
である。
The purpose of the present invention was to eliminate the drawbacks observed in the conventional methods, and to eliminate the gap between the internal semiconducting layer and the insulating layer in a high voltage silane cross-linked polyolefin insulated cable. The object of the present invention is to provide a method for producing a crosslinked polyolefin insulating capeple which has improved dielectric breakdown strength by satisfactorily improving its adhesion.

すなわち、本発明によるシラン架橋ポリオレフィン絶縁
電力ケーブルの製造方法は、導体1上に押出型の架橋内
部半導電層8、シラン架橋ポリオレフィン絶縁体層2、
必要に応じて外部半導電層4を順次形成して高電圧用架
橋ポリオレフィン絶縁電力ケーブルを製造するに当り、
内部半導電層8を直鎖状低密度ポリエチレン95〜40
重量%、エチレン共重合体5〜60重量るから成る基材
ポリマーに、導電性カーボンブラックと、一般式RR’
S IYg C式中Rは、1価のオレフィン性不飽和炭
化水素基、又はハイドロパーオキシ基、Yは加水分解し
うる有機基、R′は脂肪性不飽和を含まない1価の炭化
水素基、基Yあるいは水素である)で表わされるシラン
化合物とを配合して成る体積抵抗率10’〜106(λ
−篩の半導電性組成物の押出成形にて形成せしめること
を特徴とする(第1図参照)。
That is, the method for manufacturing a silane-crosslinked polyolefin insulated power cable according to the present invention includes, on a conductor 1, an extruded crosslinked internal semiconductive layer 8, a silane crosslinked polyolefin insulator layer 2,
In manufacturing a high voltage crosslinked polyolefin insulated power cable by sequentially forming the outer semiconductive layer 4 as necessary,
The internal semiconductive layer 8 is made of linear low density polyethylene 95-40
5 to 60% by weight of ethylene copolymer, conductive carbon black, and the general formula RR'
S IYg C In the formula, R is a monovalent olefinically unsaturated hydrocarbon group or a hydroperoxy group, Y is a hydrolyzable organic group, and R' is a monovalent hydrocarbon group containing no aliphatic unsaturation. , a group Y or hydrogen) with a volume resistivity of 10' to 106 (λ
- It is characterized in that it is formed by extrusion molding of a semiconductive composition of the sieve (see Figure 1).

ここで直鎖状低密度ポリエチレンとは、エチレンと、炭
素数4〜8のオレフィンとの共重合体であり、長鎖分岐
の製造法としては気相法と液相法とがある。
Here, the linear low density polyethylene is a copolymer of ethylene and an olefin having 4 to 8 carbon atoms, and methods for producing long chain branches include a gas phase method and a liquid phase method.

本発明において、この直鎖状低密度ポリエチレンを選択
した理由は、印ポリオレフィン絶縁体層との密着強度が
高い。c口)耐クラツク性が非常に優れているため押出
成形後、架橋までの間にクラックが入いることがない。
In the present invention, this linear low-density polyethylene was selected because of its high adhesion strength to the printed polyolefin insulating layer. (c) It has very good crack resistance, so no cracks will appear between extrusion molding and crosslinking.

ということによる。It depends on that.

半導電層を形成する基材として選んだ直鎖状低密度ポリ
エチレンを95〜40重量%と限定した理由は、95重
量%を越えると、可撓性が悪くなり半導電層の平滑性が
悪くなるためであり、40重量%未満では密着性が悪く
なり、空隙が発生し易くなるためである。
The reason why the linear low-density polyethylene selected as the base material for forming the semiconductive layer was limited to 95 to 40% by weight is that if it exceeds 95% by weight, the flexibility will deteriorate and the smoothness of the semiconductive layer will deteriorate. This is because if it is less than 40% by weight, the adhesion will be poor and voids will be likely to occur.

一方、本発明において、エチレン共重合体はエチレン−
酢酸ビニル共重合体、エチレン−アクリル酸共重合体等
を慧味し、基材における割合の限定理由は、60重量%
を越えると絶縁体層との密着性が悪くなり、5重量%未
満では可撓性が悪くなるからである。
On the other hand, in the present invention, the ethylene copolymer is ethylene-
Considering vinyl acetate copolymer, ethylene-acrylic acid copolymer, etc., the reason for limiting the proportion in the base material is 60% by weight.
This is because if it exceeds 5% by weight, the adhesion with the insulating layer will deteriorate, and if it is less than 5% by weight, the flexibility will deteriorate.

また、本発明にて用いる導電性カーボンブラックとして
は特に限定されるものでなく、例えばキャボット社のパ
ルカンXO−72の如き導電性ファ−ネスブラック、電
気化学工業(株)社のデンカブラックの如きアセチレン
ブラック、AKZO社のKetj an black等
があり、その配合量はペースポリマー100重量部に対
して、5〜70重量部の範囲で配合されるのが通常であ
る。またシラン化合物としては、ビニルトリメトキシシ
ラン、ビニル) IJエトキシシラン等が通常用いられ
、その配合量はペースポリマー100重量部に対して0
.5〜5重量部用いられる。
Further, the conductive carbon black used in the present invention is not particularly limited, and examples thereof include conductive furnace black such as Palkan XO-72 manufactured by Cabot, and Denka black manufactured by Denki Kagaku Kogyo Co., Ltd. Examples include acetylene black and Ketj an black manufactured by AKZO, and the amount thereof is usually in the range of 5 to 70 parts by weight per 100 parts by weight of the pace polymer. In addition, as the silane compound, vinyltrimethoxysilane, vinyl) IJ ethoxysilane, etc. are usually used, and the blending amount is 0 to 100 parts by weight of the pace polymer.
.. 5 to 5 parts by weight are used.

また、本発明で必要に応じて形成される外部半導電J#
は半導電性テープの巻回、或いは半導電性樹脂組成物の
押出成形などで形成されるか、特に内部半導成層形成に
用いた同一の押出型の半導電性樹脂組成物を用いて形成
すれば、一段と電気特性の向上効果が得られ好ましい。
In addition, the external semiconducting J# formed as necessary in the present invention
is formed by winding a semiconductive tape or by extrusion molding a semiconductive resin composition, or in particular, by using a semiconductive resin composition in the same extrusion mold used for forming the internal semiconductive layer. This is preferable because the effect of further improving the electrical characteristics can be obtained.

以下本発明の実施例を比較例と対比して説明する。Examples of the present invention will be described below in comparison with comparative examples.

次に示す表−1に各実施例及び各比較例についての半導
電性組成物の組成(重量部)と、それらに対応するケー
ブルのケーブル特性をそれぞれまとめて示す。
Table 1 shown below summarizes the compositions (parts by weight) of the semiconductive compositions and cable characteristics of the corresponding cables for each Example and Comparative Example.

すなわち、表−1に示す各半導電性組成物にビニルトリ
メトキシシラン2.0重量部、ジクミルノく一オキサイ
ド0.2重量部、シラノール触媒0.1重量部を配合し
たシラン架橋型半導電組成物を250n8の導体1 (
@1図診照)上及び8.5酋厚のシラン架橋ポリエチレ
ン絶縁体層2の外周上に各々1.0籠厚に押出成形して
それぞれ内部半導電層3及び外部半導電層4を形成し6
 KV架橋ポリエチレンケーブルを製造した。而して得
た各ケーブルについて緒特性をそれぞれ評価した。得ら
れた結果を第1表に併記した。表から明らかなように実
施例1〜8品は何れも、比較例1〜3品と対比して、密
着性(内部半導電層と絶縁層との間の)、平滑性(ケー
ブル表面の)が良好であって、AG破壊電圧も高く、ケ
ーブル特性が良好である。
That is, a silane crosslinked semiconductive composition was prepared by blending 2.0 parts by weight of vinyltrimethoxysilane, 0.2 parts by weight of dicumyl oxide, and 0.1 parts by weight of a silanol catalyst into each of the semiconductive compositions shown in Table 1. 250n8 conductor 1 (
(See Figure 1) and on the outer periphery of the 8.5-thick silane cross-linked polyethylene insulating layer 2 to form an inner semi-conductive layer 3 and an outer semi-conductive layer 4, respectively, to a thickness of 1.0 mm. 6
A KV crosslinked polyethylene cable was manufactured. The cable characteristics of each cable thus obtained were evaluated. The obtained results are also listed in Table 1. As is clear from the table, all of the products of Examples 1 to 8 have better adhesion (between the internal semiconducting layer and the insulating layer) and smoothness (of the cable surface) than Comparative Examples 1 to 3. is good, the AG breakdown voltage is also high, and the cable characteristics are good.

表 −1 メタン 実施例4及び比較例4 実施例8で用いたと同一のシラン架橋型半導電性組成物
を250 tm2の導体上に1.On厚に、その上に8
.5fi厚にシラン架橋型ポリエチレンからなる絶縁体
層を、更にその上に剥取可能型の半導電性組成物を1.
0fi厚に連続して8層押出被覆し”(6KVシラン架
橋ポリエチレン絶縁ケーブルを製造した。また比較のた
め比較例2で用いたと同一のシラン架橋型半導電性組成
物を250−の導体上に1.0fi厚に、その上に8.
5fi厚にシラン架橋型ポリエチレンからなる絶縁体層
を、更にその上に実施例4で用いたと同一の剥取可能な
半導電性組成物を1.0fi厚に連続して8層押出被榎
して6 KVシラン架橋ポリエチレン絶縁ケーブルを製
造した。
Table 1: Methane Example 4 and Comparative Example 4 The same silane crosslinked semiconductive composition used in Example 8 was deposited on a 250 tm2 conductor for 1. On thick, 8 on top
.. An insulating layer made of silane cross-linked polyethylene with a thickness of 5fi, and a removable semiconductive composition on top of the insulating layer 1.
A 6KV silane-crosslinked polyethylene insulated cable was manufactured by continuously extruding 8 layers to a thickness of 0fi.For comparison, the same silane-crosslinked semiconductive composition used in Comparative Example 2 was coated on a 250-cm conductor. 1.0fi thick and 8.
An insulating layer made of silane cross-linked polyethylene was applied to a thickness of 5fi, and on top of that, eight layers of the same peelable semiconductive composition used in Example 4 were continuously extruded to a thickness of 1.0fi. A 6 KV silane cross-linked polyethylene insulated cable was manufactured.

而して得たケーブルについて実施例1と同様の特性測定
を行った。得られた結果を表−2に示す。
The characteristics of the thus obtained cable were measured in the same manner as in Example 1. The results obtained are shown in Table-2.

表 −2 以上述べたように、本発明の効果として、本発明にて特
定した如き半導電性組成物を使用することにより、シラ
ン架橋方法における設備メリットを活かして、特性の優
れたシラン架橋高圧ケーブルの製造が可能となった。
Table 2 As stated above, as an effect of the present invention, by using the semiconductive composition as specified in the present invention, by taking advantage of the equipment advantages of the silane crosslinking method, silane crosslinking high pressure with excellent characteristics can be achieved. It became possible to manufacture cables.

すなわち、高電圧シラン架橋ポリオレフィン絶禄ケーブ
ルにおける内外半導電層と絶縁層との間の空隙をなくし
て密着性を改良し、絶縁破壊強度を向上させた。
That is, the gap between the inner and outer semiconducting layers and the insulating layer in the high-voltage silane crosslinked polyolefin isolation cable was eliminated to improve adhesion and dielectric breakdown strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る架橋ポリオレフィン絶
縁域カケープルの断面略図である。 °1・・・導体
FIG. 1 is a schematic cross-sectional view of a cross-linked polyolefin insulation region capeple according to an embodiment of the present invention. °1...Conductor

Claims (1)

【特許請求の範囲】 1、導体上に押出型の架橋内部半導電層、シラン架橋ポ
リオレフィン絶縁体層、必要に応じて外部半導電層を順
次形成して高電圧用架橋ポリオレフィン絶縁電力ケーブ
ルを製造するに当り、 押出型の内部半導電層を、直鎖状低密度ポ リエチレン95〜40重量%、エチレン共重合体5〜6
0重量%から成る基材ポリマーに、導電性カーボンブラ
ックと一般式RR′SiY_2(式中Rは、1価のオレ
フィン性不飽和炭化水素基、又はハイドロパーオキシ基
、Yは加水分解しうる有機基、R′は脂肪性不飽和を含
まない1価の炭化水素基、基Yあるいは水素である)で
表わされるシラン化合物とを配合して成る体積抵抗率1
0^0〜10^6Ω−cmの半導電性組成物の押出成形
にて形成せしめることを特徴とする架橋ポリオレフィン
絶縁電力ケーブルの製造方法。 2、押出型の内部半導電層と必要に応じて設ける外部半
導電層とを、直鎖状低密度ポリエチレン95〜40重量
%、エチレン共重合体5〜60重量%から成る基材ポリ
マーに導電性カーボンブラックと一般式RR′SiY_
2(式中Rは一価のオレフィン性不飽和炭化水素基、又
はハイドロパーオキシ基、Yは加水分解しうる有機基、
R′は脂肪性不飽和を含まない1価の炭化水素基、基Y
あるいは水素である)で表わされるシラン化合物とを配
合して成る体積抵抗率10^0〜10^6Ω−cmの半
導電性組成物の押出成形にて形成せしめることを特徴と
する特許請求の範囲第1項記載の架橋ポリオレフィン絶
縁電力ケーブルの製造方法。
[Claims] 1. Manufacturing a high voltage crosslinked polyolefin insulated power cable by sequentially forming an extruded crosslinked internal semiconductive layer, a silane crosslinked polyolefin insulating layer, and an external semiconductive layer as necessary on a conductor. In doing so, the internal semiconductive layer of the extrusion mold is made of 95 to 40% by weight of linear low density polyethylene and 5 to 6% by weight of ethylene copolymer.
Conductive carbon black and general formula RR'SiY_2 (wherein R is a monovalent olefinic unsaturated hydrocarbon group or a hydroperoxy group, and Y is a hydrolyzable organic group, R' is a monovalent hydrocarbon group containing no aliphatic unsaturation, a group Y or hydrogen), and the volume resistivity is 1.
1. A method for producing a crosslinked polyolefin insulated power cable, characterized in that the cable is formed by extrusion molding of a semiconductive composition having a thickness of 0^0 to 10^6 Ω-cm. 2. An extruded internal semiconductive layer and an optional external semiconductive layer are conductive to a base polymer consisting of 95 to 40% by weight of linear low-density polyethylene and 5 to 60% by weight of ethylene copolymer. carbon black and general formula RR'SiY_
2 (wherein R is a monovalent olefinic unsaturated hydrocarbon group or a hydroperoxy group, Y is a hydrolyzable organic group,
R' is a monovalent hydrocarbon group containing no aliphatic unsaturation, group Y
or hydrogen), and formed by extrusion molding of a semiconductive composition having a volume resistivity of 10^0 to 10^6 Ω-cm. 2. A method for producing a crosslinked polyolefin insulated power cable according to item 1.
JP2332285A 1985-02-08 1985-02-08 Method for producing crosslinked polyolefin insulation power cable Expired - Lifetime JPH0743969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2332285A JPH0743969B2 (en) 1985-02-08 1985-02-08 Method for producing crosslinked polyolefin insulation power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2332285A JPH0743969B2 (en) 1985-02-08 1985-02-08 Method for producing crosslinked polyolefin insulation power cable

Publications (2)

Publication Number Publication Date
JPS61183817A true JPS61183817A (en) 1986-08-16
JPH0743969B2 JPH0743969B2 (en) 1995-05-15

Family

ID=12107350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2332285A Expired - Lifetime JPH0743969B2 (en) 1985-02-08 1985-02-08 Method for producing crosslinked polyolefin insulation power cable

Country Status (1)

Country Link
JP (1) JPH0743969B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102012805B1 (en) * 2012-01-31 2019-08-22 다우 글로벌 테크놀로지스 엘엘씨 Thermoplastic, semiconductive compositions

Also Published As

Publication number Publication date
JPH0743969B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
CA2425491A1 (en) Low adhesion semi-conductive electrical shields
JP2001506478A (en) Stress control at the end of high voltage cables
JPH04106B2 (en)
JPS61183817A (en) Manufacture of crosslinked polyolefin insulated power cable
JPS64767B2 (en)
JP2563531B2 (en) Power cable
JPH09231839A (en) Direct current cable
JPH0620530A (en) Water tree resistant cable
JPH0677412B2 (en) Power cable for high voltage DC transmission
JPH0126003Y2 (en)
JPH0438425Y2 (en)
JPS6059603A (en) Semiconductive layer forming composition for power cable
JP3244255B2 (en) Semiconductive resin composition
JPS629613Y2 (en)
JPS586241B2 (en) plastic insulated wire
JPH06309949A (en) Anti-watertree electric power cable
JPH11329077A (en) Composition for semi-conductive layer and power cable
JPH0436204Y2 (en)
JPS6356645B2 (en)
JPH0680127B2 (en) Semi-conductive resin composition
JPS62157601A (en) Semiconductive compound
JPH05166418A (en) Power cable
JPS6356644B2 (en)
JPS5828101A (en) Composition for semiconductor electric layer of power cable
JPS6047302A (en) Watertight power cable