JPH04109108A - Foreign object inspecting device - Google Patents

Foreign object inspecting device

Info

Publication number
JPH04109108A
JPH04109108A JP22654490A JP22654490A JPH04109108A JP H04109108 A JPH04109108 A JP H04109108A JP 22654490 A JP22654490 A JP 22654490A JP 22654490 A JP22654490 A JP 22654490A JP H04109108 A JPH04109108 A JP H04109108A
Authority
JP
Japan
Prior art keywords
scattered light
particle size
film thickness
thin film
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22654490A
Other languages
Japanese (ja)
Inventor
Tetsushi Imi
伊美 哲志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22654490A priority Critical patent/JPH04109108A/en
Publication of JPH04109108A publication Critical patent/JPH04109108A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform correction in response to various thin films by determining the grain size of grains with a grain size calculating circuit according to the grain size-scattered light intensity characteristic curve generated by a correction curve generating circuit based on the data from a scattered light detector. CONSTITUTION:A film thickness meter 2 measures the thickness of a thin film formed on a semiconductor wafer 1 and measures the reflection coefficient of the thin film, and it sends the data of the film thickness and reflection coefficient to a correction curve generating circuit 4. A scattered light detector 3 irradiates the light to the wafer 1 and detects the intensity of the scattered light generated on the wafer 1. The data are sent to a grain size calculating circuit 5. The circuit 4 receives the data of the film thickness and reflection coefficient and performs light scatter simulation to generate a grain size- scattered light intensity characteristic curve for the sensitivity correction of the detector 3 in response to the thickness of the thin film of the wafer 1. The scattered light intensity detected by the detector 3 is corrected based on this curve, thus a stable foreign object inspection can be performed.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は例えば半導体ウェハ上に付着した粒子の粒径等
の異物検査を行う異物検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Application Field) The present invention relates to a foreign matter inspection device for inspecting foreign matter, such as the particle size of particles attached to a semiconductor wafer.

(従来の技術) 半導体ウェハの製造工程では、半導体の欠陥の原因とな
るウェア1表面に付着する異物の検査が行われている。
(Prior Art) In the manufacturing process of semiconductor wafers, inspection is performed for foreign matter adhering to the surface of the ware 1 that causes defects in the semiconductor.

この検査では半導体ウエノ\に光を照射して、このウェ
ハ上に付着した異物により生じる散乱光により、例えば
異物の粒径を求めるなどの、検査を行っている。ところ
で、異物からの散乱光は半導体ウェハ表面上に形成され
ている薄膜の厚さや材料・屈折率などの特性によって大
きく変化する。このため、薄膜の厚さや材料・屈折率な
どの特性に応じた補正が行われる必要がある。
In this inspection, the semiconductor wafer is irradiated with light, and the particle size of the foreign matter is determined using the scattered light generated by the foreign matter adhering to the wafer. Incidentally, the scattered light from foreign objects varies greatly depending on the characteristics such as the thickness, material, and refractive index of the thin film formed on the surface of the semiconductor wafer. For this reason, it is necessary to perform correction according to characteristics such as the thickness, material, and refractive index of the thin film.

この補正は薄膜の厚さや材質に応じて散乱光検出器の感
度を変化させたり、又膜厚や多層の場合における各条件
ごとに粒径−散乱光強度特性曲線を記憶して補正を行っ
ている。
This correction is performed by changing the sensitivity of the scattered light detector depending on the thickness and material of the thin film, or by memorizing the particle size-scattered light intensity characteristic curve for each condition in the case of film thickness and multilayer. There is.

しかし、散乱光検出器の感度を変化させる方法では、散
乱光強度が膜厚や材質に応じて変化しない場合には全く
適用できない。又、各粒径−散乱光強度特性曲線を記憶
する方法では各種薄膜の全てに適用できるようにするに
は困難である。
However, the method of changing the sensitivity of the scattered light detector cannot be applied at all when the scattered light intensity does not change depending on the film thickness or material. Furthermore, it is difficult to store the method of storing each particle size-scattered light intensity characteristic curve in order to be able to apply the method to all types of thin films.

(発明が解決しようとする課題) 以上のように膜厚や材質等による補正が行われているが
、いずれにしても各種薄膜・材質に応じた補正が困難で
ある。
(Problems to be Solved by the Invention) As described above, corrections have been made based on film thickness, material, etc., but in any case, it is difficult to make corrections based on various thin films and materials.

そこで本発明は、各種薄膜・材質等の条件に応じた補正
ができる異物検査装置を提供することを目的と・する。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a foreign matter inspection device that can perform corrections according to conditions such as various thin films and materials.

[発明の構成] (課題を解決するための手段) 本発明は、薄膜の上に付着した粒子の粒径なと異物につ
いて検査する異物検査装置において、薄膜上に付着した
粒子からの散乱光を検出する散乱光検出器と、薄膜の膜
厚や屈折率等の特性に基づいてこの特性に応じた散乱光
検出器出力補正用の粒径−散乱光強度特性曲線を作成す
る補正曲線作成手段と、散乱光検出器により検出された
散乱光強度を受け前記粒径−散乱光強度特性曲線に従っ
て異物の検査を行う異物検査手段とを具備した異物検査
装置である。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a foreign matter inspection device for inspecting particles attached to a thin film for particle size and foreign matter. a scattered light detector to detect; and a correction curve creation means for creating a particle size-scattered light intensity characteristic curve for correcting the output of the scattered light detector according to the characteristics such as the thickness and refractive index of the thin film. and a foreign matter inspection means for receiving the scattered light intensity detected by the scattered light detector and inspecting the foreign matter according to the particle size-scattered light intensity characteristic curve.

(作 用) このような手段を備えたことにより、薄膜の膜厚や材質
・屈折率等の特性に基づいて補正曲線作成手段により散
乱光検出器補正用の粒径−散乱光強度特性曲線が作成さ
れ、そして異物検査手段において作成された粒径−散乱
光強度特性曲線に基づき散乱光検出器により検出された
散乱光強度を補正することにより、安定した異物検査を
行える。
(Function) With the provision of such means, the particle size-scattered light intensity characteristic curve for correction of the scattered light detector can be created by the correction curve creation means based on the characteristics such as the film thickness, material, and refractive index of the thin film. By correcting the scattered light intensity detected by the scattered light detector based on the particle size-scattered light intensity characteristic curve created by the foreign material inspection means, stable foreign material inspection can be performed.

(実施11FIJ ) 以下、本発明の一実施例について図面を参照して説明す
る。
(Embodiment 11 FIJ) Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は付着粒子検査装置の構成図である。未検査の半
導体ウェハ(1)は図示しないローダ装置によって膜厚
計(2)の下方に配置され、次に展敷乱光検出器(3)
の下方に配置され、この後に検査流の半導体ウェハとし
てアンロードされる。
FIG. 1 is a configuration diagram of an attached particle inspection device. An uninspected semiconductor wafer (1) is placed below a film thickness meter (2) by a loader device (not shown), and then placed under a scattered light detector (3).
The semiconductor wafer is then unloaded as a test flow semiconductor wafer.

膜厚計(2)はフーリエ分光法を応用してもので、光束
干渉計による干渉曲線(インクフェログラム)をフーリ
エ変換してスペクトルを得、このスペクトルの線状成分
から膜厚を得る機能となっている。
The film thickness meter (2) applies Fourier spectroscopy, and has the function of obtaining a spectrum by Fourier transforming the interference curve (ink ferrogram) obtained by a beam interferometer, and obtaining the film thickness from the linear component of this spectrum. It has become.

そして、この膜厚計(2)は半導体ウェハ(1)の表面
に形成されている薄膜の膜厚を測定すると共に薄膜の屈
折率を検出する機能を有している。又、散乱光検出器(
3)は半導体ウェハ(1)に光を入射させたときに生じ
る散乱光の光強度を測定する機能を有している。前記膜
厚計(2)により測定された膜厚及び屈折率の各データ
は補正曲線作成回路(4)に送られている。
The film thickness meter (2) has the function of measuring the thickness of a thin film formed on the surface of the semiconductor wafer (1) and detecting the refractive index of the thin film. In addition, a scattered light detector (
3) has a function of measuring the light intensity of scattered light generated when light is incident on the semiconductor wafer (1). The film thickness and refractive index data measured by the film thickness meter (2) are sent to a correction curve creation circuit (4).

この補正曲線作成回路(4)は膜厚計(2)により測定
された膜厚及び屈折率の各データを受け、これらデータ
に基づいて光散乱シミュレーションを実行して半導体ウ
ェハ(1)の薄膜の膜厚に応じた散乱光検出器補正用の
粒径−散乱光強度特性曲線を作成する機能を有している
This correction curve creation circuit (4) receives the film thickness and refractive index data measured by the film thickness meter (2), and executes a light scattering simulation based on these data to determine the thin film of the semiconductor wafer (1). It has a function of creating a particle size-scattered light intensity characteristic curve for correcting the scattered light detector according to the film thickness.

又、前記散乱光検出器(3)により検出された散乱光強
度のデータは異物検査手段である粒径算出回路(5)に
送られている。この粒径算出回路(5)は散乱光検出器
(3)からのデータを受け、このデータを補正曲線作成
回路(4)により作成された粒径−散乱光強度特性曲線
に従って粒子の粒径を求める機能を有している。
Further, the data of the scattered light intensity detected by the scattered light detector (3) is sent to a particle size calculation circuit (5) which is a foreign matter inspection means. This particle size calculation circuit (5) receives data from the scattered light detector (3) and calculates the particle size of the particles according to the particle size-scattered light intensity characteristic curve created by the correction curve creation circuit (4). It has the functionality you are looking for.

この粒径算出回路(5)には表示回路(6)が接続され
、粒径算出回路(5)により求められた粒子の粒径が表
示されるようになっている。
A display circuit (6) is connected to this particle size calculation circuit (5), so that the particle size of the particles determined by the particle size calculation circuit (5) is displayed.

次に上記の如く構成された装置の作用について説明する
Next, the operation of the apparatus configured as described above will be explained.

半導体ウェハ(1)はローダ装置によって膜厚計(2)
の下方に配置される。膜厚計(2)は下方に配置された
半導体ウェハ(1)に形成された薄膜の膜厚を測定する
と共に薄膜の反射率を測定し、これら膜厚及び屈折率の
データを補正曲線作成回路(4)に送る。
The semiconductor wafer (1) is measured by a film thickness meter (2) using a loader device.
is placed below. The film thickness meter (2) measures the thickness of the thin film formed on the semiconductor wafer (1) placed below, and also measures the reflectance of the thin film, and uses these film thickness and refractive index data to create a correction curve. Send to (4).

次に半導体ウェハ(1)はローダ装置によって散乱光検
出器(3)の下方に配置される。この散乱光検出器(3
)は半導体ウニl\(1)に対して光を照射して半導体
ウェハ(1)に生じる散乱光の強度を検出する。この散
乱光強度のデータは粒径算出回路(5)に送られる。
Next, the semiconductor wafer (1) is placed below the scattered light detector (3) by a loader device. This scattered light detector (3
) irradiates light onto the semiconductor wafer (1) and detects the intensity of scattered light generated on the semiconductor wafer (1). This scattered light intensity data is sent to a particle size calculation circuit (5).

前記補正曲線作成回路(4)は膜厚及び反射率の各デー
タを受け、これらデータに基づいて光散乱シミュレーシ
ョンを実行して半導体ウェハ(1)の薄膜の膜厚に応じ
た散乱光検出器(3)の感度補正用の粒径−散乱光強度
特性曲線を作成する。
The correction curve creation circuit (4) receives each data of film thickness and reflectance, executes a light scattering simulation based on these data, and detects a scattered light detector (4) according to the film thickness of the thin film of the semiconductor wafer (1). 3) Create a particle size-scattered light intensity characteristic curve for sensitivity correction.

ここで、光散乱シミュレーションについて説明する。第
2図に示す半導体ウェハ(1)の僅が上方の付着粒子1
0による散乱光をMieの散乱理論から求める。(α、
β)方向の散乱光検出器(3)における光の振幅ST 
 (α、β)は、付着粒子がら直接散乱光検出器(3)
に至る光SDと、−度半導体つエバ(1)に反射して後
、検出器(3)に入射する光SRとを合成したものと考
える。SRは反射前の角度方向(α゛、β−)への散乱
光SRに半導体ウェハ(1)での反射率R(β)を乗算
したものであるから、光の振幅ST  (α、β)は第
(1)式のように表される。
Here, light scattering simulation will be explained. Adhering particles 1 slightly above the semiconductor wafer (1) shown in FIG.
The light scattered by 0 is determined from Mie's scattering theory. (α,
Amplitude ST of light in the scattered light detector (3) in the β) direction
(α, β) are direct scattering light detectors from attached particles (3)
The light SD is considered to be a combination of the light SD that reaches the point 1, and the light SR that is reflected by the -degree semiconductor tube (1) and then enters the detector (3). Since SR is the product of the scattered light SR in the angular direction (α゛, β-) before reflection multiplied by the reflectance R (β) at the semiconductor wafer (1), the light amplitude ST (α, β) is expressed as in equation (1).

一般に反射率は入射角度の関数である。上記第(1)式
により表されるように振幅の反射率を用い、角度依存性
を考慮する、いわゆる位相の跳びも考慮されることにな
る。
Generally, reflectance is a function of angle of incidence. As expressed by the above equation (1), amplitude reflectance is used and angular dependence is taken into consideration, so-called phase jump is also taken into consideration.

上記第(1)式のSo  (α、β)、SR(α′、β
′)をM i e散乱理論による計算時の座標系に変換
したものを、それぞれS(θ。
So (α, β), SR (α′, β) in equation (1) above
') into the coordinate system used in calculations based on Mie scattering theory, respectively, and S(θ.

φD)、S(θR1φR)とする。そして、第3図に示
すP点及びP′点での波の合成を考えれば良いから上記
式は第(2〉式のように書き換えられる。
φD) and S(θR1φR). Since it is sufficient to consider the combination of waves at points P and P' shown in FIG. 3, the above equation can be rewritten as equation (2).

ここで、hは半導体ウェハ(1)と付着粒子10との間
隔である。
Here, h is the distance between the semiconductor wafer (1) and the attached particles 10.

一方、第4図に示す光学系の場合、散乱光検出器(3)
に入射する散乱光の強度PAは第(3)式で表される。
On the other hand, in the case of the optical system shown in Fig. 4, the scattered light detector (3)
The intensity PA of the scattered light incident on is expressed by equation (3).

p−J ′oJ 二II 1 <θ、φ) S1nθd
θdφ・・・(3) そして、単位立体角あたりの強度I(θ、φ)は第(4
)式で表される。
p-J ′oJ II 1 <θ, φ) S1nθd
θdφ...(3) And the intensity I(θ, φ) per unit solid angle is the (4th
) is expressed by the formula.

二こで、Ioは入射光の照度である。2, where Io is the illuminance of the incident light.

従って、第(4)式におけるS(θ、φ)にS(θp、
φD)、S(θR2φR)を代入することにより散乱光
の光強度が求められる。そして、以上と同様にして粒子
の粒径を変更した光散乱シミュレーションを実行するこ
とにより粒径−散乱光強度特性が求められる。
Therefore, S(θ, φ) in equation (4) is replaced by S(θp,
By substituting φD) and S(θR2φR), the light intensity of the scattered light can be determined. Then, by executing a light scattering simulation in which the particle size of the particles is changed in the same manner as described above, the particle size-scattered light intensity characteristic is determined.

このようにして粒径−散乱光強度特性が求められると、
粒径算出回路(5)は散乱光検出器(3)からのデータ
を受け、このデータを粒径−散乱光強度特性曲線に従っ
て粒子10の粒径を求める。そして、この粒径は表示回
路(6)において表示される。
When the particle size-scattered light intensity characteristic is determined in this way,
A particle size calculation circuit (5) receives data from the scattered light detector (3) and calculates the particle size of the particles 10 based on this data according to a particle size-scattered light intensity characteristic curve. This particle size is then displayed on a display circuit (6).

検査された半導体ウェハ(1)はアンローダされ次の半
導体ウェハ(1)が膜厚計(2)の下方にローダされる
The inspected semiconductor wafer (1) is unloaded, and the next semiconductor wafer (1) is loaded below the film thickness gauge (2).

この後、未検査の半導体ウェハ(1)に形成されている
薄膜の種類が同一であれば、半導体ウェハ(1)は散乱
光検出器(3〉の下方に配置されて付着粒子10の検査
が行われる。
After this, if the type of thin film formed on the uninspected semiconductor wafer (1) is the same, the semiconductor wafer (1) is placed below the scattered light detector (3>) and the adhered particles 10 are inspected. It will be done.

このように上記一実施例においては、膜厚計(2)によ
り測定された膜厚等に基づいて光散乱シミュレーション
を実行して散乱光検出器(3)の補正用の粒径−散乱光
強度特性曲線を作成し、散乱光検出器(3)により検出
された散乱光強度により粒径−散乱光強度特性曲線に従
って粒径を求めるように構成したので、各種薄膜例えば
厚さ、材料、多層等に応じた散乱光検出器(3)に対す
る感度補正の粒径−散乱光強度特性曲線を得ることがで
きて各種薄膜が形成された半導体ウェハ(1)に対する
付着粒子の粒径を高精度に測定できる。
In this way, in the above embodiment, a light scattering simulation is executed based on the film thickness etc. measured by the film thickness meter (2), and the particle size-scattered light intensity for correction of the scattered light detector (3) is calculated. A characteristic curve is created, and the particle size is determined according to the particle size-scattered light intensity characteristic curve based on the scattered light intensity detected by the scattered light detector (3). The particle size-scattered light intensity characteristic curve of the sensitivity correction for the scattered light detector (3) can be obtained in accordance with the measurement, and the particle size of adhered particles on the semiconductor wafer (1) on which various thin films have been formed can be measured with high precision. can.

なお、本発明は上記一実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形しても良い。例えば、補
正曲線作成回路(4)は膜厚計(2)からのデータを受
けて粒径−散乱光強度特性曲線を作成しているが、薄膜
に関するデータが予め既知の場合にはデータを補正曲線
作成回路(4)に直接入力しても良い。また、本実施例
では膜厚計にフーリエ分光法を用いたものを使用したが
、エリプソメータ等、他の方法を用いた膜厚計でも良い
Note that the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the spirit thereof. For example, the correction curve creation circuit (4) receives data from the film thickness meter (2) and creates a particle size-scattered light intensity characteristic curve, but if data regarding the thin film is known in advance, the data is corrected. It may also be directly input to the curve creation circuit (4). Further, in this embodiment, a film thickness meter using Fourier spectroscopy was used, but a film thickness meter using other methods such as an ellipsometer may be used.

又、光散乱シミュレーションのシミュレーション方法も
他の方法を用いても良い。
Further, other simulation methods may be used for the light scattering simulation.

[発明の効果〕 以上詳記したように本発明によれば、各種薄膜に応じた
補正ができる異物検査装置を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a foreign matter inspection device that can perform corrections according to various thin films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明に係わる異物検査装置の一実
施例を説明するための図であって、第1図は構成図、第
2図は半導体ウエノ1上の粒子モデルを示す図、第3図
は直接光と半導体ウニ71反射光との合成を示す模式図
、第4図は散乱光検出器に対する光学系を示す図である
。 1・・・半導体ウニ/%、2・・・膜厚計、3・・・散
乱光検出器、4・・・補正曲線作成回路、5・・・粒径
算出回路、6・・・表示回路。 出願人代理人 弁理士 鈴江武彦 第1図 第 2′rl!J
1 to 4 are diagrams for explaining one embodiment of a foreign matter inspection device according to the present invention, in which FIG. 1 is a configuration diagram and FIG. 2 is a diagram showing a particle model on a semiconductor wafer 1. 3 is a schematic diagram showing the combination of the direct light and the light reflected by the semiconductor sea urchin 71, and FIG. 4 is a diagram showing the optical system for the scattered light detector. 1... Semiconductor sea urchin/%, 2... Film thickness meter, 3... Scattered light detector, 4... Correction curve creation circuit, 5... Particle size calculation circuit, 6... Display circuit . Applicant's agent Patent attorney Takehiko Suzue Figure 1 2'rl! J

Claims (1)

【特許請求の範囲】[Claims] 薄膜の上に付着した粒子の粒径など異物について検査す
る異物検査装置において、前記薄膜上に付着した粒子か
らの散乱光を検出する散乱光検出器と、前記薄膜の膜厚
や屈折率等の特性に基づいてこの特性に応じた散乱光検
出器出力補正用の粒径−散乱光強度特性曲線を作成する
補正曲線作成手段と、前記散乱光検出器により検出され
た散乱光強度を受け前記粒径−散乱光強度特性曲線に従
って異物の検査を行う異物検査手段とを具備したことを
特徴とする異物検査装置。
A foreign matter inspection device that inspects foreign matter such as the particle size of particles attached to a thin film includes a scattered light detector that detects scattered light from particles attached to the thin film, and a scattered light detector that detects scattered light from particles attached to the thin film, and a correction curve creation means for creating a particle size-scattered light intensity characteristic curve for correcting the output of the scattered light detector according to the characteristics; 1. A foreign matter inspection device comprising a foreign matter inspection means for inspecting foreign matter according to a diameter-scattered light intensity characteristic curve.
JP22654490A 1990-08-30 1990-08-30 Foreign object inspecting device Pending JPH04109108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22654490A JPH04109108A (en) 1990-08-30 1990-08-30 Foreign object inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22654490A JPH04109108A (en) 1990-08-30 1990-08-30 Foreign object inspecting device

Publications (1)

Publication Number Publication Date
JPH04109108A true JPH04109108A (en) 1992-04-10

Family

ID=16846817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22654490A Pending JPH04109108A (en) 1990-08-30 1990-08-30 Foreign object inspecting device

Country Status (1)

Country Link
JP (1) JPH04109108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073527A1 (en) * 2008-12-26 2010-07-01 株式会社 日立ハイテクノロジーズ Inspection method and inspection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073527A1 (en) * 2008-12-26 2010-07-01 株式会社 日立ハイテクノロジーズ Inspection method and inspection apparatus
JP5216869B2 (en) * 2008-12-26 2013-06-19 株式会社日立ハイテクノロジーズ Inspection method and inspection apparatus
US8670115B2 (en) 2008-12-26 2014-03-11 Hitachi High-Technologies Corporation Inspection method and inspection apparatus

Similar Documents

Publication Publication Date Title
CN100472175C (en) Tire inspection apparatus and method
JPH04501175A (en) Surface measurement device and method using ellipsometry
JP6261601B2 (en) Determining film thickness, refractive index, and extinction coefficient for real-time film strain determination and defect dimension measurement
JP2020085467A (en) Physical property inspection device
JPH03252512A (en) Method and device for on-line measurement of oil film or coated film
JPH04109108A (en) Foreign object inspecting device
JPH056929A (en) Method and apparatus for foreign body inspection on wafer
EP0222346B1 (en) Method of measuring a sound pressure distribution in a solid body due to a ultrasonic probe by using photoelasticity
JPH0228541A (en) Optical concentration detector
JPH0781840B2 (en) Optical film thickness measuring device
JP4234945B2 (en) Surface inspection method and surface inspection apparatus
JP2007057497A (en) System and method for inspecting phosphor film thickness
KR20180032459A (en) Method for measuring Suspended Particle in air
JPS61172002A (en) Infrared ray type coating film thickness measuring device
JP3111686B2 (en) Radiation thickness gauge
JP3159271B2 (en) Foreign matter inspection method and apparatus
CN106855512A (en) A kind of method based on Transmissivity measurement qualitative assessment metal high-reflecting film environmental stability
JP2008051662A (en) Measuring method and measuring instrument for absolute reflection factor
JPH04196455A (en) Tester of lead bend in electronic component
JPS61117404A (en) Measuring instrument for film thickness
JP3257552B2 (en) Detecting apparatus for surface flaw
JPH10300436A (en) Lead frame inspection device
JPH0384401A (en) Method and instrument for measuring film thickness
JPH063135A (en) Intensity correction method of reflected light
JP2007255904A (en) Flaw inspection device and substrate treatment system