JPH056929A - Method and apparatus for foreign body inspection on wafer - Google Patents
Method and apparatus for foreign body inspection on waferInfo
- Publication number
- JPH056929A JPH056929A JP18528891A JP18528891A JPH056929A JP H056929 A JPH056929 A JP H056929A JP 18528891 A JP18528891 A JP 18528891A JP 18528891 A JP18528891 A JP 18528891A JP H056929 A JPH056929 A JP H056929A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- intensity
- light intensity
- light
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明はウエハ上の異物を検出
する異物検査装置及びその方法に関し、特にウエハ面か
らの散乱光を用いて粒径を測定するものに関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foreign matter inspection apparatus and method for detecting foreign matter on a wafer, and more particularly to one for measuring particle diameter using scattered light from the wafer surface.
【0002】[0002]
【従来の技術】図5は例えば特開平2−78936号公
報に示された従来の異物検査装置の構成を示す図であ
り、図において、14,15は検出度の異なる第1及び
第2の受光素子(光検出器)、16はこれら受光素子と
接続する光ファイバである。また21はアルゴンレーザ
であり、20はアルゴンレーザ21から出射された光を
拡大するビームエキスパンダ、19及び22はビームエ
キスパンダ20を通過したレーザ光を反射させてポリゴ
ンミラー18に入射させるためのミラーである。さらに
17はポリゴンミラー18で反射されたレーザ光を被検
査ウエハ23に入射させるfθレンズである。2. Description of the Related Art FIG. 5 is a diagram showing a structure of a conventional foreign matter inspection apparatus disclosed in, for example, Japanese Patent Application Laid-Open No. 2-78936. In the figure, reference numerals 14 and 15 denote first and second detection degrees. Light receiving elements (photodetectors) 16 are optical fibers connected to these light receiving elements. Further, 21 is an argon laser, 20 is a beam expander that expands the light emitted from the argon laser 21, and 19 and 22 are for reflecting the laser light that has passed through the beam expander 20 and making it enter the polygon mirror 18. It's a mirror. Further, reference numeral 17 denotes an fθ lens which makes the laser light reflected by the polygon mirror 18 incident on the wafer 23 to be inspected.
【0003】次に動作について説明する。レーザ21で
発生したレーザ光はビームエキスパンダー20で拡大さ
れ、ミラー19,22を介してポリゴンミラー18に送
られる。このポリゴンミラー18は一定速度で回転して
おり、fθレンズ17との組み合わせにより、被検査ウ
エハ23上に異物が付着していると、散乱光が発生す
る。この散乱光強度は光ファイバ16を通して光検出器
14,15によって測定され、図示しない判定装置にて
異物の粒径を測定することができる。この構成では粒径
の小さい異物と粒径の比較的大きい異物とをそれぞれ感
度の異なる受光素子を用いて測定することができ、異物
検出時のダイナミックレンジの拡大を図ることができ
る。Next, the operation will be described. The laser light generated by the laser 21 is expanded by the beam expander 20 and sent to the polygon mirror 18 via the mirrors 19 and 22. The polygon mirror 18 is rotating at a constant speed, and when the polygon mirror 18 is combined with the fθ lens 17, if foreign matter is attached to the wafer 23 to be inspected, scattered light is generated. The scattered light intensity is measured by the photodetectors 14 and 15 through the optical fiber 16, and the particle size of the foreign matter can be measured by a determination device (not shown). With this configuration, it is possible to measure a foreign material having a small particle diameter and a foreign material having a relatively large particle diameter by using light receiving elements having different sensitivities, and it is possible to expand the dynamic range at the time of detecting the foreign material.
【0004】[0004]
【発明が解決しようとする課題】従来のウエハ異物検査
方法及び装置は以上のように構成されており、上記装置
を用いて透過性膜付きのウエハ上の異物を測定する場合
には、図2に示すように、異物10には、レーザ光3
と、透過性膜11表面で反射する光と透過性膜11内で
多重反射したのち膜11表面に出る光とで構成された反
射光13が当たることとなる。しかるにこの時、膜内で
多重反射する光の強度は膜11の厚さによって変化し、
それに伴って反射光13の強度も変化する。また透過性
の表面膜でなくても表面膜の膜種,成膜条件等によって
反射率が異なり、反射光13の強度が変化する。The conventional method and apparatus for inspecting foreign matter on a wafer are constructed as described above, and when measuring foreign matter on a wafer having a transparent film by using the above apparatus, the method shown in FIG. As shown in FIG.
Then, the reflected light 13 composed of the light reflected on the surface of the transparent film 11 and the light that is multiple-reflected in the transparent film 11 and then appears on the surface of the film 11 is applied. However, at this time, the intensity of the light multiply reflected in the film changes depending on the thickness of the film 11,
Along with this, the intensity of the reflected light 13 also changes. Even if the surface film is not a transparent surface film, the reflectance varies depending on the film type of the surface film, film forming conditions, etc., and the intensity of the reflected light 13 changes.
【0005】従って以上のことより、異物10に当たる
光強度が変化することで異物による散乱光強度が変化す
る。この現象により、同じ粒径の異物でも下地であるウ
エハ表面の状態により散乱光強度が変化し、その粒径を
正確に推定できないという問題点があった。Therefore, from the above, the intensity of light impinging on the foreign matter 10 changes and the intensity of scattered light by the foreign matter changes. Due to this phenomenon, the intensity of scattered light changes depending on the state of the surface of the wafer, which is the base, even for foreign particles of the same particle size, and there is a problem that the particle size cannot be accurately estimated.
【0006】この発明は上記のような問題点を解消する
ためになされたもので、ウエハ表面の状態による反射光
の影響を除去して正確に異物の粒径を推定することがで
きるウエハ上異物検査方法及び装置を得ることを目的と
する。The present invention has been made in order to solve the above-mentioned problems, and it is possible to accurately estimate the particle size of a foreign substance by removing the influence of reflected light due to the state of the wafer surface. The purpose is to obtain an inspection method and device.
【0007】[0007]
【課題を解決するための手段】この発明に係るウェハ異
物検査方法は、未知の粒径を有する異物のレーザ光の反
射光強度及び散乱光強度をモニタして、既知の粒径に対
する散乱強度及び反射強度の関係から未知の粒径を有す
る異物の粒径を算出するようにしたものである。A wafer foreign matter inspection method according to the present invention monitors a reflected light intensity and a scattered light intensity of a laser beam of a foreign matter having an unknown grain size to determine a scattered intensity and a scattered intensity for a known grain size. The particle size of a foreign substance having an unknown particle size is calculated from the relationship of the reflection intensity.
【0008】またこの発明におけるウェハ異物検査装置
は、被検ウエハ上にレーザ光を照射するレーザ装置と、
上記被検ウエハからの散乱光強度を検出する光検出器
と、上記被検ウエハより反射されたレーザ光の反射光強
度を測定する光強度測定器と、所定の粒径に対する反射
光強度並びに散乱光強度を記憶し、上記光強度測定器及
び光検出器出力を受けて被検ウエハ上の異物の粒径を算
出する演算部とを備えたものである。A wafer foreign matter inspection apparatus according to the present invention includes a laser apparatus for irradiating a wafer to be inspected with a laser beam,
A photodetector that detects the intensity of scattered light from the wafer to be inspected, a light intensity measuring device that measures the intensity of the reflected light of the laser light reflected from the wafer to be inspected, and the intensity and scattering of the reflected light with respect to a predetermined particle size. An arithmetic unit that stores the light intensity, receives the outputs of the light intensity measuring device and the photodetector, and calculates the particle size of the foreign matter on the wafer to be inspected.
【0009】[0009]
【作用】この発明においては、未知の粒径を有する異物
のレーザ光の反射光強度及び散乱光強度をモニタして、
既知の粒径に対する散乱強度及び反射強度の関係から未
知の粒径を有する異物の粒径を算出するようにしたか
ら、下地となるウエハ表面の状態による反射光の影響を
除去して正確に異物の粒径を推定することができる。In the present invention, the reflected light intensity and scattered light intensity of the laser light of a foreign substance having an unknown particle size are monitored,
Since the particle size of a foreign particle having an unknown particle size is calculated from the relationship between the scattering intensity and the reflection intensity with respect to the known particle size, the influence of reflected light due to the state of the underlying wafer surface is removed to accurately measure the foreign particle. The particle size of can be estimated.
【0010】[0010]
【実施例】以下、この発明の一実施例を図1について説
明する。図において、1は被検査ウエハ12を載置する
ステージであり、6はウエハ12からの散乱光を検出す
る光検出器、また8はウエハ12で反射された正反射光
7の強度を測定する光強度測定器であり、上記光検出器
6と光強度測定器8の出力はそれぞれ処理部9に入力さ
れるようになっている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. In the figure, 1 is a stage on which a wafer 12 to be inspected is mounted, 6 is a photodetector for detecting scattered light from the wafer 12, and 8 is intensity of specularly reflected light 7 reflected by the wafer 12. It is a light intensity measuring device, and the outputs of the photodetector 6 and the light intensity measuring device 8 are input to the processing unit 9, respectively.
【0011】次に動作について説明する。レーザ4から
出されたレーザ光3をステージ1上に置かれたウエハ1
2に照射する。その時、ウエハ12上の異物より発生し
た散乱光5を光検出器6で検出すると同時に、ウエハ1
2上で反射した正反射光7の強度を光強度測定装置8で
測定する。この時、従来と同様図2に示すように、異物
10には照射光3と反射光13が当たりこれらによる散
乱光が発生する。Next, the operation will be described. Wafer 1 on which laser light 3 emitted from laser 4 is placed on stage 1
Irradiate 2. At that time, the scattered light 5 generated from the foreign matter on the wafer 12 is detected by the photodetector 6, and at the same time, the wafer 1
The intensity of the specularly reflected light 7 reflected on 2 is measured by the light intensity measuring device 8. At this time, as in the conventional case, as shown in FIG. 2, the foreign material 10 is irradiated with the irradiation light 3 and the reflected light 13 to generate scattered light.
【0012】ここで、照射光(レーザ光)3の強度をI
1 、反射光13の強度をI2 、異物10の散乱光強度を
Stとし、また異物10の粒径をAとすると、これらの
値A,I1 ,I2 により異物10の散乱光強度Stが決
定される。ここで照射光強度I1 は一定なので散乱光強
度Stは粒径Aと反射光13の強度I2 の関数により決
定される。すなわちその関数をIとすると、
St=I(A,I2 ) …(1)
と表される。(1) 式より3つの変数の関係がわかってい
れば、散乱光強度St及び反射光13の強度I2 より粒
径Aを求めることもできる。その関数をGとすると、
A=G(I2 ,St) …(2)
ここで、予め同じ光学系の設定で膜厚の異なるウエハに
粒径のわかっている粒子を付け、その散乱光強度Stと
その時の反射光強度I2 を測定する。例えば、粒径のA
0 の標準粒子を膜厚Daのウエハに付ける。その時の異
物の散乱光強度をSa,反射光強度をIaとすると、
A0 =G(Ia,Sa) …(3)
となる。Here, the intensity of the irradiation light (laser light) 3 is I
1 , the intensity of the reflected light 13 is I 2 , the scattered light intensity of the foreign matter 10 is St, and the particle size of the foreign matter 10 is A, the scattered light intensity St of the foreign matter 10 can be expressed by these values A, I 1 , and I 2. Is determined. Here, since the irradiation light intensity I 1 is constant, the scattered light intensity St is determined by a function of the particle size A and the intensity I 2 of the reflected light 13. That is, if the function is I, then St = I (A, I 2 ) ... (1) If the relationship between the three variables is known from the equation (1), the particle size A can be obtained from the scattered light intensity St and the intensity I 2 of the reflected light 13. Assuming that function is G, A = G (I 2 , St) (2) Here, particles with known particle diameters are attached to wafers having different film thicknesses in advance with the same optical system setting, and the scattered light intensity St and the reflected light intensity I 2 at that time are measured. For example, the particle size A
A standard particle of 0 is attached to a wafer having a film thickness Da. When the scattered light intensity of the foreign matter at that time is Sa and the reflected light intensity is Ia, A 0 = G (Ia, Sa) (3)
【0013】この測定を膜厚及び異物の粒径を変えて行
うことで関数Gを求める。または、散乱理論より反射光
強度の変化を考慮して異物からの散乱光強度を計算する
ことで関数Gを求めてもよい。図3はこのようにして求
められた関数の一例を示す。ここで、粒径が同じである
異物10が図4(a) のように膜厚11の不均一なウエハ
に付着しているとする。この状態で、入射光強度は膜厚
11が変わっても一定なのでI1 は図4(b) のように一
定である。その一方、反射光強度I2 は膜厚に依存する
ので、例えば図4(c) のように変化する。そして、その
影響によって同じ粒径の異物でもその散乱光強度Stは
図4(d) のように変動する。その時のある地点に付着し
ている異物の散乱光強度をSm,直接照射光強度を
I1 ,反射光強度をImとする。ここで、(2) 式を用
い、既知の反射光強度Imと散乱光強度Smより未知の
異物径Aを求めることができる。これは、予め反射光強
度の変化を盛り込んだものなので、図4(e) に示すよう
に反射光の影響を除去することができ、正確に異物の粒
径を推定することができる。The function G is obtained by performing this measurement while changing the film thickness and the particle size of the foreign matter. Alternatively, the function G may be obtained by calculating the scattered light intensity from a foreign substance in consideration of the change in the reflected light intensity from the scattering theory. FIG. 3 shows an example of the function thus obtained. Here, it is assumed that the foreign particles 10 having the same particle diameter are attached to a wafer having an uneven film thickness 11 as shown in FIG. In this state, the incident light intensity is constant even if the film thickness 11 changes, so that I 1 is constant as shown in FIG. 4 (b). On the other hand, since the reflected light intensity I 2 depends on the film thickness, it changes as shown in FIG. 4 (c), for example. Due to the influence, the scattered light intensity St fluctuates as shown in FIG. 4 (d) even for a foreign substance having the same particle size. Let Sm be the scattered light intensity of a foreign substance adhering to a certain point at that time, I 1 be the direct irradiation light intensity, and Im be the reflected light intensity. Here, the unknown foreign substance diameter A can be obtained from the known reflected light intensity Im and scattered light intensity Sm using the equation (2). Since this includes a change in reflected light intensity in advance, the influence of reflected light can be eliminated as shown in FIG. 4 (e), and the particle size of the foreign matter can be accurately estimated.
【0014】このように本実施例によれば、被検査ウエ
ハ12の散乱光5を光検出器6で検出するとともに、そ
の反射光7を光強度測定器8で測定し、これら2つの値
を処理部9に入力し、ここで予め測定した所定の径の粒
子に対する散乱光度及び反射光度と照合し未知の異物の
粒径を推測するようにしたから、ウエハ12上の光透過
性膜11の膜厚の違いによる反射光の変化の影響を除去
して正確に異物の粒径を推定することができる。As described above, according to this embodiment, the scattered light 5 on the wafer 12 to be inspected is detected by the photodetector 6, and the reflected light 7 is measured by the light intensity measuring device 8, and these two values are calculated. The particle size of an unknown foreign substance is estimated by collating with the scattered light intensity and the reflected light intensity for particles having a predetermined diameter, which are input to the processing unit 9, and thus the particle size of the light-transmissive film 11 on the wafer 12 is estimated. The particle size of the foreign matter can be accurately estimated by removing the influence of the change in the reflected light due to the difference in the film thickness.
【0015】なお、測定するウエハ上の膜が非透過性で
あり、膜種によって反射率が異なる場合や、膜の反射率
が均一でなくレーザ光の反射率が変化し、それによって
異物の散乱光強度が変化する場合でも同様の効果を奏す
ることができるのは言うまでもない。When the film on the wafer to be measured is non-transparent and the reflectance differs depending on the film type, or the reflectance of the film is not uniform and the reflectance of the laser beam changes, which causes scattering of foreign matter. It goes without saying that the same effect can be obtained even when the light intensity changes.
【0016】[0016]
【発明の効果】以上のように、この発明によれば、未知
の粒径を有する異物のレーザ光の反射光強度及び散乱光
強度をモニタして、既知の粒径に対する散乱強度及び反
射強度の関係から未知の粒径を有する異物の粒径を算出
するようにしたから、ウエハ表面の状態による反射光の
影響を除去して正確に異物の粒径を推定することがで
き、膜付ウエハにおいても異物の粒径を正確に推定する
ことができるという効果がある。As described above, according to the present invention, the reflected light intensity and the scattered light intensity of the laser beam of a foreign substance having an unknown particle size are monitored, and the scattered light intensity and the reflected light intensity with respect to the known particle size are monitored. Since the particle size of foreign particles having an unknown particle size is calculated from the relationship, it is possible to accurately estimate the particle size of foreign particles by removing the influence of reflected light due to the state of the wafer surface. Also has the effect of being able to accurately estimate the particle size of foreign matter.
【図1】本発明の一実施例によるウエハ異物検出装置の
構成を示す図である。FIG. 1 is a diagram showing a configuration of a wafer foreign matter detection apparatus according to an embodiment of the present invention.
【図2】本発明及び従来例におけるウエハ異物検出装置
の異物に当たる光を示す図である。FIG. 2 is a diagram showing light that impinges on a foreign matter of a wafer foreign matter detecting apparatus according to the present invention and a conventional example.
【図3】本発明の一実施例によるウエハ異物検出装置に
より異物径を検出する際に用いる関数Gを示す図であ
る。FIG. 3 is a diagram showing a function G used when detecting a foreign particle diameter by a wafer foreign particle detecting apparatus according to an embodiment of the present invention.
【図4】本発明の一実施例によるウエハ異物検出装置に
よる異物検出時の動作を説明するための図である。FIG. 4 is a diagram for explaining an operation at the time of foreign matter detection by the wafer foreign matter detection apparatus according to the embodiment of the present invention.
【図5】従来例のウエハ異物検出装置の構成を示す図で
ある。FIG. 5 is a diagram showing a configuration of a conventional wafer foreign matter detection apparatus.
1 ステージ 3 レーザ光 4 レーザ 5 散乱光 6 光検出器 7 反射光 8 光強度測定器 9 演算部 10 異物 11 膜 12 ウエハ 13 反射光 1 stage 3 laser light 4 laser 5 scattered light 6 Photodetector 7 reflected light 8 Light intensity measuring device 9 Operation part 10 foreign material 11 membranes 12 wafers 13 reflected light
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年1月21日[Submission date] January 21, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項1[Name of item to be corrected] Claim 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
フロントページの続き (72)発明者 友田 利正 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社生産技術研究所内 (72)発明者 小坂 宣之 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社生産技術研究所内Continued front page (72) Inventor Toshimasa Tomoda 3-1-1 Tsukaguchihonmachi, Amagasaki City, Hyogo Prefecture Ryoden Co., Ltd., Production Technology Laboratory (72) Inventor Nobuyuki Kosaka 3-1-1 Tsukaguchihonmachi, Amagasaki City, Hyogo Prefecture Ryoden Co., Ltd., Production Technology Laboratory
Claims (2)
てその散乱光強度から異物の粒径を測定する異物検査方
法において、ウエハ上の異物にレーザ光を照射して異物
からの散乱光強度を測定するとともに、被検査ウエハ面
からのレーザ光の反射光強度を測定し、予め求めておい
た粒径に対する反射光強度並びに散乱光強度の関係か
ら、その時の反射光強度に対応する散乱光強度を求め、
異物の粒径を推定するようにしたことを特徴とするウェ
ハ異物検査方法。1. A particle inspection method for irradiating a particle on a wafer to be inspected with laser light and measuring the particle size of the particle from the scattered light intensity, wherein the particle on the wafer is irradiated with laser light to scatter from the particle. In addition to measuring the light intensity, the reflected light intensity of the laser light from the wafer surface to be inspected is measured, and it corresponds to the reflected light intensity at that time from the relationship between the reflected light intensity and the scattered light intensity with respect to the particle size obtained in advance. Calculate the scattered light intensity,
A method for inspecting foreign matter on a wafer, characterized in that the particle diameter of the foreign matter is estimated.
ザ装置と、上記被検ウエハ上の異物からの散乱光強度を
検出する光検出器と、上記被検ウエハより反射されたレ
ーザ光の反射光強度を測定する光強度測定器と、所定の
粒径に対する反射光強度並びに散乱光強度を記憶し、上
記光強度測定器及び光検出器出力を受けて被検ウエハ上
の異物の粒径を算出する演算部とを備えたことを特徴と
するウエハ異物検査装置。2. A laser device for irradiating the wafer to be inspected with laser light, a photodetector for detecting the intensity of scattered light from foreign matter on the wafer to be inspected, and a laser beam reflected from the wafer to be inspected. A light intensity measuring device for measuring the reflected light intensity and a reflected light intensity and a scattered light intensity for a predetermined particle size are stored, and the particle size of a foreign substance on a wafer to be inspected upon receiving the output of the light intensity measuring device and the photodetector. A wafer foreign matter inspection apparatus, comprising: a calculation unit that calculates
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18528891A JPH056929A (en) | 1991-06-27 | 1991-06-27 | Method and apparatus for foreign body inspection on wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18528891A JPH056929A (en) | 1991-06-27 | 1991-06-27 | Method and apparatus for foreign body inspection on wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH056929A true JPH056929A (en) | 1993-01-14 |
Family
ID=16168230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18528891A Pending JPH056929A (en) | 1991-06-27 | 1991-06-27 | Method and apparatus for foreign body inspection on wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH056929A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6812047B1 (en) | 2000-03-08 | 2004-11-02 | Boxer Cross, Inc. | Evaluating a geometric or material property of a multilayered structure |
US6906801B2 (en) | 1998-06-10 | 2005-06-14 | Applied Materials, Inc. | Measuring a property of a layer in multilayered structure |
US6911349B2 (en) * | 2001-02-16 | 2005-06-28 | Boxer Cross Inc. | Evaluating sidewall coverage in a semiconductor wafer |
US6958814B2 (en) | 2002-03-01 | 2005-10-25 | Applied Materials, Inc. | Apparatus and method for measuring a property of a layer in a multilayered structure |
US6971791B2 (en) | 2002-03-01 | 2005-12-06 | Boxer Cross, Inc | Identifying defects in a conductive structure of a wafer, based on heat transfer therethrough |
US7026175B2 (en) | 2004-03-29 | 2006-04-11 | Applied Materials, Inc. | High throughput measurement of via defects in interconnects |
US7064822B2 (en) | 2002-03-01 | 2006-06-20 | Applied Materials, Inc. | Evaluating a multi-layered structure for voids |
US7130055B2 (en) | 2001-03-05 | 2006-10-31 | Applied Materials, Inc. | Use of coefficient of a power curve to evaluate a semiconductor wafer |
US7420408B2 (en) | 2005-02-23 | 2008-09-02 | Nec Corporation | Current control circuit with limiter, temperature control circuit, and brightness control circuit |
US10006872B2 (en) | 2015-03-31 | 2018-06-26 | Samsung Electronics Co., Ltd. | Optical inspection system |
-
1991
- 1991-06-27 JP JP18528891A patent/JPH056929A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6906801B2 (en) | 1998-06-10 | 2005-06-14 | Applied Materials, Inc. | Measuring a property of a layer in multilayered structure |
US6812047B1 (en) | 2000-03-08 | 2004-11-02 | Boxer Cross, Inc. | Evaluating a geometric or material property of a multilayered structure |
US7465591B2 (en) | 2000-03-08 | 2008-12-16 | Applied Materials, Inc. | Evaluating a geometric or material property of a multilayered structure |
US6911349B2 (en) * | 2001-02-16 | 2005-06-28 | Boxer Cross Inc. | Evaluating sidewall coverage in a semiconductor wafer |
US7130055B2 (en) | 2001-03-05 | 2006-10-31 | Applied Materials, Inc. | Use of coefficient of a power curve to evaluate a semiconductor wafer |
US7064822B2 (en) | 2002-03-01 | 2006-06-20 | Applied Materials, Inc. | Evaluating a multi-layered structure for voids |
US7088444B2 (en) | 2002-03-01 | 2006-08-08 | Applied Materials, Inc. | Evaluating a multi-layered structure for voids |
US6971791B2 (en) | 2002-03-01 | 2005-12-06 | Boxer Cross, Inc | Identifying defects in a conductive structure of a wafer, based on heat transfer therethrough |
US7141440B2 (en) | 2002-03-01 | 2006-11-28 | Applied Materials, Inc. | Apparatus and method for measuring a property of a layer in a multilayered structure |
US7301619B2 (en) | 2002-03-01 | 2007-11-27 | Applied Materials, Inc. | Evaluating a multi-layered structure for voids |
US6958814B2 (en) | 2002-03-01 | 2005-10-25 | Applied Materials, Inc. | Apparatus and method for measuring a property of a layer in a multilayered structure |
US7026175B2 (en) | 2004-03-29 | 2006-04-11 | Applied Materials, Inc. | High throughput measurement of via defects in interconnects |
US7420408B2 (en) | 2005-02-23 | 2008-09-02 | Nec Corporation | Current control circuit with limiter, temperature control circuit, and brightness control circuit |
US10006872B2 (en) | 2015-03-31 | 2018-06-26 | Samsung Electronics Co., Ltd. | Optical inspection system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4945253A (en) | Means of enhancing the sensitivity of a gloss sensor | |
JPH056929A (en) | Method and apparatus for foreign body inspection on wafer | |
JP2004037400A (en) | Optical measurement method and apparatus for the same | |
JPH0518889A (en) | Method and device for inspecting foreign matter | |
JP3114972B2 (en) | Film thickness inspection apparatus and film thickness inspection method | |
EP0905505A1 (en) | Apparatus and methods for assessing the resistance of a material to damage from exposure to high-intensity polarized laser light | |
JPS5979122A (en) | Laser power measuring device | |
JPH11258175A (en) | Foreign matter inspection method | |
JPH04291347A (en) | Mask protective device | |
JPH05281130A (en) | Foreign-matter inspection apparatus | |
JP2012047615A (en) | Film inspection device, inspection method, and manufacturing method | |
JPH0252241A (en) | Surface defect inspection instrument | |
JP3417834B2 (en) | Method and apparatus for measuring phase shift amount for processing phase shift mask | |
RU2035721C1 (en) | Method of checking transparency of flat light-translucent materials | |
JP2970235B2 (en) | Surface condition inspection device | |
JPH10142162A (en) | Coated layer flaw inspecting light selecting method, coated layer flaw inspecting method, and coated layer flaw inspecting device | |
RU2156437C2 (en) | Gear determining surface roughness | |
TWM429094U (en) | Cascade-type surface plasmon resonance fiber sensor and the apparatus comprising thereof | |
JP2000193442A (en) | Method and device for detecting unevenness of coated film | |
JPS60222756A (en) | Foreign matter inspector | |
JP3406951B2 (en) | Surface condition inspection device | |
JPH10293103A (en) | Method and equipment for optical measurement and optical measuring equipment for patterned substrate | |
KR950019710A (en) | Observation method of optical surface roughness measurement error using standard specimen | |
JPH0495859A (en) | Optically inspecting apparatus for printed board | |
JPH08122271A (en) | Color filter inspection method and device for liquid crystal |