JP4234945B2 - Surface inspection method and surface inspection apparatus - Google Patents

Surface inspection method and surface inspection apparatus Download PDF

Info

Publication number
JP4234945B2
JP4234945B2 JP2002129492A JP2002129492A JP4234945B2 JP 4234945 B2 JP4234945 B2 JP 4234945B2 JP 2002129492 A JP2002129492 A JP 2002129492A JP 2002129492 A JP2002129492 A JP 2002129492A JP 4234945 B2 JP4234945 B2 JP 4234945B2
Authority
JP
Japan
Prior art keywords
wafer
scattered light
light
scattered
foreign matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002129492A
Other languages
Japanese (ja)
Other versions
JP2003322624A (en
Inventor
陽一郎 岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2002129492A priority Critical patent/JP4234945B2/en
Publication of JP2003322624A publication Critical patent/JP2003322624A/en
Application granted granted Critical
Publication of JP4234945B2 publication Critical patent/JP4234945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、検査対象となるウエハの表面上に検査光を照射し、その反射光と、異物が存在する場合に生じる散乱光を検出することで、ウエハ表面上に存在する異物を検出する表面検査装置に関する。
【0002】
【従来の技術】
従来、較正作業を行う場合、予め選定した標準粒子をウエハ上に塗布し、それぞれ異なる条件の複数の較正用ウエハを作り、それらの較正用ウエハを用いて較正作業を行っていた。すなわち、膜付ウエハの膜材質や膜厚ごとに、所望サイズの標準粒子を塗布したウエハを用いて、較正作業を行っていた。例えば、粒径を10段階に分けて検出したい場合は、それぞれ粒径が異なる10枚の較正用ウエハを用意し、各ウエハ毎に測定作業を行っていた。このとき較正に使用するウエハは、ユーザーが保管することになる。
【0003】
また、検査対象であるウエハの表面状態(膜の有無、膜の種類、膜厚等)が変われば表面の光学特性も変わるので、それぞれの表面状態に対して粒径の異なる標準粒子を塗布した較正用ウエハを用意し、測定作業を行わなくてはならない。
【0004】
特に表面に形成される膜種が酸化膜や窒化膜等の透過膜である場合、膜厚に応じて散乱特性が大きく変化してしまう。
【0005】
なお、PSLを材質とした標準粒子をPSL粒子と呼ぶこともある。
【0006】
【発明が解決しようとする課題】
上記のように、較正作業を行うためには“粒径”、“膜の種類”、“膜厚”のそれぞれに対応した較正用ウエハを数多く揃えなければならず、また、これら較正用ウエハ全てに関して測定作業を行う必要があり、下記のような大きな負担が生じていた。
【0007】
・較正作業の手間、時間、人員コストが大きい。
【0008】
・較正用ウエハの作成コスト、収納スペースの占有が大きい。
【0009】
較正用ウエハの枚数は、概ね“膜種数×膜厚数×粒径数”であるから、ユーザーによっては過大の枚数となり、さらにウエハサイズは200mmから300mmへと大口径化への移行が本格化しつつあるため、較正ウエハの搬送を含めた手間だけでなく、コスト及び収納のための占有スペース等の面においても、負担はより大きなものになってきた。
【0010】
本願発明は較正作業を軽減することを目的としている。
【0011】
【課題を軽決するための手段】
本発明の解決手段を例示すると、次のとおりである。
【0012】
(1)検査対象となるウエハの表面上に検査光を照射し、異物が存在する場合に生じる散乱光を検出することで、ウエハ表面上に存在する異物を検出する表面検査装置において、異物に検査光が照射され、散乱光が検出されるまでの光路ごとに散乱電場を計算し、該散乱電場の総和に基づき散乱光の出力強度を求める数学モデルによって、散乱光の出力強度とウエハ上の異物の粒径との相関関係を規定該相関関係に基づいて前記表面検査装置の較正をおこなう較正手段を有することを特徴とする表面検査装置。
【0013】
(2)検査対象となるウエハの表面上に検査光を照射し、異物が存在する場合に生じる散乱光を検出することで、ウエハ表面上に存在する異物を検出する表面検査装置において、異物に検査光が照射され、散乱光が検出されるまでの光路ごとに散乱電場を計算し、該散乱電場の総和に基づき散乱光の出力強度を求める数学モデルによって、ウエハ表面上の異物の粒径に対する散乱光の理論的強度を演算により求める機能を有することを特徴とする表面検査装置。
【0014】
(3)前記数学モデルは、Mie公式を利用して散乱光の出力強度を求めることを特徴とする前述の(2)に記載の表面検査装置。
【0015】
(4)ウエハの膜種に関する補正項を適用することで、ウエハの膜種に対する散乱光の出力強度を演算で求めることを特徴とする前述の表面検査装置。
【0016】
(5)ウエハの膜厚に関する補正項を適用することで、ウエハの膜厚に対する散乱光の出力強度を演算で求めることを特徴とする前述の表面検査装置。
【0019】
【発明の実施の形態】
本発明は、散乱光の数学モデルを使用して、ウエハの異物を検査する装置及び方法である。
【0020】
ウエハ表面からの散乱光の出力とウエハ上の異物の粒径との相関関係を予め数学モデルとして求めておく。
【0021】
たとえば、異物による散乱光の強度に対し、散乱電場における“Mieの散乱公式”を基本とした方程式を適応する。これにより様々な粒径に応じた相対散乱光強度を演算により求めることが可能となる。
【0022】
また、上記方程式において、補正項を適用することで、ウエハ表面上の膜種や膜厚等が異なる場合においても散乱光強度を演算により求めることを可能とする。
【0023】
即ち、測定対象ウエハの光学的性質に基いて所定の条件における散乱光強度を演算により求める。
【0024】
このようにすれば、較正用ウエハを実測することなく、所望の較正を行って、ウエハ上の異物を検査できる。たとえば、異物サイズに対応した粒径ごとの閾値設定が可能となる。
【0025】
すなわち、これまで較正用のウエハ上の異物の実測のみで求めていた粒径に対する散乱光強度が、実測をすることなく、演算により求めることが可能になる。具体的には、ヒストグラム上での分布において、重心位置として求められる粒径に対応したピーク位置に基いて、粒径に対する散乱光強度のピーク位置を、演算により求めることができる。
【0026】
好ましくは、散乱光強度に対して散乱光の公式を適用することで粒径に対する散乱光強度を演算により求めることを可能とする。
【0027】
さらに、補正項を適用することで、散乱光強度を理論的に求める要素として粒径だけでなく、膜種、膜厚に関しても可能とする。
【0028】
本発明によれば、較正作業の手間が劇的に軽減でき、かつ作業の高速化が実現できる。
【0029】
本発明は、ベアウエハだけでなく、その他のウエハにも適用できる。とくに表面に透過膜等が形成されているウエハについても対応可能である。
【0030】
本発明においては、好ましくは、ウエハ上の粒子による散乱光量や、散乱光を検出して出力する電気信号についての、数学モデル、つまり散乱光の数学モデルを立てて理論計算を行う。とくに、散乱現象から装置関数までを含めた補正項を付加することで、ウエハの特性曲線(粒径変化による散乱光強度の変化の様子で、較正の基準になるもの)に基づく相対散乱光強度を計算により求める。このウエハの特性曲線は測定対象となるウエハに固有のものなので、予め得られていた値をテンプレートとして適用するか、実際に測定することで得ることができる。例えば、測定対象のウエハに対して、所定の膜種や膜厚に関して、ある粒径の標準粒子を塗布した較正用ウエハを最低1枚測定し、その測定値に演算にて得られた特性曲線を適用させる。
【0031】
散乱光検出を2つの方向(2個のPMT)で行うと、広ダイナミックレンジを確保することができる。この場合、検出チャンネルごとに1枚のウエハ測定が必要なので、最低2枚のウエハを使用することになる。
【0032】
なお、散乱光強度計算の基礎となる数学モデルは、公知のMie公式を使用することができる。
【0033】
Mie公式は、一様な媒質中にある球形粒子に直線偏光した平面波が入射するときの、光散乱を記述した厳密解である。この公式で、波長》粒子径とすれば、Rayleigh散乱、波長《粒子径とすれば、幾何光学から導かれる表式に一致する。Maxwell方程式から出発してMie公式を導く詳細な解法や、厳密性を失わないための仮定(粒子の均一性・等方性・非磁性、波長不変、散乱の孤立性など)は、ここでは詳述しない。
【0034】
いま入射光の進む方向をz軸にとり、入射光の直線偏光の方向をx軸とし、z軸から測った天頂角をθ、x軸からy軸の方向へ測った方位角をφとすると、Mie公式によって散乱電場Esは極座標に関して次のとおり表される。
【0035】
【数1】

Figure 0004234945
散乱光強度Iξは散乱電場の絶対値の2乗と定義することで、次式のように表すことができる。
【0036】
【数2】
Figure 0004234945
Mie公式中の総和(Σ)の各項はそれぞれ、様々な分布の極を持つ電気・磁気多重極による輻射を表す。同一波長では、粒子が大きいほど総和をとるnの値も大きくなる。また、粒子から十分に遠方で、粒径が波長に比べて十分に大きい場合にはいわゆる回折の式が導かれ、十分に小さい場合には電気双極子輻射の式が導かれる。
【0037】
つぎに、Mie公式中の関数の定義と、数値計算に必要な漸化式について説明する。
【0038】
Riccati−Bessel関数
Bessel関数から定義される次の関数をRiccati−Bessel関数と呼ぶ。
【0039】
【数3】
Figure 0004234945
この漸化式は次式のように表すことができる。
【0040】
【数4】
Figure 0004234945
ここで、n=0、又は1の場合は
【数5】
Figure 0004234945
となる。
【0041】
散乱係数
Mie公式中の係数an、bn(散乱係数)はRiccati−Bessel関数を用いて、次のように表される。
【0042】
【数6】
Figure 0004234945
ここでα及びβは以下の式となる。
【0043】
【数7】
Figure 0004234945
ここでdは粒子の直径、mは粒子の屈折率(一般に複素数)、λは波長を表す。このパラメータαは粒径(正確には粒子の中心を含む断面の円周)と波長の比である。
【0044】
n、bnの計算には次のアルゴリズムを用いる。
【0045】
【数8】
Figure 0004234945
として、散乱係数の表式を書き換えると、次のとおりである。
【0046】
【数9】
Figure 0004234945
Legendre関数
前述の式(1)における、Legendre関数の求め方を説明する。
【0047】
【数10】
Figure 0004234945
πn(cosθ)、τn(cosθ)は以下のように定義する。
【0048】
【数11】
Figure 0004234945
計算に用いる漸化式は以下のようになる。
【0049】
【数12】
Figure 0004234945
遠方での近似式と光散乱に関する物理量
実用的なMie公式は、先に示した厳密解よりも、散乱体(球形粒子)から十分に遠い(r>>λ)領域での表式である。
【0050】
Riccati−Bessel関数ξn(kr)の遠方での近似式は、次のと おりである。
【0051】
【数13】
Figure 0004234945
これをMie公式に代入すると、
【数14】
Figure 0004234945
が得られる。
【0052】
ここで振幅関数を導入する。
【0053】
【数15】
Figure 0004234945
これらを用いてMie公式を書き換えると、
【数16】
Figure 0004234945
となり、更にこれを行列の積の形で表わすと次のようになる。
【0054】
【数17】
Figure 0004234945
入射光の進行方向と散乱の方向で作る面を散乱面という。振幅関数はそれらを結び付ける役割を持ち、Mie公式を用いた計算の中心部分である。
【0055】
この式を一般化した、任意の形状の散乱体による電場の散乱を記述する式は、次のとおりである。
【0056】
【数18】
Figure 0004234945
この式は、散乱体が球形のときには対称性からS(θ,φ)はφに依存せず、またS2=S3=0となってMie公式に一致する。
【0057】
ここで、ウエハ表面検査装置であることを考慮し、散乱光強度(または散乱光量)を、散乱電場の絶対値の2乗をもって定義する。
【0058】
本願発明の好ましい容態においては、散乱電場の絶対値の2乗を散乱光強度とすることで「散乱光」と「散乱電場」とを特に区別せずに用いることができる。これにより前述の式(1)〜(4)を基本として相対的な散乱光強度を演算により求めることが可能となり、装置の較正に係る負担を低減することができる。
【0059】
【実施例】
以下、本発明の実施例を説明する。
【0060】
ウエハ上粒子の散乱モデル
粒子がウエハ上にある場合の散乱光強度の計算は、光学的条件が複雑ということもあり、これまで行われていなかった。本発明では理論的考察を元に散乱モデルの基礎を組立て、付加的要素を補正項として適用することで、上記条件における散乱光強度をも演算可能とする。(なお、補正項の決定には実測値を参考とすることも可能である)
この補正項は、具体的には、予め計算値が実測値に合うように補正係数又は補正関数を掛けて、光学的条件を変えて実験検証を行い、さらなる修正を加えることで精度を上げることが可能となる。
【0061】
図1は、ウエハ上粒子の散乱モデルの出発点として、入射光が粒子に散乱され、それが受光されるまでの過程を単純化した0次モデルを示す。
【0062】
まず入射光が粒子に到達するまでの光路は、
a1:粒子に直接入射するもの
a2:ウエハで反射してから粒子に入射するもの
を考え、一方、散乱光が検出器に受光されるまでの光路として、
b1:検出器に直接受光されるもの
b2:ウエハで反射してから受光されるもの
を考慮する。つまりa1−b1、a1−b2、a2−b1、a2−b2という4種類の光路を通った散乱光が同時に受光されるとし、それらの電場ベクトルを受光面上でベクトル的に加算し、その結果の絶対値の2乗を散乱光強度とする。
【0063】
ここで上記散乱モデルはMieの公式に基づく。
【0064】
このMie公式は、浮遊粒子に対する入射光として無限に広がる平面波を仮定するものであり、以下の計算もその仮定下に成り立つ。表面検査装置の入射レーザー光がウエハ面上に集光するものの場合、厳密には平面波ではないが、ビームスポット径は測定(計算)対象となる粒子に比べて充分に大きく、さらに散乱はほぼビームウエストで発生することから、ほぼ平面波として扱っても実質的に問題はない。
【0065】
さらにMie公式での仮定の通り、入射光は単波長かつ直線偏光であり、粒子は均質かつ等方的な球で、1つのビームスポット内に複数の粒子は存在しないとし、またウエハも等方的で、表面粗さは無視する。
【0066】
ウエハの分類と散乱モデル
膜付ウエハは、大きく2つのタイプに分けられる。1つは膜表面の反射のみを考慮すればよいもので、表面を透過する光量が小さく、かつ透過しても膜中で吸収されるアルミなどの金属膜で、ベアシリコンもこの分類に含まれる。それに対して膜表面を透過する光量が大きく、ウエハ表面とシリコン表面の、少なくとも2つの反射面を考慮しなければならないものがある。それらは酸化膜や窒化膜等の透過膜と、膜厚の極めて薄い(材料物質によるが、概ね入射光の波長以下)金属膜である。
【0067】
ベアウエハと金属膜付ウエハ
ベアウエハについては、上記の0次モデルに補正係数を掛けることで実測値に対して精度の高い計算値が得られる。この補正係数は、入射光と反射光のクロスする領域で起こる定在波(明暗の縞)の考察から、粒子に入射するパワーの加減の効果を、粒径や入射角に応じて算出される。この係数によってベアウエハ及び金属膜については、表面材質の光学定数を置き換えるだけで同様の計算を行うことが可能となる。
【0068】
透過膜付ウエハ
酸化膜や窒素膜等の透過膜付ウエハでは膜内における反射により反射面が2つ以上存在する。
【0069】
そこで、本発明では、透過膜モデルへのアプローチとして、個々の光路を追跡するために0次モデルを拡張する手法を用いる。
【0070】
ここでは単層膜のみを想定する。
【0071】
透過膜モデルにおける0次モデルとの相違点は、図2に示すように、ウエハに向かう散乱光を‘膜表面で反射して検出器に向かうもの’と‘膜中でn回の反射を繰り返してから検出器に向かうもの’とに分ける点である。
【0072】
なお多重散乱の効果を考慮する場合は、さらに‘シリコン表面で反射して再度粒子に入射して散乱を起こすもの’に関しても考慮が必要となる。
【0073】
入射光の反射には、膜表面の反射率ではなく、膜とシリコン基板を一体化した合成反射率を用いる。
【0074】
透過膜付ウエハモデルの補正
酸化膜により実測を行うと、直径0.208μmのPSL粒子の散乱光が膜厚の変化に応じて周期的に変化する。
【0075】
それに対して上述の透過膜モデルによる計算値の変化の位相は実測値に対して、位相が所定値だけスライドした状態の周期の強度変化を示す。そこで計算式中の強度変化の位相に寄与する要素部分にスライド分を補正可能とする補正項を適用することで、実測値と極めて近い透過膜付きウエハモデルの散乱光強度をシミュレートすることが出来る。
【0076】
散乱モデル計算
次に(数式を交えながら)透過膜付ウエハ上粒子の散乱光量計算の手順を示す。この計算は図3に図示したフローに沿って行われる。
【0077】
なお、ここでは単層膜に限定しているが、多層膜への拡張や、膜厚を0と置いてベアシリコンや金属膜付ウエハへの適用も可能である。
【0078】
パラメータ設定
計算に用いる光学的パラメータを設定する。与えるパラメータは、
(a) 入射光の波長、シリコンの屈折率、膜の屈折率、PSLの屈折率
(b) 入射角、検出角(仰角、方位角)、入射偏光(sまたはp)、粒径、膜厚である。ここで長さの単位は全てμmとする。入射強度は1とする。次に与えたパラメータを用いて合成反射率と、Mie公式で使用する各係数を計算する。
【0079】
ウエハ上座標
ウエハ表面上の所定位置における点を原点とし、ウエハ面に鉛直に上向きを正としてz軸をとり、入射面とウエハ面の光線をx軸として入射光の進む向きを正とし、その両者に垂直に右手系でy軸をとる。そして散乱光の検出位置(表面検査装置の受光光学素子のおける受光面の中心)を、仰角・方位角・原点からの距離(任意に設定:例えば104)から計算し、粒子の中心を原点として極座標で表 す。
【0080】
さらに検出NAの範囲で積分する場合には、この位置を中心に円を描き、適当に分割してそれぞれの位置を極座標で表して以下の計算を繰り返す。
【0081】
Mie公式用の座標に変換
Mie公式による計算のプログラムを利用するために、ウエハ上の座標からMie公式用の座標に変換する。
【0082】
Mie公式用の座標とは、粒子の中心を原点として、入射光の進行方向にz′軸、入射光の電場の偏光方向にx′軸、その両者に垂直にy′軸をとり、それに対応した極座標---すなわち、原点から観測点までの距離をr′,z′軸と散乱 光の観測方向との成す角をθ′,z′軸と観測方向とで作る面(散乱面)と入射電場の偏光方向との成す角をφ′とする---を意味し、散乱計算にはその(r′ ,θ′,φ′)を与える。
【0083】
散乱モデルで考慮する散乱光は、入射光軸が2通り(直接入射、反射後入射)、散乱直後に進む方向が3通り(直接検出、反射後検出、粒子に再入射)であるから、次の6通りの光路を経て観測点に到達する(図2参照)。
【0084】
a1:粒子に直接入射するもの
a1−b1 検出器に向かうもの
a1−b2 ウエハで反射して検出器に向かうもの(膜内部での反射を含む)
a1−b3 シリコンで反射して再び粒子に入射するもの
a2:ウエハで反射してから粒子に入射するもの
a2−b1 検出器に向かうもの
a2−b2 ウエハで反射して検出器に向かうもの(膜内部での反射を含む)
a2−b3 シリコンで反射して再び粒子に入射するもの
したがって、6つの(r′,θ′,φ′)の組合せが得られる。ここでa1−b2、a2−b2については、ウエハで反射する光と、膜中をN回往復してから検出器に向かう光との干渉を考慮に入れる。膜中の往復回数は、計算値が概ね収束するN=5とする。
【0085】
なお、ここで行う座標変換は入射光の偏光方向(s偏光またはp偏光)によって、変換式が異なる。
【0086】
光路ごとの散乱光の計算
座標変換によって散乱電場の計算が可能となるが、a1−b1以外の計算では、Mie公式を利用した計算以外の補正を要する。まずa2では入射光(電場)にウエハの合成反射率(振幅反射率)を掛ける。次にa1−b2、a2−b2は計算後に膜中での往復回数に応じて膜表面やシリコン表面の振幅反射率、振幅透過率、光路差による位相差の項を掛ける。a1−b3、a2−b3はそれ自体を入射光として、再度Mie公式用の座標変換を行って散乱電場を計算する。ここで3度目の散乱は考慮せず、それぞれb1とb2のみを考える。
【0087】
散乱光の座標統一と散乱光のベクトル和
計算した散乱電場をベクトル的に加算するために、同一の座標に変換する。ここでは、表面検査装置の検出光学系に偏光フィルタが存在する場合は、その効果を計算に取り入れるために、ウエハ上の座標に統一する。
【0088】
補正項
補正項について述べる。
【0089】
この補正項の追加によって計算値と実測値の溝が埋まり、表面検査装置における実験則が確立できた。
【0090】
酸化膜実験の結果によると、散乱光強度は膜厚に対して周期的に変化するが、位相がずれる可能性も考慮するため、強度変化の位相に関する補正項を追加した。具体的には入射光の反射光や散乱光の反射光に対して任意の位相差を与える。
入射光の反射光
入射光がウエハで反射した後に粒子に入射するとき、その強度は元の入射光が1に対してウエハの合成反射率となる。計算の性質上、この部分は複素電場で表現しており、入射電場と合成振幅反射率との積がその後の計算の入射電場となる。ここではこの合成振幅反射率にさらに位相項を乗じる。
【0091】
散乱電場の干渉
散乱光がウエハで反射して検出器に向かう場合、膜中を1〜N往復した後に検出器に向かう光との干渉を考慮する。各膜中反射光の光路差にしたがってそれぞれ位相差を乗じてそれらの総和をとり、粒子から直接検出器に向かう光とのベクトル和をとる。ここではさらに、その両者の間に位相差を与える。
【0092】
散乱モデルの表式
これまでの計算を数式にまとめる。上述の2つの補正項については最後に記述する。
【0093】
まず、ウエハ上の極座標で観測点の位置をP(r,θ,φ)として、原点を粒子の中心に移し、所定の光路にしたがってMie公式用の座標に変換して散乱光を計算する。
【0094】
(1)a1−b1:粒子に直接入射→検出器
Mie公式にAを与えて計算される散乱電場の、散乱面(入射光軸と散乱の方向とで作る面)に垂直な成分と平行な成分を次のようにおく。
【0095】
【数19】
Figure 0004234945
Mie公式用の座標で表した観測点の位置は(r1’,θ1’,φ1’)となる 。これは、入射光がウエハに対してs偏光かp偏光かに依存する。
【0096】
【数20】
Figure 0004234945
(2)a1−b2 :粒子に直接入射→反射後に検出器
観測点の位置をMie公式用の座標に変換したものを(r2’,θ2’,φ2’ )とすると、
【数21】
Figure 0004234945
となる。
【0097】
これを以後の計算のため、散乱の方向とウエハの法線で作る面に対して垂直な成分と平行な成分に分け直して、
観測点の位置をMie公式用の座標に変換したものを(r2’,θ2’,φ2’ )とすると、
【数22】
Figure 0004234945
となる。
【0098】
これを用いて膜中を回往復する成分との干渉を考慮すると、下記式となる。
【0099】
【数23】
Figure 0004234945
光路差に起因する位相差δは下記式となる。
【0100】
【数24】
Figure 0004234945
(3)a1−b3 :粒子に直接入射→反射後粒子に入射
これまでと同様に観測点の位置をMie公式用の座標に変換したものを(r3 ’,θ3’,φ3’)とすると、散乱電場は、
【数25】
Figure 0004234945
となる。
【0101】
この場合は散乱光が粒子の真下に向かうので、入射面と散乱面が一致している。従って、新たな入射光は、
【数26】
Figure 0004234945
である。この入射光は2つに分けて計算するが、両者は共通の散乱面に関して記述されるので1つの式で表すと、
【数27】
Figure 0004234945
となる。ここで
(r4’,θ4’,φ4’)、(r5’,θ5’,φ5’)は、2つの入射光について、観測点の位置をMie公式用の座標に変換したもの、および
【数28】
Figure 0004234945
である。
【0102】
(4)a2−b1 :反射後に粒子に入射→検出器
s偏光、p偏光を選択すると下記式となる。
【0103】
【数29】
Figure 0004234945
(5)a2−b2 :反射後に粒子に入射→反射後に検出器
Mie公式用の座標に変換した観測点の位置を(r7’,θ7’,φ7’)として散乱電場は下記式となる。
【0104】
【数30】
Figure 0004234945
a1−b2と同様に、散乱の方向とウエハの法線で作る面に対して垂直な成分と平行な成分に分けて、
【数31】
Figure 0004234945
とする。これを用いて膜中をn回往復する成分との干渉を考慮すると、下記式となる。
【0105】
【数32】
Figure 0004234945
(6)a2−b3 :反射後に粒子に入射→反射後粒子に入射
Mie公式用の座標に変換した観測点の位置を(r8’,θ8’,φ8’)とし て散乱電場は下記式となる。
【0106】
【数33】
Figure 0004234945
a1−b3と同様に考えると、下記式となる。
【0107】
【数34】
Figure 0004234945
ここで、
(r9’,θ9’,φ9’)、(r10’,θ10’,φ10’):観測点の位置をM ie公式用の座標に変換したもの、および
【数35】
Figure 0004234945
である。
【0108】
以上の各散乱電場のベクトル和が観測点での散乱電場であるから、
【数36】
Figure 0004234945
となり、ここに補正項を加える。
【0109】
ここで下記2つの要素を補正項として加える。
【0110】
▲1▼入射光の反射の際に与える任意の位相差
入射光に合成反射率及び位相差を乗じて下記式となる。
【0111】
【数37】
Figure 0004234945
この補正の影響を受けることを表すために、以下のように書き換えを行う。
【0112】
【数38】
Figure 0004234945
▲2▼a1−b2とa2−b2における、膜表面での反射光と膜中をN往復した反射光との間の任意の位相差
散乱光側の補正項で、a1−b2とa2−b2において、膜表面での反射光と膜中をN往復した反射光との間に、任意の位相差を与える。この位相差は成分ごとに与え、散乱面に垂直な成分にexp(-iΔ2S)を、平行な成分にexp(-iΔ2p)を乗じる。ただしa1−b2、a2−b2の散乱光側の光路は共通であるから、両方に同じΔ2S,Δ2pを与えるものとし、
【数39】
Figure 0004234945
の書き換えを行って、
【数40】
Figure 0004234945
となる。
【0113】
数式36の(13)式は次のように書き換えられて、下記式となる。
【0114】
【数41】
Figure 0004234945
この式が観測点での散乱電場の最終形となる。
【0115】
ただし、実際の計算ではウエハ上の座標に再変換し、次のように、z軸と観測方向とで作る面について垂直な成分及び平行な成分に分けて加算する。
【0116】
【数42】
Figure 0004234945
従って、散乱強度Iscaは、
【数43】
Figure 0004234945
となり、偏光フィルタが存在する場合は、フィルタの偏光軸からのずれをΘ(反時計回りを正)とすると、
【数44】
Figure 0004234945
となる。
【0117】
標準粒子の粒径
好ましくは、表面検査装置が計測する粒径の値は、絶対値を示すものではなく、等価の散乱光を生じるPSL粒子の直径に相当する相対値を示すものとする。このため、PSL粒子塗布ウェーハを用い、検出部に使用しているフォトマルの初期感度設定(適正感度の設定及びフォトマル出力と粒径との値付け)を行う。そして、フォトマルは経時変化に伴う劣化を生じるため、定期的な感度補正を行う。
【0118】
これらのフォトマルの感度設定および補正をキャリブレーション(較正)という。
【0119】
実験例
前述の実験則を加味した数学散乱モデルによる計算値と、表面検査装置を用いた実測値とを比較する。実験条件を表1に示す。
【0120】
【表1】
Figure 0004234945
まず直径0.208μmのPSL粒子を塗布した、膜厚の異なる酸化膜ウエハを順次測定し、膜厚に応じた特性曲線(膜厚vs散乱光強度;特性曲線(粒径vs散乱光強度)との区別のために、このように記す)を得る。
【0121】
次に膜厚200、250、350、500nmの各ウエハに、それぞれ粒径0.208、0.309、0.506、1.001μmのPSL粒子を塗布して、特性曲線を得た。
【0122】
それぞれの実験では、入射偏光と検出方向の組み合わせにより、4通りのモード(s偏光・側方検出、s偏光・前方検出、p偏光・側方検出、p偏光・前方検出)で測定を行った。
【0123】
なお、側方とは入射面に垂直な方向を含む領域であり、前方とは入射面に垂直な面から正反射光に近い方向に40°の領域とする。
【0124】
これらの実験結果に対し、適切な補正項のΔ1、Δ2S、Δ2Pを決定した結果は 、図4及び図5に示す。
【0125】
なお、実測値には、PSL粒子の散乱光強度に応じた電気信号のヒストグラムから算出される、重心位置の電圧値を採用した。
【0126】
図4は、散乱光強度の膜厚特性曲線の実測値と、補正項により修正された計算値を示す。補正項は比較的膜厚の小さなウエハのデータに基づいている。
【0127】
図6は、実験に使用した、表面に酸化膜を形成したウエハの平均値で規格化した膜厚分布を示す。それによると、膜ムラの程度は、そのウエハの膜厚によらず、ほぼ一定であることがわかる。即ち膜厚が大きい(数百nm以上)ほど、膜厚の平均値からのずれが大きくなる。従って、膜厚の大きなウエハの場合、膜ムラに関する補正を考慮する必要がある。
【0128】
図5は、計算した特性曲線と、実測値とを比較して示したものであり、粒径に関するシミュレートの精度を示す。
【0129】
本グラフは両軸とも対数表示であるため、s偏光データ、特に膜厚350nmウエハにおける計算値と実測値との差は、ヒストグラム上での散乱光強度の差としては特に大きなものではない。
【0130】
なお、これら相対散乱光強度の計算値は、縦軸方向に平行移動する補正項を付加している。
【0131】
その他、検出器(PMT)の個体差などの機差要因も補正項とすることができる。
【0132】
また、同手法にて補正項を適用することで、酸化膜以外の膜付ウエハへの応用が可能であり、さらに膜厚を0として金属膜付ウエハやベアシリコンへの応用も可能となる。
【0133】
また、このようにして求められた数学散乱モデルによって計算した特性曲線を基にして、粒子弁別のための閾値(スライスレベル)を自動的に決定することが可能である。
【0134】
較正用ウエハとしては、D−TEOS他の酸化膜付ウエハ、酸化膜以外の透過膜・金属膜付ウエハも採用可能である。
【0135】
一方、本実施例では、透過膜モデルへのアプローチとして0次モデルを拡張して個々の光路を追跡した方法を述べたが、膜が単層、多層にかかわらず合成反射率を予め計算することで、その反射面を有する一つの反射面として扱う方法も選択することができる。
【0136】
【発明の効果】
本発明によれば、検出した散乱光出力とウエハ上の異物の粒径との相関関係を規定するための較正作業において、多数の種々の較正用ウエハを実測することなく、異なる粒径による散乱光強度も求めることができる。それゆえ、較正作業の手間、時間、人員コストの劇的な軽減と作業の高速化が実現できる。
【0137】
本発明は、ベアウエハだけでなく、表面に透過膜等が形成されているウエハについても対応可能である。
【0138】
較正作業を自動化するシステムが実現しやすい。
【0139】
また、“粒径”、“膜の種類”、“膜厚”のそれぞれに対応した較正用ウエハを揃える必要がない。そのため、較正用ウエハの作成コスト、収納スペースの占有、等の負担が大幅に軽減される。
【0140】
また、必要な較正ウエハの枚数分必要であった測定作業自体が不要となり、較正に要する時間が短縮され、捜査員の負担も軽減される。
【0141】
これにより、被検物表面の状態をパラメータとして、その反射特性をシミュレーションすることができる。
【0142】
較正用ウエハの枚数を大幅に減らすことができる。
【0143】
また、ウエハの光学的性質の他に装置自身の光学系の情報、及び装置の応答も、計算により正確に予測可能である。
【図面の簡単な説明】
【図1】基礎散乱モデルを示す概念図。
【図2】透過膜散乱モデルを示す概念図。
【図3】透過膜付ウエハ上粒子の散乱光量計算の手順を示す。
【図4】散乱光強度の膜厚特性曲線の実測値と、補正項により修正された計算値を示す図。
【図5】計算した特性曲線と、実測値との比較を示す図。
【図6】D−TEOSウエハの平均値で規格化した膜厚分布を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention irradiates inspection light onto the surface of a wafer to be inspected, and detects the reflected light and scattered light generated when a foreign substance is present, thereby detecting the foreign substance present on the wafer surface. It relates to an inspection device.
[0002]
[Prior art]
Conventionally, when performing a calibration operation, standard particles selected in advance have been applied onto the wafer, a plurality of calibration wafers having different conditions were created, and the calibration operation was performed using these calibration wafers. That is, the calibration work is performed using a wafer coated with standard particles of a desired size for each film material and film thickness of the film-coated wafer. For example, when it is desired to detect the particle size in 10 stages, ten calibration wafers having different particle sizes are prepared, and the measurement operation is performed for each wafer. At this time, the wafer used for calibration is stored by the user.
[0003]
In addition, if the surface condition (existence of film, film type, film thickness, etc.) of the wafer to be inspected changes, the optical characteristics of the surface also change. Therefore, standard particles with different particle sizes were applied to each surface condition. Calibration wafers must be prepared and measurement operations must be performed.
[0004]
In particular, when the film type formed on the surface is a permeable film such as an oxide film or a nitride film, the scattering characteristics greatly change depending on the film thickness.
[0005]
Note that the standard particles made of PSL may be referred to as PSL particles.
[0006]
[Problems to be solved by the invention]
As described above, many calibration wafers corresponding to each of “particle size”, “film type”, and “film thickness” must be prepared in order to perform calibration work. As a result, it was necessary to carry out the measurement work, and the following large burden was generated.
[0007]
-The labor, time and personnel cost of calibration work are large.
[0008]
・ Cost of creating calibration wafer and large storage space.
[0009]
The number of calibration wafers is generally “number of film types × number of film thickness × number of particle diameters”, so that the number of wafers may be excessive depending on the user, and the wafer size will shift from 200 mm to 300 mm. Therefore, the burden has become greater not only in labor and time including the transfer of the calibration wafer, but also in terms of cost and occupied space for storage.
[0010]
The present invention aims to reduce the calibration work.
[0011]
[Means for lightly resolving issues]
Examples of the solving means of the present invention are as follows.
[0012]
  (1) In a surface inspection apparatus for detecting foreign matter existing on a wafer surface by irradiating inspection light onto the surface of a wafer to be inspected and detecting scattered light generated when the foreign matter is present,By calculating a scattered electric field for each optical path until the foreign object is irradiated with the inspection light and the scattered light is detected, and a mathematical model for obtaining the output intensity of the scattered light based on the sum of the scattered electric fields,Scattered light outputStrengthThe correlation between particle size and particle size on the waferShi,Calibration means for calibrating the surface inspection apparatus based on the correlationA surface inspection apparatus characterized by that.
[0013]
  (2) In a surface inspection apparatus for detecting foreign matter existing on a wafer surface by irradiating inspection light on the surface of the wafer to be inspected and detecting scattered light generated when the foreign matter is present,Calculate the scattered electric field for each optical path from the time when the foreign object is irradiated with the inspection light and the scattered light is detected, and determine the output intensity of the scattered light based on the sum of the scattered electric field. Has the function to calculate the theoretical intensity of scattered light with respect to the diameterA surface inspection apparatus characterized by that.
[0014]
  (3)The mathematical model obtains the output intensity of scattered light using the Mie formula, as described in (2) aboveSurface inspection device.
[0015]
  (4)By applying a correction term for the wafer film type, the output intensity of scattered light for the wafer film type can be calculated.Characterized by seekingThe aforementioned surface inspection device.
[0016]
  (5)By applying a correction term related to the film thickness of the wafer, the output intensity of scattered light with respect to the film thickness of the wafer is calculated.A surface inspection apparatus as described above.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is an apparatus and method for inspecting foreign matter on a wafer using a mathematical model of scattered light.
[0020]
A correlation between the output of scattered light from the wafer surface and the particle size of foreign matter on the wafer is obtained in advance as a mathematical model.
[0021]
For example, an equation based on the “Mie scattering formula” in a scattered electric field is applied to the intensity of scattered light from a foreign substance. This makes it possible to obtain relative scattered light intensities according to various particle sizes by calculation.
[0022]
In addition, by applying the correction term in the above equation, the scattered light intensity can be obtained by calculation even when the film type, film thickness, etc. on the wafer surface are different.
[0023]
That is, the scattered light intensity under a predetermined condition is obtained by calculation based on the optical properties of the measurement target wafer.
[0024]
In this way, it is possible to inspect foreign matter on the wafer by performing desired calibration without actually measuring the calibration wafer. For example, a threshold value can be set for each particle size corresponding to the foreign substance size.
[0025]
That is, the scattered light intensity with respect to the particle diameter, which has been obtained only by actual measurement of the foreign matter on the calibration wafer so far, can be obtained by calculation without actual measurement. Specifically, in the distribution on the histogram, the peak position of the scattered light intensity with respect to the particle diameter can be obtained by calculation based on the peak position corresponding to the particle diameter obtained as the gravity center position.
[0026]
Preferably, the scattered light intensity with respect to the particle diameter can be obtained by calculation by applying the scattered light formula to the scattered light intensity.
[0027]
Further, by applying the correction term, not only the particle diameter but also the film type and film thickness can be obtained as an element for theoretically obtaining the scattered light intensity.
[0028]
According to the present invention, the labor of calibration work can be dramatically reduced, and the work speed can be increased.
[0029]
The present invention can be applied not only to bare wafers but also to other wafers. In particular, a wafer having a permeable film or the like formed on the surface can also be handled.
[0030]
In the present invention, the theoretical calculation is preferably performed using a mathematical model, that is, a mathematical model of the scattered light, for the amount of light scattered by the particles on the wafer and the electrical signal output by detecting the scattered light. In particular, by adding a correction term that includes everything from the scattering phenomenon to the instrument function, the relative scattered light intensity based on the characteristic curve of the wafer (the change in the scattered light intensity due to the change in particle size, which becomes the standard for calibration). Is calculated. Since the characteristic curve of this wafer is unique to the wafer to be measured, it can be obtained by applying a value obtained in advance as a template or by actually measuring it. For example, a characteristic curve obtained by measuring at least one calibration wafer in which standard particles of a certain particle size are applied to a measurement target wafer with respect to a predetermined film type and film thickness, and calculating the measured value. Apply.
[0031]
When scattered light detection is performed in two directions (two PMTs), a wide dynamic range can be secured. In this case, since one wafer measurement is required for each detection channel, at least two wafers are used.
[0032]
In addition, the well-known Mie formula can be used for the mathematical model used as the basis of scattered light intensity calculation.
[0033]
The Mie formula is an exact solution that describes light scattering when a linearly polarized plane wave enters a spherical particle in a uniform medium. In this formula, if wavelength >> particle diameter, Rayleigh scattering, and if wavelength << particle diameter, this corresponds to the expression derived from geometric optics. Detailed solutions that derive the Mie formula starting from the Maxwell equation, and assumptions to avoid losing strictness (particle uniformity / isotropy / nonmagnetism, wavelength invariance, scattering isolation, etc.) are detailed here. Do not mention.
[0034]
Now, let the direction of incident light travel on the z axis, the direction of linearly polarized light of the incident light be the x axis, the zenith angle measured from the z axis be θ, and the azimuth angle measured from the x axis to the y axis be φ, According to the Mie formula, the scattered electric field Es is expressed as follows with respect to polar coordinates.
[0035]
[Expression 1]
Figure 0004234945
By defining the scattered light intensity Iξ as the square of the absolute value of the scattered electric field, it can be expressed as the following equation.
[0036]
[Expression 2]
Figure 0004234945
Each term of the summation (Σ) in the Mie formula represents radiation by electric / magnetic multipoles having poles with various distributions. At the same wavelength, the larger the particle, the larger the value of n taking the sum. When the particle size is sufficiently far from the particle and the particle size is sufficiently larger than the wavelength, a so-called diffraction equation is derived, and when the particle size is sufficiently small, an electric dipole radiation equation is derived.
[0037]
Next, the definition of the function in the Mie formula and the recurrence formula necessary for numerical calculation will be described.
[0038]
Riccati-Bessel function
The next function defined from the Bessel function is called a Riccati-Bessel function.
[0039]
[Equation 3]
Figure 0004234945
This recurrence formula can be expressed as:
[0040]
[Expression 4]
Figure 0004234945
Here, when n = 0 or 1,
[Equation 5]
Figure 0004234945
It becomes.
[0041]
Scattering coefficient
Coefficient a in Mie formulan, BnThe (scattering coefficient) is expressed as follows using the Riccati-Bessel function.
[0042]
[Formula 6]
Figure 0004234945
Here, α and β are as follows.
[0043]
[Expression 7]
Figure 0004234945
Here, d is the diameter of the particle, m is the refractive index of the particle (generally a complex number), and λ is the wavelength. This parameter α is the ratio of the particle size (more precisely, the circumference of the cross section including the center of the particle) to the wavelength.
[0044]
an, BnThe following algorithm is used to calculate.
[0045]
[Equation 8]
Figure 0004234945
As a result, the expression of the scattering coefficient is rewritten as follows.
[0046]
[Equation 9]
Figure 0004234945
Legendre function
A method for obtaining the Legendre function in the above equation (1) will be described.
[0047]
[Expression 10]
Figure 0004234945
πn(Cos θ), τn(Cos θ) is defined as follows.
[0048]
## EQU11 ##
Figure 0004234945
The recurrence formula used for the calculation is as follows.
[0049]
[Expression 12]
Figure 0004234945
Approximate equations in the distance and physical quantities related to light scattering
The practical Mie formula is an expression in a region far enough (r >> λ) from the scatterer (spherical particle) than the exact solution shown above.
[0050]
Riccati-Bessel function ξnThe approximate expression of (kr) in the distance is as follows.
[0051]
[Formula 13]
Figure 0004234945
Substituting this into the Mie formula,
[Expression 14]
Figure 0004234945
Is obtained.
[0052]
Here, an amplitude function is introduced.
[0053]
[Expression 15]
Figure 0004234945
Using these to rewrite the Mie formula,
[Expression 16]
Figure 0004234945
This can be expressed in the form of a matrix product as follows.
[0054]
[Expression 17]
Figure 0004234945
A surface formed by the traveling direction of incident light and the direction of scattering is called a scattering surface. The amplitude function has a role of connecting them, and is the central part of the calculation using the Mie formula.
[0055]
An equation that generalizes this equation and describes the scattering of an electric field by a scatterer having an arbitrary shape is as follows.
[0056]
[Formula 18]
Figure 0004234945
In this equation, when the scatterer is spherical, S (θ, φ) does not depend on φ due to symmetry, and S2 = S3 = 0, which is in agreement with the Mie formula.
[0057]
Here, in consideration of the wafer surface inspection apparatus, the scattered light intensity (or scattered light amount) is defined as the square of the absolute value of the scattered electric field.
[0058]
In a preferable condition of the present invention, “scattered light” and “scattered electric field” can be used without distinction by making the square of the absolute value of the scattered electric field the scattered light intensity. As a result, the relative scattered light intensity can be obtained by calculation based on the above-mentioned formulas (1) to (4), and the burden on the calibration of the apparatus can be reduced.
[0059]
【Example】
Examples of the present invention will be described below.
[0060]
Particle scattering model on wafer
The calculation of the scattered light intensity when the particles are on the wafer has not been performed so far due to the complicated optical conditions. In the present invention, the basis of a scattering model is assembled based on theoretical considerations, and an additional element is applied as a correction term, so that the scattered light intensity under the above conditions can also be calculated. (Note that actual values can be used as a reference for determining correction terms.)
Specifically, this correction term is multiplied by a correction coefficient or correction function so that the calculated value matches the actual measurement value, and the experiment is verified by changing the optical conditions, and the accuracy is improved by making further modifications. Is possible.
[0061]
FIG. 1 shows a zeroth-order model that simplifies the process until incident light is scattered by particles and received as a starting point of the particle scattering model on the wafer.
[0062]
First, the optical path until the incident light reaches the particle is
a1: Directly incident on the particle
a2: Reflected on the wafer and then incident on the particle
On the other hand, as an optical path until the scattered light is received by the detector,
b1: Directly received by the detector
b2: Received after being reflected by the wafer
Consider. In other words, it is assumed that scattered light passing through four types of optical paths, a1-b1, a1-b2, a2-b1, and a2-b2, are received simultaneously, and their electric field vectors are added in a vector form on the light-receiving surface. The square of the absolute value of is the scattered light intensity.
[0063]
Here, the scattering model is based on the Mie formula.
[0064]
This Mie formula assumes a plane wave that spreads infinitely as incident light on suspended particles, and the following calculation is also based on that assumption. In the case where the incident laser light of the surface inspection device is focused on the wafer surface, although it is not strictly a plane wave, the beam spot diameter is sufficiently larger than the particle to be measured (calculated), and the scattering is almost the beam. Since it occurs at the waist, there is virtually no problem even if it is treated as a plane wave.
[0065]
Furthermore, as assumed by the Mie formula, the incident light is single-wavelength and linearly polarized, the particles are homogeneous and isotropic spheres, and there are no multiple particles in one beam spot, and the wafer is isotropic The surface roughness is ignored.
[0066]
Wafer classification and scattering model
Film-coated wafers are roughly divided into two types. One is the one that only needs to consider the reflection on the surface of the film, and the amount of light transmitted through the surface is small and is a metal film such as aluminum that is absorbed in the film even though it is transmitted. Bare silicon is also included in this category. . In contrast, there is a large amount of light transmitted through the film surface, and at least two reflecting surfaces of the wafer surface and the silicon surface must be considered. They are a transmission film such as an oxide film or a nitride film, and a metal film having a very thin film thickness (depending on the material, but generally less than the wavelength of incident light).
[0067]
Bare wafer and wafer with metal film
For a bare wafer, a highly accurate calculated value can be obtained with respect to the actually measured value by multiplying the above zero-order model by a correction coefficient. This correction coefficient is calculated based on the standing wave (bright and dark stripes) that occurs in the region where incident light and reflected light cross, and the effect of adjusting the power incident on the particles is calculated according to the particle size and incident angle. . With this coefficient, the same calculation can be performed for the bare wafer and the metal film only by replacing the optical constant of the surface material.
[0068]
Wafer with permeable membrane
A wafer with a permeable film such as an oxide film or a nitrogen film has two or more reflecting surfaces due to reflection within the film.
[0069]
Therefore, in the present invention, as an approach to the permeable membrane model, a method of extending the 0th-order model to track individual optical paths is used.
[0070]
Here, only a single layer film is assumed.
[0071]
As shown in FIG. 2, the difference between the transmission film model and the zeroth-order model is that the scattered light traveling toward the wafer is reflected at the film surface and directed toward the detector, and is repeatedly reflected n times in the film. It is a point to divide it into 'what goes to the detector afterwards.
[0072]
When considering the effect of multiple scattering, it is also necessary to consider “what is reflected on the silicon surface and incident again on the particles to cause scattering”.
[0073]
For reflection of incident light, not the reflectance of the film surface but the combined reflectance obtained by integrating the film and the silicon substrate is used.
[0074]
Correction of wafer model with permeable membrane
When actual measurement is performed using an oxide film, the scattered light of PSL particles having a diameter of 0.208 μm changes periodically according to the change in the film thickness.
[0075]
On the other hand, the phase of the change of the calculated value by the above-mentioned permeable membrane model shows the intensity change of the period when the phase is slid by a predetermined value with respect to the actually measured value. Therefore, it is possible to simulate the scattered light intensity of a wafer model with a permeable membrane that is very close to the actual measurement value by applying a correction term that enables correction of the slide to the element part that contributes to the phase of intensity change in the calculation formula. I can do it.
[0076]
Scattering model calculation
Next, a procedure for calculating the amount of scattered light of the particles on the wafer with a permeable membrane (with a mathematical formula) will be described. This calculation is performed along the flow shown in FIG.
[0077]
Note that although it is limited to a single-layer film here, it can be applied to a wafer with bare silicon or a metal film by setting it to a multilayer film or setting the film thickness to zero.
[0078]
parameter settings
Set optical parameters for calculation. The parameters given are
(A) Incident light wavelength, silicon refractive index, film refractive index, PSL refractive index
(B) Incident angle, detection angle (elevation angle, azimuth angle), incident polarization (s or p), particle size, and film thickness. Here, the unit of length is all μm. The incident intensity is 1. Next, the composite reflectance and each coefficient used in the Mie formula are calculated using the given parameters.
[0079]
Wafer coordinates
A point at a predetermined position on the wafer surface is the origin, the z-axis is taken vertically upward on the wafer surface, and the light traveling on the incident surface and the wafer surface is taken as the x-axis. Take the y-axis with the right hand system. Then, the detection position of the scattered light (the center of the light receiving surface of the light receiving optical element of the surface inspection apparatus) is set to an elevation angle, an azimuth angle, and a distance from the origin (arbitrary setting: for example, 10Four) And expressed in polar coordinates with the particle center as the origin.
[0080]
Further, when integrating within the range of the detected NA, a circle is drawn around this position, divided appropriately, each position is represented by polar coordinates, and the following calculation is repeated.
[0081]
Convert to Mie formula coordinates
In order to use a calculation program based on the Mie formula, the coordinates on the wafer are converted into coordinates for the Mie formula.
[0082]
The Mie formula coordinates are based on the center of the particle, the z 'axis in the traveling direction of the incident light, the x' axis in the polarization direction of the electric field of the incident light, and the y 'axis perpendicular to both. Polar coordinates --- The surface (scattering plane) that makes the distance between the origin and the observation point r ', z' axis and the observation direction of the scattered light the θ ', z' axis and the observation direction This means that the angle formed by the polarization direction of the incident electric field is φ ′, and (r ′, θ ′, φ ′) is given to the scattering calculation.
[0083]
The scattered light considered in the scattering model has two incident optical axes (direct incident and incident after reflection), and three traveling directions immediately after scattering (direct detection, detection after reflection, and re-incident on particles). The observation point is reached through the six optical paths (see FIG. 2).
[0084]
a1: Directly incident on the particle
to the a1-b1 detector
a1-b2 Reflected by the wafer and directed to the detector (including reflection inside the film)
a1-b3 Reflected by silicon and incident on the particles again
a2: Reflected on the wafer and then incident on the particle
to the a2-b1 detector
a2-b2 Reflected on the wafer and directed to the detector (including reflection inside the film)
a2-b3 Reflected by silicon and incident on the particles again
Therefore, six (r ′, θ ′, φ ′) combinations are obtained. Here, for a1-b2 and a2-b2, the interference between the light reflected from the wafer and the light traveling to the detector after reciprocating N times in the film is taken into consideration. The number of reciprocations in the film is N = 5, where the calculated value converges approximately.
[0085]
The coordinate conversion performed here has different conversion formulas depending on the polarization direction of incident light (s-polarized light or p-polarized light).
[0086]
Calculation of scattered light for each optical path
Although the scattered electric field can be calculated by coordinate conversion, corrections other than the calculation using the Mie formula are required for calculations other than a1-b1. First, in a2, the incident light (electric field) is multiplied by the combined reflectance (amplitude reflectance) of the wafer. Next, a1-b2 and a2-b2 are multiplied by the term of phase difference due to the amplitude reflectance, amplitude transmittance, and optical path difference of the film surface and silicon surface according to the number of round trips in the film after the calculation. a1-b3 and a2-b3 use the light itself as incident light to perform coordinate conversion for the Mie formula again to calculate the scattered electric field. Here, the third scattering is not considered, and only b1 and b2 are considered.
[0087]
Unification of scattered light coordinates and vector sum of scattered light
In order to add the calculated scattered electric field in a vector manner, it is converted into the same coordinates. Here, when a polarizing filter is present in the detection optical system of the surface inspection apparatus, in order to incorporate the effect into the calculation, the coordinates on the wafer are unified.
[0088]
Correction term
The correction term will be described.
[0089]
By adding this correction term, the groove between the calculated value and the actually measured value was filled, and an experimental rule for the surface inspection apparatus could be established.
[0090]
According to the results of the oxide film experiment, although the scattered light intensity periodically changes with respect to the film thickness, a correction term related to the phase of the intensity change was added in order to consider the possibility of phase shift. Specifically, an arbitrary phase difference is given to reflected light of incident light or reflected light of scattered light.
Incident light reflection
When the incident light is incident on the particle after being reflected by the wafer, its intensity is the combined reflectance of the wafer with respect to the original incident light of 1. Due to the nature of the calculation, this part is represented by a complex electric field, and the product of the incident electric field and the combined amplitude reflectance becomes the incident electric field for the subsequent calculation. Here, this combined amplitude reflectance is further multiplied by a phase term.
[0091]
Scattered electric field interference
When the scattered light is reflected by the wafer and travels toward the detector, interference with the light that travels 1 to N times through the film and then travels toward the detector is considered. According to the optical path difference of the reflected light in each film, the phase difference is multiplied to obtain the total sum, and the vector sum with the light directed from the particle directly toward the detector is obtained. Here, a phase difference is further given between the two.
[0092]
Scatter model expression
Summarize the previous calculations into mathematical formulas. The above two correction terms will be described last.
[0093]
First, the position of the observation point is set to P (r, θ, φ) in polar coordinates on the wafer, the origin is moved to the center of the particle, and converted into Mie formula coordinates according to a predetermined optical path to calculate scattered light.
[0094]
(1) a1-b1: Direct incidence on particle → detector
The component perpendicular to the scattering surface (the surface formed by the incident optical axis and the scattering direction) of the scattered electric field calculated by giving A to the Mie formula is set as follows.
[0095]
[Equation 19]
Figure 0004234945
The position of the observation point expressed in the coordinates for Mie formula is (r1′, Θ1′, Φ1’). This depends on whether the incident light is s-polarized or p-polarized with respect to the wafer.
[0096]
[Expression 20]
Figure 0004234945
(2) a1-b2: Directly incident on particles → detector after reflection
What converted the position of the observation point into coordinates for Mie formula (r2′, Θ2′, Φ2’)
[Expression 21]
Figure 0004234945
It becomes.
[0097]
This is divided into a component perpendicular to the plane made by the direction of scattering and the normal of the wafer, and a component parallel to the plane for subsequent calculations.
What converted the position of the observation point into coordinates for Mie formula (r2′, Θ2′, Φ2’)
[Expression 22]
Figure 0004234945
It becomes.
[0098]
Considering interference with a component that reciprocates in the film using this, the following equation is obtained.
[0099]
[Expression 23]
Figure 0004234945
The phase difference δ caused by the optical path difference is expressed by the following formula.
[0100]
[Expression 24]
Figure 0004234945
(3) a1-b3: Directly incident on the particle → incident on the particle after reflection
As in the past, the position of the observation point is converted to the coordinates for Mie formula (rThree ′, ΘThree′, ΦThree′), The scattered electric field is
[Expression 25]
Figure 0004234945
It becomes.
[0101]
In this case, since the scattered light travels directly below the particles, the incident surface and the scattering surface are coincident. Therefore, the new incident light is
[Equation 26]
Figure 0004234945
It is. This incident light is calculated in two parts, but since both are described with respect to a common scattering surface,
[Expression 27]
Figure 0004234945
It becomes. here
(RFour′, ΘFour′, ΦFour’), (RFive′, ΘFive′, ΦFive′) Is obtained by converting the position of the observation point into coordinates for the Mie formula for two incident lights, and
[Expression 28]
Figure 0004234945
It is.
[0102]
(4) a2-b1: incident on particle after reflection → detector
When s-polarized light and p-polarized light are selected, the following formula is obtained.
[0103]
[Expression 29]
Figure 0004234945
(5) a2-b2: incident on particles after reflection → detector after reflection
The scattered electric field is represented by the following equation where the position of the observation point converted to the Mie formula coordinates is (r7 ', θ7', φ7 ').
[0104]
[30]
Figure 0004234945
Similarly to a1-b2, the component is divided into a component perpendicular to the plane made by the scattering direction and the normal of the wafer, and a component parallel to the surface.
[31]
Figure 0004234945
And Considering interference with a component that reciprocates n times in the film using this, the following equation is obtained.
[0105]
[Expression 32]
Figure 0004234945
(6) a2-b3: incident on the particle after reflection → incident on the particle after reflection
The position of the observation point converted to the coordinates for Mie formula is (r8′, Θ8′, Φ8′), The scattered electric field is expressed by the following equation.
[0106]
[Expression 33]
Figure 0004234945
When considered similarly to a1-b3, the following equation is obtained.
[0107]
[Expression 34]
Figure 0004234945
here,
(R9′, Θ9′, Φ9’), (RTen′, ΘTen′, ΦTen′): The position of the observation point converted into coordinates for the Mie formula, and
[Expression 35]
Figure 0004234945
It is.
[0108]
Since the vector sum of the above scattered electric fields is the scattered electric field at the observation point,
[Expression 36]
Figure 0004234945
The correction term is added here.
[0109]
Here, the following two elements are added as correction terms.
[0110]
(1) Arbitrary phase difference given when incident light is reflected
Multiply the incident light by the composite reflectance and the phase difference to obtain the following formula.
[0111]
[Expression 37]
Figure 0004234945
In order to express the influence of this correction, rewriting is performed as follows.
[0112]
[Formula 38]
Figure 0004234945
(2) Arbitrary phase difference between the reflected light on the film surface and the reflected light that has reciprocated N times in the film at a1-b2 and a2-b2.
As a correction term on the scattered light side, at a1-b2 and a2-b2, an arbitrary phase difference is given between the reflected light on the film surface and the reflected light that has reciprocated N times in the film. This phase difference is given for each component, and exp (-iΔ2S) To exp (-iΔ2p). However, since the light paths on the scattered light side of a1-b2 and a2-b2 are common, both have the same Δ2S, Δ2pAnd
[39]
Figure 0004234945
Rewrite
[Formula 40]
Figure 0004234945
It becomes.
[0113]
The expression (13) in Expression 36 is rewritten as follows and becomes the following expression.
[0114]
[Expression 41]
Figure 0004234945
This formula is the final form of the scattered electric field at the observation point.
[0115]
However, in actual calculation, the coordinates are reconverted into coordinates on the wafer, and the planes formed by the z-axis and the observation direction are divided into vertical components and parallel components and added as follows.
[0116]
[Expression 42]
Figure 0004234945
Therefore, the scattering intensity Isca is
[Expression 43]
Figure 0004234945
When there is a polarizing filter, if the deviation from the polarization axis of the filter is Θ (counterclockwise is positive)
(44)
Figure 0004234945
It becomes.
[0117]
Standard particle size
Preferably, the value of the particle size measured by the surface inspection apparatus does not indicate an absolute value, but indicates a relative value corresponding to the diameter of the PSL particle that generates equivalent scattered light. For this reason, the initial sensitivity setting (setting of appropriate sensitivity and pricing of the photomal output and the particle size) used for the detection unit is performed using the PSL particle-coated wafer. Since the photomultiplier deteriorates with time, periodic sensitivity correction is performed.
[0118]
These photomultiplier sensitivity settings and corrections are referred to as calibration.
[0119]
Experimental example
The calculated value based on the mathematical scattering model considering the above experimental rule is compared with the actually measured value using the surface inspection apparatus. Table 1 shows the experimental conditions.
[0120]
[Table 1]
Figure 0004234945
First, oxide film wafers having different film thicknesses coated with 0.208 μm diameter PSL particles were sequentially measured, and a characteristic curve corresponding to the film thickness (film thickness vs. scattered light intensity; characteristic curve (particle diameter vs. scattered light intensity) and For the distinction of
[0121]
Next, PSL particles having particle diameters of 0.208, 0.309, 0.506, and 1.001 μm were applied to wafers having film thicknesses of 200, 250, 350, and 500 nm, respectively, to obtain characteristic curves.
[0122]
In each experiment, measurement was performed in four modes (s-polarization / side detection, s-polarization / front detection, p-polarization / side detection, p-polarization / front detection) depending on the combination of incident polarization and detection direction. .
[0123]
The side is a region including a direction perpendicular to the incident surface, and the front is a region of 40 ° from the surface perpendicular to the incident surface to a direction close to regular reflection light.
[0124]
For these experimental results, an appropriate correction term Δ1, Δ2S, Δ2PThe results of determining are shown in FIG. 4 and FIG.
[0125]
In addition, the voltage value of the gravity center position calculated from the histogram of the electric signal according to the scattered light intensity of PSL particles was adopted as the actual measurement value.
[0126]
FIG. 4 shows the measured value of the film thickness characteristic curve of the scattered light intensity and the calculated value corrected by the correction term. The correction term is based on data of a wafer having a relatively small film thickness.
[0127]
FIG. 6 shows the film thickness distribution normalized by the average value of the wafer having an oxide film formed on the surface used in the experiment. According to this, it can be seen that the degree of film unevenness is substantially constant regardless of the film thickness of the wafer. That is, the deviation from the average value of the film thickness increases as the film thickness increases (several hundred nm or more). Therefore, in the case of a wafer having a large film thickness, it is necessary to consider correction for film unevenness.
[0128]
FIG. 5 shows a comparison between the calculated characteristic curve and the actually measured value, and shows the accuracy of simulation regarding the particle diameter.
[0129]
Since this graph is logarithmic on both axes, the difference between the s-polarized data, particularly the calculated value and the actually measured value for a 350 nm-thickness wafer is not particularly large as the difference in scattered light intensity on the histogram.
[0130]
These calculated values of the relative scattered light intensity are added with a correction term that translates in the direction of the vertical axis.
[0131]
In addition, machine difference factors such as individual differences in the detector (PMT) can also be used as correction terms.
[0132]
Further, by applying the correction term by this method, application to a wafer with a film other than an oxide film is possible, and further, application to a wafer with metal film or bare silicon is possible with a film thickness of zero.
[0133]
Further, it is possible to automatically determine a threshold value (slice level) for particle discrimination based on the characteristic curve calculated by the mathematical scattering model thus obtained.
[0134]
As a calibration wafer, a wafer with an oxide film other than D-TEOS, and a wafer with a permeable film / metal film other than the oxide film can also be employed.
[0135]
On the other hand, in this embodiment, the method of extending the 0th-order model and tracking each optical path as an approach to the transmissive film model has been described. However, the composite reflectance is calculated in advance regardless of whether the film is a single layer or a multilayer. Thus, it is possible to select a method of handling the reflection surface as one reflection surface.
[0136]
【The invention's effect】
According to the present invention, in the calibration operation for defining the correlation between the detected scattered light output and the particle size of the foreign matter on the wafer, the scattering due to different particle sizes can be performed without actually measuring a large number of various calibration wafers. The light intensity can also be obtained. Therefore, it is possible to dramatically reduce the labor, time and personnel cost of the calibration work and to speed up the work.
[0137]
The present invention can be applied not only to a bare wafer but also to a wafer having a permeable film or the like formed on the surface.
[0138]
It is easy to realize a system that automates calibration work.
[0139]
Further, it is not necessary to prepare calibration wafers corresponding to each of “particle size”, “film type”, and “film thickness”. As a result, the burden of creating a calibration wafer, occupying a storage space, and the like are greatly reduced.
[0140]
Further, the measurement work itself required for the required number of calibration wafers becomes unnecessary, the time required for calibration is shortened, and the burden on the investigator is also reduced.
[0141]
Thereby, the reflection characteristic can be simulated using the state of the surface of the test object as a parameter.
[0142]
The number of calibration wafers can be greatly reduced.
[0143]
In addition to the optical properties of the wafer, information on the optical system of the apparatus itself and the response of the apparatus can be accurately predicted by calculation.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a basic scattering model.
FIG. 2 is a conceptual diagram showing a permeable membrane scattering model.
FIG. 3 shows a procedure for calculating a scattered light amount of particles on a wafer with a permeable membrane.
FIG. 4 is a diagram showing an actual measurement value of a film thickness characteristic curve of scattered light intensity and a calculated value corrected by a correction term.
FIG. 5 is a diagram showing a comparison between a calculated characteristic curve and an actual measurement value.
FIG. 6 is a diagram showing a film thickness distribution normalized by an average value of a D-TEOS wafer.

Claims (7)

検査対象となるウエハの表面上に検査光を照射し、異物が存在する場合に生じる散乱光を検出することで、ウエハ表面上に存在する異物を検出する表面検査方法において、
異物に検査光が照射され、散乱光が検出されるまでの光路ごとに散乱電場を計算し、該散乱電場の総和に基づき散乱光の出力強度を求める数学モデルによって、散乱光の出力強度とウエハ上の異物の粒径との相関関係を規定し、該相関関係に基づいて表面検査装置の較正をおこなうことを特徴とする表面検査方法
In the surface inspection method for detecting the foreign matter existing on the wafer surface by irradiating the inspection light on the surface of the wafer to be inspected and detecting the scattered light generated when the foreign matter is present,
The scattered light output intensity and the wafer are calculated by a mathematical model that calculates the scattered electric field for each optical path from the time when the foreign object is irradiated with the inspection light and the scattered light is detected, and obtains the scattered light output intensity based on the sum of the scattered electric fields. A surface inspection method characterized by defining a correlation with the particle size of the foreign matter on the top and calibrating the surface inspection apparatus based on the correlation.
検査対象となるウエハの表面上に検査光を照射し、異物が存在する場合に生じる散乱光を検出することで、ウエハ表面上に存在する異物を検出する表面検査方法において、
異物に検査光が照射され、散乱光が検出されるまでの光路ごとに散乱電場を計算し、該散乱電場の総和に基づき散乱光の出力強度を求める数学モデルによって、ウエハ表面上の異物の粒径に対する散乱光の理論的強度を演算により求めることを特徴とする表面検査方法
In the surface inspection method for detecting the foreign matter existing on the wafer surface by irradiating the inspection light on the surface of the wafer to be inspected and detecting the scattered light generated when the foreign matter is present,
Calculate the scattered electric field for each optical path from the time when the foreign object is irradiated with the inspection light and the scattered light is detected, and calculate the output intensity of the scattered light based on the sum of the scattered electric field. A surface inspection method characterized in that a theoretical intensity of scattered light with respect to a diameter is obtained by calculation.
前記数学モデルは、Mie公式を利用して散乱光の出力強度を求めることを特徴とする請求項1または2に記載の表面検査方法The surface inspection method according to claim 1, wherein the mathematical model obtains an output intensity of scattered light using a Mie formula. ウエハの膜種に関する補正項を適用することで、ウエハの膜種に対する散乱光の出力強度を演算で求めることを特徴とする請求項1〜3のいずれか1項に記載の表面検査方法The surface inspection method according to claim 1, wherein an output intensity of scattered light with respect to the film type of the wafer is obtained by calculation by applying a correction term relating to the film type of the wafer. ウエハの膜厚に関する補正項を適用することで、ウエハの膜厚に対する散乱光の出力強度を演算で求めることを特徴とする請求項1〜4のいずれか1項に記載の表面検査方法5. The surface inspection method according to claim 1, wherein an output intensity of scattered light with respect to the film thickness of the wafer is obtained by calculation by applying a correction term relating to the film thickness of the wafer. 検査対象となるウエハの表面上に検査光を照射する照射手段と、Irradiating means for irradiating inspection light onto the surface of the wafer to be inspected;
該照射手段による検査光の照射により異物が存在する場合に生じる散乱光を検出する検出手段と、Detecting means for detecting scattered light generated when foreign matter is present by irradiation of inspection light by the irradiation means;
異物に検査光を照射する前記照射手段から、散乱光を検出する前記検出手段までの光路ごとに散乱電場を計算し、該散乱電場の総和に基づき散乱光の出力強度を求める数学モデルによって、散乱光の出力強度とウエハ上の異物の粒径との相関関係を規定する演算手段を有し、該演算手段が、該相関関係に基づいて前記表面検査装置の較正をおこなう較正手段を有し、A scattered electric field is calculated for each optical path from the irradiating means for irradiating the inspection light to the foreign matter to the detecting means for detecting scattered light, and the scattered light is scattered by a mathematical model for determining the output intensity of the scattered light based on the sum of the scattered electric fields. Computation means for defining the correlation between the output intensity of light and the particle size of foreign matter on the wafer, the computation means has calibration means for calibrating the surface inspection apparatus based on the correlation,
ウエハ表面上に存在する異物を検出することを特徴とする表面検査装置。A surface inspection apparatus for detecting foreign matter existing on a wafer surface.
検査対象となるウエハの表面上に検査光を照射する照射手段と、
該照射手段による検査光の照射により異物が存在する場合に生じる散乱光を検出する検出手段と、
異物に検査光を照射する前記照射手段から、散乱光を検出する前記検出手段までの光路ごとに散乱電場を計算し、該散乱電場の総和に基づき散乱光の出力強度を求める数学モデルによって、ウエハ表面上の異物の粒径に対する散乱光の理論的強度を演算により求める演算手段を有し、
ウエハ表面上に存在する異物を検出することを特徴とする表面検査装置
Irradiating means for irradiating inspection light onto the surface of the wafer to be inspected;
Detecting means for detecting scattered light generated when foreign matter is present by irradiation of inspection light by the irradiation means;
By calculating a scattered electric field for each optical path from the irradiating unit that irradiates the inspection light to the foreign substance to the detecting unit that detects scattered light, and calculating a scattered light output intensity based on the sum of the scattered electric fields, the wafer Having calculation means for calculating the theoretical intensity of scattered light with respect to the particle size of the foreign matter on the surface,
A surface inspection apparatus for detecting foreign matter existing on a wafer surface .
JP2002129492A 2002-05-01 2002-05-01 Surface inspection method and surface inspection apparatus Expired - Fee Related JP4234945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129492A JP4234945B2 (en) 2002-05-01 2002-05-01 Surface inspection method and surface inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129492A JP4234945B2 (en) 2002-05-01 2002-05-01 Surface inspection method and surface inspection apparatus

Publications (2)

Publication Number Publication Date
JP2003322624A JP2003322624A (en) 2003-11-14
JP4234945B2 true JP4234945B2 (en) 2009-03-04

Family

ID=29542874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129492A Expired - Fee Related JP4234945B2 (en) 2002-05-01 2002-05-01 Surface inspection method and surface inspection apparatus

Country Status (1)

Country Link
JP (1) JP4234945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018059376A1 (en) * 2016-09-30 2018-04-05 上海微电子装备(集团)股份有限公司 Method of detecting particles on panel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572293B2 (en) * 2008-07-07 2014-08-13 株式会社日立ハイテクノロジーズ Defect inspection method and defect inspection apparatus
JP2017122580A (en) * 2014-04-08 2017-07-13 株式会社日立ハイテクノロジーズ Inspecting device and inspection condition determining method
CN110990754B (en) * 2019-11-25 2024-03-22 武汉科技大学 Scattered field calculation method for wafer surface particle defects based on light scattering

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018059376A1 (en) * 2016-09-30 2018-04-05 上海微电子装备(集团)股份有限公司 Method of detecting particles on panel
KR20190051031A (en) * 2016-09-30 2019-05-14 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 How to Detect Particles in the Panel
US10648926B2 (en) 2016-09-30 2020-05-12 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Method of detecting particles on panel
KR102157044B1 (en) 2016-09-30 2020-09-17 상하이 마이크로 일렉트로닉스 이큅먼트(그룹) 컴퍼니 리미티드 How to detect particles in panels

Also Published As

Publication number Publication date
JP2003322624A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
TWI603052B (en) Method, system, and computer-readable medium to generate optimized measurement recipe
US20190094711A1 (en) Detection And Measurement Of Dimensions Of Asymmetric Structures
CN103743349B (en) Method and device for measuring nano film
TWI612291B (en) Film thickness, refractive index, and extinction coefficient determination for film curve creation and defect sizing in real time
US10663408B2 (en) Optical phase measurement system and method
US20130211760A1 (en) Numerical aperture integration for optical critical dimension (ocd) metrology
JP4234945B2 (en) Surface inspection method and surface inspection apparatus
TW201350839A (en) Metrology tool with combined X-ray and optical scatterometers
US9091633B2 (en) Apparatus and method for locating the centre of a beam profile
JP5226510B2 (en) System and method for measuring curvature of optical surfaces
JP2018066608A (en) Light measuring system, and light measuring method
CN113466140B (en) Micro-lens polarization effect calibration method in low-light-spot ellipsometer
JP2017525945A (en) Arrangement for measuring properties and / or parameters of a sample and / or at least one film formed on the sample surface
Weickmann et al. Automatic, task-sensitive and simulation-based optimization of fringe projection measurements
Zhang et al. Stokes parameters polarization scattering properties of optical elements surface of different material
JPS6166947A (en) Flow cell for particle analysis
Stoev et al. Quick X-ray reflectivity of spherical samples
CN111207912A (en) Method for detecting spatial distribution of scattered light beam of optical element
Winkler et al. Building a gonioreflectometer-a geometrical evaluation
Wang et al. LRCS model verification based on the feature selective validation method
JPS61172002A (en) Infrared ray type coating film thickness measuring device
Mahdieh et al. Beckmann formulation for accurate determination of submicron surface roughness and correlation length
Hayashi et al. Total angle-resolved scattering: Characterization of microlens mold surface
Synak Scatter method for measuring roughness of very smooth surfaces: an analysis and preliminary results
JPH04109108A (en) Foreign object inspecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees