JPH04108130U - Combustion gas mixing structure in garbage incinerator - Google Patents

Combustion gas mixing structure in garbage incinerator

Info

Publication number
JPH04108130U
JPH04108130U JP711091U JP711091U JPH04108130U JP H04108130 U JPH04108130 U JP H04108130U JP 711091 U JP711091 U JP 711091U JP 711091 U JP711091 U JP 711091U JP H04108130 U JPH04108130 U JP H04108130U
Authority
JP
Japan
Prior art keywords
combustion
combustion chamber
combustion gas
partition
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP711091U
Other languages
Japanese (ja)
Inventor
善利 関口
邦夫 佐々木
英雄 下谷
正 河野
孝平 浜辺
一夫 家山
守 近藤
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to JP711091U priority Critical patent/JPH04108130U/en
Publication of JPH04108130U publication Critical patent/JPH04108130U/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Chimneys And Flues (AREA)

Abstract

(57)【要約】 【構成】 火格子(7) を備えた1次燃焼室(1) と、その
上方に連設された2次燃焼室(2) とを備えた火格子型ご
み焼却炉において、1次燃焼室(1) 出口部に燃焼ガス流
を分流させる仕切り(11)が設けられていることを特徴と
する、ごみ焼却炉における燃焼ガス混合構造である。 【効果】 1次燃焼室内を上昇してきた燃焼ガスは、仕
切りにより分流された後、仕切り上方で合流し、燃焼ガ
ス同士の衝突が起こる。したがって、渦流が生じて燃焼
ガスがよく混合せられる上に、火炎および未燃分と余剰
空気との混合が効率よく行われ、完全燃焼化が促進され
る。その結果、炭化水素類のようなダイオキシン前駆物
質を含む排ガス中の未燃分が激減し、ダイオキシンの発
生を未然に防いでダイオキシン含有量が極微量または含
まない排ガスを大気中に放出できる。
(57) [Summary] [Configuration] A grate-type waste incinerator equipped with a primary combustion chamber (1) equipped with a grate (7) and a secondary combustion chamber (2) connected above it. This is a combustion gas mixing structure in a waste incinerator, characterized in that a partition (11) is provided at the outlet of the primary combustion chamber (1) to divide the combustion gas flow. [Effect] The combustion gases rising inside the primary combustion chamber are divided by the partitions and then merged above the partitions, causing collisions between the combustion gases. Therefore, a vortex is generated and the combustion gas is well mixed, and the flame, unburned matter, and surplus air are efficiently mixed, and complete combustion is promoted. As a result, the unburned content in the exhaust gas containing dioxin precursors such as hydrocarbons is drastically reduced, the generation of dioxin is prevented, and exhaust gas containing very little or no dioxin can be released into the atmosphere.

Description

【考案の詳細な説明】[Detailed explanation of the idea]

【0001】0001

【産業上の利用分野】[Industrial application field]

この考案は、都市ごみ、産業廃棄物等の焼却に用いられるごみ焼却炉に関し、 より詳細には炉内の燃焼ガスの混合を効果的に行なわしめる燃焼炉の新規構造に 関するものである。 This idea relates to garbage incinerators used for incinerating municipal waste, industrial waste, etc. More specifically, we are developing a new structure for combustion furnaces that effectively mixes the combustion gas inside the furnace. It is related to

【0002】0002

【従来の技術】[Conventional technology]

従来の火格子型ごみ焼却炉は、図7に示すように、火格子(7) を備えた1次燃 焼室(1) と、1次燃焼室(1) の上方に仕切壁(9) によって逆U字状に形成された 2次燃焼室(2) と、2次燃焼室(2) で発生した燃焼ガスを煙道(3) に導くガス排 出路(4) と、ガス排出路(4) における煙道(3) の近傍に設けられた排熱回収装置 (5) および排ガス冷却用熱交換器(6) とを備えている。2次燃焼室(2) の入口に は2次空気供給用ノズル(8) が設けられている。ホッパ(10)内のごみ(R) は火格 子(7) 上に載せられ、火格子(7) の下方から供給される1次空気によって燃焼さ せられ、2次燃焼室(2) には2次空気供給用ノズル(8) から2次空気が供給され る。 A conventional grate-type waste incinerator has a primary combustion chamber equipped with a grate (7), as shown in Figure 7. An inverted U-shape is formed by a partition wall (9) above the combustion chamber (1) and the primary combustion chamber (1). A secondary combustion chamber (2) and a gas exhaust system that guides the combustion gas generated in the secondary combustion chamber (2) to the flue (3). Exhaust heat recovery device installed near the flue (3) in the exit path (4) and the gas exhaust path (4) (5) and an exhaust gas cooling heat exchanger (6). At the entrance of the secondary combustion chamber (2) is equipped with a secondary air supply nozzle (8). The garbage (R) in the hopper (10) is at fire level. It is placed on top of the grate (7) and is combusted by the primary air supplied from below the grate (7). Secondary air is supplied to the secondary combustion chamber (2) from the secondary air supply nozzle (8). Ru.

【0003】 そして、ごみ(R) を焼却することにより発生した燃焼ガスは、図7中に実線お よび破線で示すように、1次燃焼室(1) から上昇してほぼストレートに2次燃焼 室(2) に入り、ガス排出路(4) を通り、排熱回収装置(5) および熱交換器(6) を 経て冷却された後煙道(3) から排出され、図示しない排ガス処理装置に送られる ようになっている。0003 The combustion gas generated by incinerating the garbage (R) is shown by the solid line and the solid line in Figure 7. As shown by the dotted lines, the secondary combustion rises from the primary combustion chamber (1) and goes almost straight. Enter the chamber (2), pass through the gas exhaust path (4), and pass through the exhaust heat recovery device (5) and heat exchanger (6). After being cooled, it is discharged from the flue (3) and sent to an exhaust gas treatment device (not shown). It looks like this.

【0004】0004

【考案が解決しようとする課題】[Problem that the idea aims to solve]

しかしながら、上記のような焼却炉を用いたごみ焼却では、つぎのような問題 がある。 However, when incinerating waste using the above-mentioned incinerator, the following problems arise. There is.

【0005】 すなわち、1次燃焼室(1) からの燃焼ガスは、上記の如く上昇してほぼストレ ートに2次燃焼室(2) に入るため、燃焼ガスの混合性が悪く、そのため一酸化炭 素や炭化水素類、煤などの未燃分が発生しやすい。[0005] In other words, the combustion gas from the primary combustion chamber (1) rises as described above and becomes almost stressed. Because the combustion gas enters the secondary combustion chamber (2) at the Unburnt substances such as carbon atoms, hydrocarbons, and soot are likely to be generated.

【0006】 また、1次燃焼室(1) からの燃焼ガスは、2次燃焼室(2) の上昇路を上昇し、 ついで頂部から下降路を下降する間に温度降下をきたす。1次燃焼室(1) の出口 温度は、灰分の溶融によるクリンカの形成、耐火物寿命の短縮、火格子の焼損、 NOxの発生などの問題から、燃焼に好適な1000℃以上の高温にすることが できず、通常は900℃以下に抑えられている。[0006] In addition, the combustion gas from the primary combustion chamber (1) rises through the ascending path of the secondary combustion chamber (2), Then, while descending from the top down the descending path, the temperature drops. Outlet of primary combustion chamber (1) Temperature increases the risk of clinker formation due to ash melting, shortened refractory life, grate burnout, Due to problems such as the generation of NOx, it is not possible to raise the temperature to over 1000°C, which is suitable for combustion. The temperature is usually kept below 900°C.

【0007】 そのため、2次燃焼室(2) には完全燃焼の目的で2秒間以上の滞留時間を保有 させてはいるが、後流に行くにしたがってガス温度が低下する。ノズル(8) によ って2次燃焼室(2) の入口に2次空気を供給しても、この空気が燃焼ガスとの混 合領域に達すると、ガス温度は上述の如く低下しているため、酸化反応は緩慢に しか進行せず、完全燃焼は達成し難い。その結果、一酸化炭素や炭化水素類、煤 などの未燃分はそのまま燃焼排ガスとともに排出されることとなる。[0007] Therefore, the secondary combustion chamber (2) has a residence time of 2 seconds or more for the purpose of complete combustion. However, the gas temperature decreases as it moves downstream. By nozzle (8) Even if secondary air is supplied to the inlet of the secondary combustion chamber (2), this air will not mix with the combustion gas. When reaching the oxidation region, the oxidation reaction slows down because the gas temperature has decreased as described above. complete combustion is difficult to achieve. As a result, carbon monoxide, hydrocarbons, and soot The unburned components such as these will be emitted as is along with the combustion exhaust gas.

【0008】 また、2次燃焼室(2) のガス流れはいわゆるピストンフローに近いものであり 、ごみの燃焼はごみ投入量の増減、発熱量の変動、ごみ形態の変化などによって 突発的に変動し、しばしば瞬間的に空気不足状態になることがあり、この場合も 一酸化炭素や炭化水素類、煤などの未燃分が排ガスとともに排出される。この原 因は、ピストンフロー状のガス流れでは上流の燃焼ガスと下流の燃焼ガスの混合 がなされず上記の如き瞬間的な空気不足状態が生じることに起因する。[0008] Additionally, the gas flow in the secondary combustion chamber (2) is close to the so-called piston flow. , the combustion of garbage changes depending on the amount of input garbage, fluctuations in calorific value, changes in the form of garbage, etc. It fluctuates suddenly, often resulting in a momentary air shortage, and in this case too. Unburned substances such as carbon monoxide, hydrocarbons, and soot are emitted along with the exhaust gas. this field The reason is that in piston flow gas flow, the upstream combustion gas and downstream combustion gas mix. This is due to the fact that the above-mentioned momentary air shortage condition occurs because the air conditioner is not maintained.

【0009】 こうして排ガス中に多量に含まれる炭化水素類は、いわゆるダイオキシン前駆 物質であって、後流で塩化水素ガスなどの塩化物と反応し、猛毒のダイオキシン を生成するという問題がある。[0009] Hydrocarbons contained in large amounts in exhaust gas are so-called dioxin precursors. A substance that reacts with chlorides such as hydrogen chloride gas in the wake, producing highly toxic dioxin. There is a problem in generating .

【0010】 この考案の目的は、上記問題を解決し、ごみ焼却炉において都市ごみ、産業廃 棄物などを焼却するに際し、未燃分の発生を未然に抑制しうるごみ焼却炉を提供 することにある。0010 The purpose of this invention was to solve the above problems and to dispose of municipal waste and industrial waste in waste incinerators. Providing a garbage incinerator that can prevent the generation of unburned materials when incinerating waste, etc. It's about doing.

【0011】[0011]

【課題を解決するための手段】[Means to solve the problem]

この考案は、上記目的を達成すべく工夫されたものであって、1次燃焼室出口 部に特定の構成品を設置することによって燃焼ガスの混合を効果的になし得ると いう知見により完成せられたものである。 This idea was devised to achieve the above purpose, and the primary combustion chamber outlet Combustion gases can be mixed effectively by installing specific components in the This was completed based on this knowledge.

【0012】 すなわち、この考案は、火格子を備えた1次燃焼室と、その上方に連設された 2次燃焼室とを備えた火格子型ごみ焼却炉において、1次燃焼室出口部に燃焼ガ ス流を分流させる仕切りが設けられているを特徴とする、ごみ焼却炉における燃 焼ガス混合構造である。0012 In other words, this idea consists of a primary combustion chamber equipped with a grate and a combustion chamber connected above it. In a grate-type waste incinerator equipped with a secondary combustion chamber, a combustion gas is installed at the outlet of the primary combustion chamber. Combustion in a waste incinerator characterized by a partition that separates the waste flow. It has a combustion gas mixed structure.

【0013】 この考案の好適な態様においては、上記仕切りの近傍に2次空気供給用ノズル が設置されている。[0013] In a preferred embodiment of this invention, a secondary air supply nozzle is provided near the partition. is installed.

【0014】 2次燃焼室における燃焼ガス温度は好ましくは1000〜800℃の範囲であ る。[0014] The combustion gas temperature in the secondary combustion chamber is preferably in the range of 1000 to 800°C. Ru.

【0015】[0015]

【作用】[Effect]

この考案のごみ焼却炉においては、1次燃焼室出口部に燃焼ガス流を分流させ る仕切りが設けられているので、1次燃焼室内を上昇してきた燃焼ガス流は、仕 切りによって分流された後、仕切りの上方で合流し、燃焼ガス同士の衝突が起こ る。その結果渦流が生じて燃焼ガスがよく混合せられる上に、火炎および未燃分 と余剰空気との混合が効率よく行われ、完全燃焼が達成される。 In the waste incinerator of this design, the combustion gas flow is diverted to the outlet of the primary combustion chamber. Since the combustion gas flow rising inside the primary combustion chamber is After being separated by the partition, they merge above the partition, causing collisions between the combustion gases. Ru. As a result, a vortex is generated and the combustion gases are well mixed, and the flame and unburned components are and surplus air are mixed efficiently and complete combustion is achieved.

【0016】[0016]

【実施例】【Example】

つぎに、図示の実施例によりこの考案を具体的に説明する。なお、前後関係に ついては、図1の左方を前方と称することとする。 Next, this invention will be specifically explained with reference to illustrated embodiments. In addition, in context Therefore, the left side of FIG. 1 will be referred to as the front.

【0017】 図1において、この考案によるごみ焼却炉は、火格子(7) を備えた1次燃焼室 (1) と、1次燃焼室(1) の上方に連設された2次燃焼室(2) と、1次燃焼室(1) に通じるホッパ(10)と、2次燃焼室(2) の入口の前後壁にそれぞれ設けられた2 次空気供給用ノズル(8) とを備えている。さらに、1次燃焼室(2) 出口部には、 燃焼ガス流を分流させる底面がほぼ水平な三角柱状の仕切り(11)が設けられてい る。[0017] In Figure 1, the waste incinerator according to this invention has a primary combustion chamber equipped with a grate (7). (1), a secondary combustion chamber (2) connected above the primary combustion chamber (1), and a primary combustion chamber (1). The hopper (10) leading to the It is equipped with a secondary air supply nozzle (8). Furthermore, at the outlet of the primary combustion chamber (2), A triangular prism-shaped partition (11) with a nearly horizontal bottom is provided to divide the combustion gas flow. Ru.

【0018】 ホッパ(10)内のごみ(R) は火格子(7) の下方から供給される1次空気によって 燃焼させられ、2次燃焼室(2) には2次空気供給用ノズル(8) から2次空気が供 給される。[0018] The garbage (R) in the hopper (10) is removed by the primary air supplied from below the grate (7). The secondary combustion chamber (2) is supplied with secondary air from the secondary air supply nozzle (8). be provided.

【0019】 上記構成において、1次燃焼室(1) 内を上昇してきた燃焼ガスは、仕切り(11) の底面に当たって前方および後方に方向変換させられ、前方流と後方流に分流さ れた後、仕切り(11)側面に沿って上昇する。前方流と後方流は、仕切り(11)上方 で合流し、燃焼ガス同士の衝突が起こる。その結果、渦流が生じて燃焼ガスがよ く混合せられる。[0019] In the above configuration, the combustion gas rising inside the primary combustion chamber (1) is directed through the partition (11). The flow is changed forward and backward when it hits the bottom of the After that, it rises along the side of the partition (11). The forward flow and backward flow are arranged above the partition (11). The combustion gases merge at the point where the combustion gases collide with each other. As a result, a vortex is created and the combustion gas is Mix well.

【0020】 2次空気供給用ノズル(8) は、仕切り(11)のやや上方に配設されており、燃焼 ガス同士の衝突が起こる位置に2次空気を供給することにより、燃焼ガスの混合 がさらに促進せられる。[0020] The secondary air supply nozzle (8) is located slightly above the partition (11), and is Mixing of combustion gases by supplying secondary air to the location where gas collisions occur will be further promoted.

【0021】 図2、図3、図4、図5および図6はこの考案の仕切りの変形例を示すもので ある。[0021] Figures 2, 3, 4, 5 and 6 show modified examples of the partition of this invention. be.

【0022】 まず、図2の例では、仕切り(12)は垂直部(12a) と垂直部(12a) 上端に連なり かつ前方に傾斜した屈曲部(12b) とよりなる。この構成では、1次燃焼室(1) か ら上昇してきた燃焼ガス流は、垂直部(12a) によって前方流と後方流に分流され 、前方流は屈曲部(12b) に当たって前方に方向変換させられてから上昇し、後方 流は垂直部(12a) に沿ってストレートに上昇する。前方流と後方流は、仕切り(1 2)上方で合流し、燃焼ガス同士の衝突が起こる。その結果、渦流が生じて燃焼ガ スがよく混合せられる。また、必要に応じて2次空気を供給する場合もある。[0022] First, in the example in Figure 2, the partition (12) is connected to the vertical part (12a) and the upper end of the vertical part (12a). and a forwardly inclined bent portion (12b). In this configuration, the primary combustion chamber (1) The combustion gas flow rising from the top is divided into a forward flow and a backward flow by the vertical part (12a). , the forward flow hits the bend (12b) and is diverted forward, then rises and flows backward. The flow rises straight along the vertical section (12a). The forward flow and backward flow are separated by a partition (1 2) The combustion gases merge at the top and collide with each other. As a result, a vortex is created and the combustion gas mix well. Further, secondary air may be supplied as necessary.

【0023】 図3の例では、仕切り(13)は垂直部(13a) と垂直部(13a) 上端に連なりかつ後 方に傾斜した屈曲部(13b) とよりなる。この構成では、1次燃焼室(1) 内を上昇 してきた燃焼ガス流は、垂直部(13a) によって前方流と後方流に分流され、後方 流は屈曲部(13b) に当たって後方に方向変換させられてから上昇し、前方流は垂 直部(13a) に沿ってストレートに上昇する。前方流と後方流は、仕切り(13)上方 で合流し燃焼ガス同士の衝突が起こる。その結果、渦流が生じて燃焼ガスがよく 混合せられる。また、必要に応じて2次空気を供給する場合もある。[0023] In the example shown in Figure 3, the partition (13) is continuous with the vertical part (13a) and the upper end of the vertical part (13a), and It consists of a bent part (13b) that is inclined towards the side. In this configuration, the air rises inside the primary combustion chamber (1). The combustion gas flow that has been generated is divided into a forward flow and a backward flow by the vertical part (13a), and the The flow hits the bend (13b) and is redirected backwards before rising, and the forward flow becomes vertical. It rises straight along the straight part (13a). The forward flow and backward flow are arranged above the partition (13). The combustion gases meet and collide with each other. As a result, a vortex is created and the combustion gas is Mixed. Further, secondary air may be supplied as necessary.

【0024】 図4の例では、仕切り(14)は垂直部(14a) と垂直部(14a) 下端に連なりかつ前 方に傾斜した屈曲部(14b) とよりなる。この構成では、1次燃焼室(1) 内を上昇 してきた燃焼ガス流は、屈曲部(14a) に当たって方向変換させられるとともに、 前方流と後方流に分流された後、上昇する。前方流と後方流は、仕切り(14)上方 で合流し燃焼ガス同士の衝突が起こる。その結果、渦流が生じて燃焼ガスがよく 混合せられる。また、必要に応じて2次空気を供給する場合もある。[0024] In the example in Fig. 4, the partition (14) is connected to the vertical part (14a) and the lower end of the vertical part (14a), and It consists of a bent part (14b) that is inclined towards the side. In this configuration, the air rises inside the primary combustion chamber (1). The combustion gas flow hits the bend (14a) and is changed direction, After being divided into a forward flow and a backward flow, it rises. The forward flow and backward flow are arranged above the partition (14). The combustion gases meet and collide with each other. As a result, a vortex is created and the combustion gas is Mixed. Further, secondary air may be supplied as necessary.

【0025】 図5の例では、仕切り(15)は垂直部(15a) と垂直部(15a) 下端に連なりかつ後 方に傾斜した屈曲部(15b) とよりなる。この構成では、1次燃焼室(1) 内を上昇 してきた燃焼ガス流は、屈曲部(15b) に当たって方向変換させられるとともに、 前方流と後方流に分流されて上昇する。前方流と後方流は、仕切り(15)上方で合 流し燃焼ガス同士の衝突が起こる。その結果、渦流が生じて燃焼ガスがよく混合 せられる。また、必要に応じて2次空気を供給する場合もある。[0025] In the example in Figure 5, the partition (15) is connected to the vertical part (15a) and the lower end of the vertical part (15a) and It consists of a bent part (15b) that is inclined towards the opposite direction. In this configuration, the air rises inside the primary combustion chamber (1). The combustion gas flow hits the bend (15b) and is changed direction, It is divided into a forward flow and a backward flow and rises. The forward flow and backward flow meet above the partition (15). Collision between flowing combustion gases occurs. As a result, a vortex is created and the combustion gases are mixed well. be given Further, secondary air may be supplied as necessary.

【0026】 図6の例では、仕切り(16)は垂直部(16a) と垂直部(16a) 下端に連なる逆V字 状の屈曲部(16b) とよりなる。この構成では、1次燃焼室(1) 内を上昇してきた 燃焼ガス流は、屈曲部(16b) に当たって方向変換させられるとともに、前方流と 後方流に分流された後、上昇する。前方流と後方流は、仕切り(16)上方で合流し 燃焼ガス同士の衝突が起こる。その結果、渦流が生じて燃焼ガスがよく混合せら れる。また、必要に応じて2次空気を供給する場合もある。[0026] In the example in Figure 6, the partition (16) is an inverted V-shape that connects the vertical part (16a) and the lower end of the vertical part (16a). It consists of a shaped bent part (16b). In this configuration, the air has risen inside the primary combustion chamber (1). The combustion gas flow hits the bend (16b) and is changed in direction, and is separated from the forward flow. After being diverted into the backward flow, it rises. The forward flow and backward flow meet above the partition (16). Collisions between combustion gases occur. As a result, a vortex is created and the combustion gases are not mixed well. It will be done. Further, secondary air may be supplied as necessary.

【0027】 こうして燃焼ガスがよく混合されると、火炎および未燃分と余剰空気との混合 が効率よく行われ、一酸化炭素や炭化水素類、煤などの未燃分が渦流中で完全に 燃焼され、燃焼が極めて早く完結せられる。[0027] When the combustion gases are well mixed in this way, the flame and unburned gas are mixed with excess air. is carried out efficiently, and unburned substances such as carbon monoxide, hydrocarbons, and soot are completely removed in the vortex. It is burned and the combustion is completed very quickly.

【0028】 また、ピストンフローによる瞬間的空気不足状態から来る一酸化炭素や炭化水 素類、煤などの未燃分の排出は、燃焼ガスの混合が充分になされる結果、激減せ られる。[0028] Also, carbon monoxide and hydrocarbons coming from the momentary air shortage caused by piston flow. Emissions of unburned substances such as soot and soot can be drastically reduced as a result of sufficient mixing of combustion gases. It will be done.

【0029】 焼却炉の各箇所におけるCO濃度を、2次空気を供給した場合としない場合に ついて、測定した結果は次の表1に示す通りである。ただし、この時の2次燃焼 室の入口温度は950〜900℃の範囲に保たれている。[0029] CO concentration at each point in the incinerator with and without supplying secondary air The measured results are shown in Table 1 below. However, the secondary combustion at this time The inlet temperature of the chamber is maintained in the range of 950-900°C.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【考案の効果】[Effect of the idea]

この考案のごみ焼却炉によれば、1次燃焼室出口部に燃焼ガス流を分流させる 仕切りが設けられているので、1次燃焼室内を上昇してきた燃焼ガスは、仕切り により分流された後、仕切り上方で合流し、燃焼ガス同士の衝突が起こる。した がって、渦流が生じて燃焼ガスがよく混合せられる上に、火炎および未燃分と余 剰空気との混合が効率よく行われ、完全燃焼化が促進される。その結果、炭化水 素類のようなダイオキシン前駆物質を含む排ガス中の未燃分が激減し、ダイオキ シンの発生を未然に防いでダイオキシン含有量が極微量または含まない排ガスを 大気中に放出できる。 According to the waste incinerator of this invention, the combustion gas flow is diverted to the outlet of the primary combustion chamber. Since a partition is provided, the combustion gas rising inside the primary combustion chamber is After being separated by the flow, they merge above the partition, causing a collision between the combustion gases. did Therefore, a vortex is generated and the combustion gas is well mixed, and the flame, unburned matter, and surplus are separated. Mixing with surplus air is performed efficiently and complete combustion is promoted. As a result, hydrocarbon water The amount of unburned matter in the exhaust gas containing dioxin precursors such as Preventing the generation of dioxin and producing exhaust gas that contains very little or no dioxins. Can be released into the atmosphere.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この考案によるごみ焼却炉の1具体例を示す垂
直断面図である。
FIG. 1 is a vertical sectional view showing one specific example of a garbage incinerator according to the invention.

【図2】この考案によるごみ焼却炉の1具体例を示す要
部垂直断面図である。
FIG. 2 is a vertical cross-sectional view of the essential parts of a specific example of the garbage incinerator according to the invention.

【図3】この考案によるごみ焼却炉の1具体例を示す要
部垂直断面図である。
FIG. 3 is a vertical cross-sectional view of a main part of a specific example of the garbage incinerator according to the invention.

【図4】この考案によるごみ焼却炉の1具体例を示す要
部垂直断面図である。
FIG. 4 is a vertical cross-sectional view of a main part of a specific example of the garbage incinerator according to the invention.

【図5】この考案によるごみ焼却炉の1具体例を示す要
部垂直断面図である。
FIG. 5 is a vertical cross-sectional view of a main part of a specific example of the garbage incinerator according to the invention.

【図6】この考案によるごみ焼却炉の1具体例を示す要
部垂直断面図である。
FIG. 6 is a vertical sectional view of a main part of a specific example of the garbage incinerator according to the invention.

【図7】従来のごみ焼却炉を示す垂直断面図である。FIG. 7 is a vertical sectional view showing a conventional garbage incinerator.

【符号の説明】[Explanation of symbols]

(1) …1次燃焼室、 (2) …2次燃焼室、 (7) …火格子、 (11)(12)(13)(14)(15)(16)…仕切り。 (1) ...Primary combustion chamber, (2) ...Secondary combustion chamber, (7) …Grate; (11)(12)(13)(14)(15)(16)...Partition.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 河野 正 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)考案者 浜辺 孝平 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)考案者 家山 一夫 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 (72)考案者 近藤 守 大阪市此花区西九条5丁目3番28号 日立 造船株式会社内 ──────────────────────────────────────────────── ─── Continuation of front page (72) Creator Tadashi Kono Hitachi, 5-3-28 Nishikujo, Konohana-ku, Osaka Within Shipbuilding Co., Ltd. (72) Creator Kohei Hamabe Hitachi, 5-3-28 Nishikujo, Konohana-ku, Osaka Within Shipbuilding Co., Ltd. (72) Creator Kazuo Ieyama Hitachi, 5-3-28 Nishikujo, Konohana-ku, Osaka Within Shipbuilding Co., Ltd. (72) Creator Mamoru Kondo Hitachi, 5-3-28 Nishikujo, Konohana-ku, Osaka Within Shipbuilding Co., Ltd.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 火格子(7) を備えた1次燃焼室(1) と、
その上方に連設された2次燃焼室(2) とを備えた火格子
型ごみ焼却炉において、1次燃焼室(1) 出口部に燃焼ガ
ス流を分流させる仕切り(11)(12)(13)(14)(15)(16)が設
けられていることを特徴とする、ごみ焼却炉における燃
焼ガス混合構造。
[Claim 1] A primary combustion chamber (1) equipped with a grate (7);
In a grate-type waste incinerator equipped with a secondary combustion chamber (2) connected above the primary combustion chamber (1), there are partitions (11) (12) ( 13)(14)(15)(16) A combustion gas mixing structure in a garbage incinerator.
JP711091U 1991-02-19 1991-02-19 Combustion gas mixing structure in garbage incinerator Pending JPH04108130U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP711091U JPH04108130U (en) 1991-02-19 1991-02-19 Combustion gas mixing structure in garbage incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP711091U JPH04108130U (en) 1991-02-19 1991-02-19 Combustion gas mixing structure in garbage incinerator

Publications (1)

Publication Number Publication Date
JPH04108130U true JPH04108130U (en) 1992-09-18

Family

ID=31899082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP711091U Pending JPH04108130U (en) 1991-02-19 1991-02-19 Combustion gas mixing structure in garbage incinerator

Country Status (1)

Country Link
JP (1) JPH04108130U (en)

Similar Documents

Publication Publication Date Title
US5241916A (en) Procedure for supplying combustion air and a furnace therefor
US5205227A (en) Process and apparatus for emissions reduction from waste incineration
EP0432293B1 (en) Method for recovering waste gases from coal combustor
US5042400A (en) Method and apparatus for partial combustion of coal
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
JPH04108130U (en) Combustion gas mixing structure in garbage incinerator
JP2003307304A (en) Incinerator
JPH04108129U (en) Combustion gas mixing structure in garbage incinerator
JPH04214109A (en) Combustion gas mixing structure in refuse incinerator
JPH04108131U (en) Combustion gas mixing structure in garbage incinerator
JP4227307B2 (en) Method for reducing harmful substances in exhaust gas and incinerator
JP3092470B2 (en) Two-stream waste incinerator
JPH04240308A (en) Combustion gas mixing structure in refuse incinerator
JPH04115225U (en) Combustion gas mixing structure in garbage incinerator
JPH04108126U (en) Combustion gas mixing structure in garbage incinerator
JP2548514Y2 (en) Combustion gas mixing structure in refuse incinerator
JPH0571706A (en) Combustion method for simultaneously inhibiting nitrogen oxide and incomplete combustion product
JPH07243630A (en) Fluidized bed type incinerator
JP3052737B2 (en) Combustion gas mixing method
JP2654870B2 (en) Garbage incinerator with fan-type spray type secondary air supply nozzle
JPH1163447A (en) Waste incinerator
JP3567756B2 (en) Waste treatment furnace
JP2937737B2 (en) Fluidized bed combustion method and apparatus with partial combustion
JPH085047A (en) Mixing method for combustion gas
KR960002798B1 (en) Process for supplying combustion air and the furnace therefor