JP3052737B2 - Combustion gas mixing method - Google Patents

Combustion gas mixing method

Info

Publication number
JP3052737B2
JP3052737B2 JP6156436A JP15643694A JP3052737B2 JP 3052737 B2 JP3052737 B2 JP 3052737B2 JP 6156436 A JP6156436 A JP 6156436A JP 15643694 A JP15643694 A JP 15643694A JP 3052737 B2 JP3052737 B2 JP 3052737B2
Authority
JP
Japan
Prior art keywords
combustion gas
combustion
upstream
gas
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6156436A
Other languages
Japanese (ja)
Other versions
JPH085046A (en
Inventor
丈彦 青木
隆 能登
隆 横山
三千男 永関
榮一 澁谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP6156436A priority Critical patent/JP3052737B2/en
Priority to TW084105723A priority patent/TW265402B/en
Priority to KR1019950015785A priority patent/KR0133618B1/en
Publication of JPH085046A publication Critical patent/JPH085046A/en
Application granted granted Critical
Publication of JP3052737B2 publication Critical patent/JP3052737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M9/00Baffles or deflectors for air or combustion products; Flame shields
    • F23M9/06Baffles or deflectors for air or combustion products; Flame shields in fire-boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2900/00Special features of, or arrangements for incinerators
    • F23G2900/55Controlling; Monitoring or measuring
    • F23G2900/55006Measuring material flow rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Incineration Of Waste (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、都市ゴミ、下水汚
泥、し尿汚泥および可燃性産業廃棄物等を、ストーカ炉
等の焼却炉(燃焼炉ともいう)によって焼却する際に、
障壁を用いて、ゴミの流れ方向上流側の未燃ガスを多く
含む燃焼ガスと、酸素を多く含む下流側の燃焼ガスとを
衝突させて混合および攪拌し、排ガス中の一酸化炭素お
よび芳香族系炭化水素等を多く含む未燃ガスならびにダ
イオキシンを含む有機塩素化合物等の有害物質を減少さ
せる燃焼ガスの混合方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the incineration of municipal garbage, sewage sludge, human waste sludge, and flammable industrial waste in an incinerator such as a stoker furnace (also called a combustion furnace).
Using a barrier, the combustion gas containing a large amount of unburned gas on the upstream side in the flow direction of garbage and the combustion gas on the downstream side containing a large amount of oxygen collide with each other and are mixed and agitated. The present invention relates to a method for mixing combustion gas for reducing harmful substances such as unburned gas containing a large amount of hydrocarbons and organic chlorine compounds containing dioxin.

【0002】[0002]

【従来の技術】従来、ストーカ炉等の焼却炉によって、
都市ゴミ、下水汚泥、し尿汚泥および可燃性産業廃棄物
等(以下、総称して「都市ゴミ等の廃棄物」という)を
焼却する際に、排ガス中の一酸化炭素および芳香族系炭
化水素等を多く含む未燃ガスならびにダイオキシンを含
む有機塩素化合物等の有害物質(以下、「未燃ガスおよ
び有害物質等」という)の低減が課題となっている。
2. Description of the Related Art Conventionally, incinerators such as stoker furnaces have been used.
When incinerating municipal waste, sewage sludge, human waste sludge, and flammable industrial waste (hereinafter collectively referred to as “waste such as municipal waste”), carbon monoxide and aromatic hydrocarbons in exhaust gas It is an issue to reduce harmful substances such as unburned gas and organic chlorine compounds containing dioxin (hereinafter, referred to as “unburned gas and harmful substances”) containing a large amount of dioxin.

【0003】上記課題を解決する技術として、我々は、
特開平2−166306号公報「発明の名称:ごみ焼却
炉等におけるダイオキシン等の抑制方法」において、以
下の提案を行った。2回流炉と呼ばれているストーカ炉
における燃焼ガスの混合方法において、燃焼ガスをを分
岐するための障壁を設け、未燃ガスを多量に含む燃焼ガ
スと、酸素を多く含む燃焼ガスとを、所定の滞留空間で
混合し、所定時間高温状態を維持することにより、未燃
ガスおよび有害物質等を抑制する方法(以下、「先行技
術1」という)。
[0003] As a technique for solving the above problems, we have
The following proposal was made in Japanese Patent Application Laid-Open No. 2-166306, entitled "Title of Invention: Method for controlling dioxins and the like in refuse incinerators and the like." In a method of mixing combustion gas in a stoker furnace called a two-flow furnace, a barrier for branching the combustion gas is provided, and a combustion gas containing a large amount of unburned gas and a combustion gas containing a large amount of oxygen are provided. A method of suppressing unburned gas, harmful substances, and the like by mixing in a predetermined residence space and maintaining a high temperature for a predetermined time (hereinafter, referred to as “prior art 1”).

【0004】また、実開平4−108130号公報「考
案の名称:ごみ焼却炉における燃焼ガス混合構造」に
は、図11に示すようなストーカ炉において、燃焼室1
の出口1aで燃焼ガスを分流するための障壁6により前
記燃焼ガスの混合を促進する構造について開示されてい
る(以下、「先行技術2」という)。
Further, Japanese Utility Model Laid-Open No. 4-108130 entitled "Invention name: Combustion gas mixing structure in a refuse incinerator" discloses a stoker furnace as shown in FIG.
Discloses a structure for promoting the mixing of the combustion gas by a barrier 6 for diverting the combustion gas at an outlet 1a of the fuel cell (hereinafter referred to as "prior art 2").

【0005】特開平5−126326号公報「発明の名
称:焼却炉」には、流動床炉、ストーカ炉における燃焼
ガスを障壁により混合する方法について開示されている
(以下、「先行技術3」という)。
Japanese Patent Application Laid-Open No. 5-126326 discloses a method of mixing combustion gases in a fluidized-bed furnace or a stoker furnace by means of a barrier (hereinafter referred to as "prior art 3"). ).

【0006】先行技術1〜3のいずれも、焼却炉におい
て燃焼ガスを障壁等により分流した後、再び合流するこ
とにより衝突させて混合および攪拌することにより、未
燃ガスおよび有害物質等を抑制する方法である。
[0006] In any of the prior arts 1 to 3, after the combustion gas is separated by a barrier or the like in the incinerator, it is joined again to collide and mix and agitate, thereby suppressing unburned gas and harmful substances. Is the way.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、先行技
術1〜3のように、単に障壁によって燃焼ガスの分流お
よび合流により混合および攪拌を行うのみでは、排ガス
中に存在する未燃ガスおよび有害物質等を低濃度に抑え
ることは難しいという問題がある。即ち、燃焼ガスの流
量、燃焼ガス温度等を考慮し、燃焼ガスが滞留空間で合
流する際にどのような条件で衝突させ混合および攪拌す
ればよいかという点が重要である。
However, as in the prior arts 1 to 3, simply mixing and stirring by dividing and merging the combustion gas by the barrier does not involve the unburned gas and harmful substances and the like present in the exhaust gas. There is a problem that it is difficult to keep the concentration at a low level. That is, in consideration of the flow rate of the combustion gas, the combustion gas temperature, and the like, it is important to determine under what conditions the combustion gas should collide, mix and stir when the combustion gas merges in the stagnation space.

【0008】先行技術1および2においては、未燃ガス
および有害物質等を低濃度に抑える効果的な混合方法に
関する上記の具体的内容は示されていない。
In the prior arts 1 and 2, the above-mentioned specific contents concerning the effective mixing method for suppressing the unburned gas and harmful substances to a low concentration are not disclosed.

【0009】先行技術3においては、炉壁により形成さ
れた絞り部(障壁と炉壁との間の燃焼ガス流路)の燃焼
ガス流速に関する数値が示されているが、燃焼ガスの流
速は、炉幅および燃焼ガス温度の影響を受けるため燃焼
ガスの流量から一義的に決まらず、燃焼ガスの流速の数
値を限定しても未燃ガスおよび有害物質等を低濃度に抑
えるための効果的な方法を示したことにはならない。
In Prior Art 3, a numerical value relating to the flow rate of the combustion gas at the throttle portion (the flow path of the combustion gas between the barrier and the furnace wall) formed by the furnace wall is shown. Because it is affected by the furnace width and the combustion gas temperature, it is not uniquely determined from the flow rate of the combustion gas.Even if the numerical value of the flow rate of the combustion gas is limited, it is effective to suppress the unburned gas and harmful substances to a low concentration. I'm not showing you how.

【0010】従って、この発明の目的は、都市ゴミ、下
水汚泥、し尿汚泥および可燃性産業廃棄物等をストーカ
炉等の焼却炉で焼却する方法において、障壁によって分
流した燃焼ガスを合流することにより衝突させ混合およ
び攪拌する際に、一酸化炭素および芳香族系炭化水素等
の未燃ガスならびにダイオキシンを含む有機塩素化合物
等の有害物質を低濃度に抑えることができる燃焼ガスの
混合方法を提供することにある。
Accordingly, an object of the present invention is to provide a method for incinerating municipal garbage, sewage sludge, human waste sludge, combustible industrial waste, and the like in an incinerator such as a stoker furnace by combining the combustion gases separated by a barrier. Provided is a method for mixing combustion gas that can suppress unburned gases such as carbon monoxide and aromatic hydrocarbons and harmful substances such as organic chlorine compounds containing dioxin to a low concentration when mixed and stirred by collision. It is in.

【0011】[0011]

【課題を解決するための手段】この発明は、被焼却物を
移動させながら燃焼する火格子が設備された燃焼室を備
える焼却炉において、前記燃焼室の出口近傍に、前記被
焼却物の移動方向上流側の燃焼ガスと前記移動方向下流
側の燃焼ガスとを分岐するための障壁を設け、前記移動
方向上流側において前記被焼却物から多量に発生する未
燃ガスを含む上流側燃焼ガスおよび前記上流側燃焼ガス
よりも酸素を多く含む下流側燃焼ガスを、それぞれ主と
して上流側および下流側の各々から前記障壁と前記燃焼
室炉壁間を通して所定の滞留空間に流入させ、前記滞留
空間で前記上流側燃焼ガスと前記下流側燃焼ガスとを衝
突させて混合する燃焼ガスの混合方法において、前記障
壁と前記燃焼室炉壁との間の前記下流側燃焼ガスの流路
における前記下流側燃焼ガス流量F1と、前記障壁と前
記燃焼室炉壁との間の前記上流側燃焼ガスの流路におけ
る前記上流側燃焼ガス流量F2との比を、F1:F2=
8:2〜5.5:4.5の範囲内とすることに特徴を有
するものである。
SUMMARY OF THE INVENTION The present invention relates to an incinerator having a combustion chamber provided with a grate for burning while moving the incinerated material, wherein the incinerator moves the incinerated material near an outlet of the combustion chamber. Provide a barrier for branching the combustion gas on the upstream side in the direction and the combustion gas on the downstream side in the moving direction, the upstream side combustion gas containing unburned gas generated in large quantities from the incinerated material on the upstream side in the moving direction, and The downstream combustion gas containing more oxygen than the upstream combustion gas flows into the predetermined retention space from the upstream and downstream sides, respectively, through the space between the barrier and the combustion chamber furnace wall. In a method of mixing combustion gas in which an upstream combustion gas and a downstream combustion gas are caused to collide with each other and mixed, the downstream combustion gas in the flow path of the downstream combustion gas between the barrier and the combustion chamber furnace wall. A combustion gas flow rate F1, the ratio between the upstream combustion gas flow rate F2 in the flow path of the upstream combustion gas between the barrier and the combustion chamber furnace wall, F1: F2 =
8: 2 to 5.5: 4.5.

【0012】また、前記下流側燃焼ガスの流路を形成す
る空間の最狭部の断面積A1と、前記上流側燃焼ガスの
流路を形成する空間の最狭部の断面積A2との比を、A
1:A2=8:2〜5.5:4.5の範囲内とすること
に特徴を有するものである。
Also, the ratio of the cross-sectional area A1 of the narrowest portion of the space forming the flow path of the downstream combustion gas to the cross-sectional area A2 of the narrowest portion of the space forming the flow path of the upstream combustion gas. And A
1: A2 = 8: 2 to 5.5: 4.5.

【0013】また、前記下流側の燃焼ガスの流路を形成
する空間の最狭部の最短距離L1および前記上流側の燃
焼ガスの流路を形成する空間の最狭部の最短距離L2
が、それぞれ0.3m以上であることに特徴を有するも
のである。
The shortest distance L1 of the narrowest part of the space forming the flow path of the downstream combustion gas and the shortest distance L2 of the narrowest part of the space forming the flow path of the upstream combustion gas
Are characterized in that each is 0.3 m or more.

【0014】また、前記下流側の燃焼ガスが前記流路を
通過するときの温度および前記上流側の燃焼ガスが前記
流路を通過するときの温度が、それぞれ830℃以上で
あることに特徴を有するものである。
Further, the temperature at which the downstream combustion gas passes through the flow path and the temperature at which the upstream combustion gas passes through the flow path are each 830 ° C. or more. Have

【0015】[0015]

【作用】ダイオキシン等は、その化学構造からこれを含
む排ガスを高温にすると熱分解される性質を有すること
から、焼却炉の燃焼室内底部の火格子上の被焼却物流れ
方向上流側で、被焼却物から再燃焼時の熱源となるC
O、HC等を多く含む未燃ガスを多量に発生させ、この
未燃ガスを所定の滞留空間で酸素を多く含む燃焼ガスと
衝突、混合、攪拌させて前記未燃ガスを完全燃焼に近い
状態で再燃焼し、高温に維持することにより、被焼却物
から発生した排ガス中のダイオキシン等を効率的に熱分
解でき、その発生量を大幅に低減することができる。
[Function] Dioxin and the like have the property of being thermally decomposed when the exhaust gas containing the same is heated to a high temperature due to its chemical structure. C as heat source when reburning from incineration
A state in which a large amount of unburned gas containing a large amount of O, HC, and the like is generated, and the unburned gas collides, mixes, and stirs with a combustion gas containing a large amount of oxygen in a predetermined stagnation space, and the unburned gas is in a state close to complete combustion. By recombusting and maintaining the temperature at a high temperature, dioxins and the like in the exhaust gas generated from the incineration material can be efficiently thermally decomposed, and the amount of the generation can be greatly reduced.

【0016】未燃ガスを多く含む流れ方向上流側の燃焼
ガスと、酸素が多く含まれる流れ方向下流側の燃焼ガス
とを障壁により分流した後、所定の滞留空間で両燃焼ガ
スを再び合流させ衝突させ燃焼させる際に、上述した本
発明の方法により、(1)燃焼ガス流量比、(2)燃焼
ガス流路を形成する空間の最狭部の断面積比、(3)前
記最狭部の最短距離および(4)燃焼ガスが流路を通過
するときの温度を、規定することにより、ダイオキシン
等の低減作用を確実にすることができる。
After the combustion gas on the upstream side in the flow direction containing a large amount of unburned gas and the combustion gas on the downstream side in the flow direction containing a large amount of oxygen are divided by the barrier, the two combustion gases are recombined in a predetermined stagnation space. When colliding and burning, according to the method of the present invention described above, (1) the combustion gas flow rate ratio, (2) the cross-sectional area ratio of the narrowest part of the space forming the combustion gas flow path, (3) the narrowest part By defining the shortest distance of (1) and (4) the temperature at which the combustion gas passes through the flow path, the action of reducing dioxins and the like can be ensured.

【0017】なお、都市ゴミ等の廃棄物の焼却炉(2回
流炉)においては、酸素が多く含まれる燃焼ガスの酸素
濃度は、被焼却物の性状の影響により乾式ベースで9v
ol.%から19vol.%の範囲内で変動する。ま
た、未燃ガスが多く含まれる燃焼ガスにおいては、酸素
濃度が0vol.%を示すこともあり、一酸化炭素濃度
が乾式ベースで0.1vol.%から8vol.%まで
変動する。従って、本発明において、酸素が多く含まれ
る燃焼ガスとは、酸素濃度が乾式ベースで9〜19vo
l.%含まれる燃焼ガスと定義され、未燃ガスが多く含
まれる燃焼ガスとは、一酸化炭素濃度が乾式ベースで
0.1〜8vol.%含まれる燃焼ガスと定義される。
In an incinerator (two-stage incinerator) for waste such as municipal waste, the oxygen concentration of the combustion gas containing a large amount of oxygen is 9 V on a dry basis due to the properties of the incinerated material.
ol. % To 19 vol. %. Further, in a combustion gas containing a large amount of unburned gas, the oxygen concentration is 0 vol. %, And the concentration of carbon monoxide is 0.1 vol. % To 8 vol. %. Therefore, in the present invention, the combustion gas containing a large amount of oxygen means that the oxygen concentration is 9 to 19 vol.
l. % Is defined as a combustion gas containing a large amount of unburned gas, and is defined as a combustion gas having a carbon monoxide concentration of 0.1 to 8 vol. % Defined as combustion gas.

【0018】(1)燃焼ガス流量比を、“F1:F2=
8:2〜5.5:4.5”の範囲内とすることによる作
用:都市ゴミ等の廃棄物をストーカ炉等の焼却炉で燃焼
する場合において、障壁によって分流された、酸素が多
く含まれる下流側の燃焼ガスと、未燃ガスが多く含まれ
る上流側の燃焼ガスとを、所定の滞留空間で再び合流す
ることにより衝突させて混合および攪拌する。前記のス
トーカ炉等の焼却炉(以下、「焼却炉」という)におい
て、燃焼室内の被焼却物(都市ゴミ等の廃棄物)の燃焼
によって生じた燃焼生成ガス(燃焼ガス)は、被焼却物
の元の大きさおよび成分の差異により、被焼却物が移動
する上流側から下流側に至る被焼却物流れ方向の各地点
で、異なったガス組成(主成分は、酸素、一酸化炭素、
二酸化炭素、水蒸気および窒素)、および、異なったガ
ス性状(ガスの粘性、ダスト濃度および粘性等)を有
し、そして、ある大きさの濃度塊を有している。従っ
て、酸素が多く含まれる下流側の燃焼ガス(流量F1)
と、未燃ガスが多く含まれる上流側の燃焼ガス(流量F
2)とに分流した後、流量比(F1:F2で表す)を配
慮せずに再び合流し衝突させ混合および攪拌すると、燃
焼ガス中に存在する未燃ガスおよび有害物質等を低濃度
に抑える十分な効果が得られない。
(1) The combustion gas flow ratio is defined as "F1: F2 =
8: 2 to 5.5: 4.5 ”Action: When waste such as municipal waste is burned in an incinerator such as a stoker furnace, a large amount of oxygen separated by a barrier is contained. The downstream combustion gas and the upstream combustion gas, which contains a large amount of unburned gas, collide and mix and agitate by re-merging in a predetermined stagnation space. (Hereinafter referred to as "incinerator"), the combustion product gas (combustion gas) generated by the combustion of the incinerated material (waste such as municipal waste) in the combustion chamber is the difference in the original size and composition of the incinerated material. Thus, at each point in the incineration flow direction from the upstream side to the downstream side where the incineration moves, different gas compositions (main components are oxygen, carbon monoxide,
Carbon dioxide, water vapor and nitrogen), and different gas properties (gas viscosity, dust concentration and viscosity, etc.) and have a certain size of concentration mass. Therefore, the downstream combustion gas containing a large amount of oxygen (flow rate F1)
And the upstream side combustion gas containing a large amount of unburned gas (flow rate F
2) and then merged again without considering the flow ratio (F1: F2), collided, and mixed and stirred to suppress the unburned gas and harmful substances in the combustion gas to a low concentration. A sufficient effect cannot be obtained.

【0019】上記の効果を十分に得るためには、所定の
滞留空間に流入する燃焼ガスの流路、即ち、障壁と障壁
に相対する炉壁との間の燃焼ガスの流路における、酸素
が多く含まれる下流側の燃焼ガス流量F1と、未燃ガス
が多く含まれる上流側の燃焼ガス流量F2との流量比
を、“F1:F2=8:2〜5.5:4.5”の範囲内
とすべきである。なお、前記流量比は、秒単位の微小時
間における変動は含まず、平均的な流量比を示す。
In order to sufficiently obtain the above-described effects, oxygen in the flow path of the combustion gas flowing into the predetermined stagnation space, that is, the flow path of the combustion gas between the barrier and the furnace wall opposite to the barrier, is required. The flow rate ratio between the downstream combustion gas flow rate F1 including a large amount and the upstream combustion gas flow rate F2 including a large amount of unburned gas is represented by “F1: F2 = 8: 2 to 5.5: 4.5”. Should be within range. Note that the flow rate ratio does not include a fluctuation in a minute time in units of seconds, and indicates an average flow rate ratio.

【0020】“F1:F2=5.5:4.5”より流量
比F1を小さくすると、即ち、酸素が多く含まれる下流
側の燃焼ガス流量F1が、“F1<(5.5/4.5)
・F2”では、上流側の燃焼ガス中の未燃ガスおよび有
害物質等を混合により低減させるために十分な酸素を下
流側燃焼ガスに与えることが出来ず、未燃ガスおよび有
害物質の低減効果が低下する。ここで示す下流側燃焼ガ
ス流量:F1=5.5に相当する十分な酸素量は、未燃
ガスおよび有害物質等の完全燃焼に必要な化学反応式か
ら求まる酸素量よりも大きな量であり、燃焼ガス濃度塊
を微小な濃度塊に崩し燃焼反応を促進する状態を生成
し、未燃ガスおよび有害物質等を完全燃焼するために必
要な量である。
When the flow ratio F1 is made smaller than "F1: F2 = 5.5: 4.5", that is, the flow rate F1 of the downstream combustion gas containing a large amount of oxygen becomes "F1 <(5.5 / 4. 5)
In F2 ″, sufficient oxygen cannot be supplied to the downstream combustion gas to reduce the unburned gas and harmful substances in the upstream combustion gas by mixing, and the effect of reducing the unburned gas and harmful substances is reduced. The sufficient amount of oxygen corresponding to the downstream combustion gas flow rate shown here: F1 = 5.5 is larger than the amount of oxygen obtained from the chemical reaction formula required for complete combustion of unburned gas and harmful substances. It is an amount necessary to break down the combustion gas concentration mass into minute concentration masses to generate a state that promotes the combustion reaction and to completely burn unburned gas and harmful substances.

【0021】一方、“F1:F2=8:2”より流量比
F1を大きくすると、即ち、酸素が多く含まれる下流側
の燃焼ガス流量F1が、“F1>(8/2)・F2”で
は、上流側と下流側の燃焼ガスの流量の差異と、ガス性
状の差異とから、燃焼ガスの流れが大きく乱れ、障壁と
路壁との間の上流側燃焼ガス流路を流れる上流側燃焼ガ
スが、障壁の近傍または炉壁の近傍を通過し、障壁の混
合および攪拌促進効果が低下し、未燃ガスおよび有害物
質等の低減効果が十分に得られない。
On the other hand, if the flow ratio F1 is larger than "F1: F2 = 8: 2", that is, if the flow rate F1 of the downstream combustion gas containing a large amount of oxygen is "F1> (8/2) .F2", Due to the difference in the flow rate of the upstream and downstream combustion gases and the difference in the gas properties, the flow of the combustion gas is greatly disturbed, and the upstream combustion gas flowing through the upstream combustion gas flow path between the barrier and the road wall However, it passes near the barrier or the vicinity of the furnace wall, and the effect of promoting mixing and stirring of the barrier is reduced, and the effect of reducing unburned gas and harmful substances cannot be sufficiently obtained.

【0022】(2)燃焼ガス流路を形成する空間の最狭
部の断面積比を、“A1:A2=8:2〜5.5:4.
5”の範囲内とすることによる作用:焼却炉の炉内圧
は、一般に−5〜−30mmH2 O程度である。この程
度の負圧下では、障壁と燃焼室炉壁との間における酸素
が多く含まれる下流側の燃焼ガス流炉を形成する空間部
の最狭部の断面積A1と、未燃ガスが多く含まれる上流
側の燃焼ガス流炉を形成する空間部の最狭部の断面積A
2との断面積比を、“A1:A2=8:2〜5.5:
4.5”の範囲内とすることにより、上記の燃焼ガス流
量比を、“F1:F2=8:2〜5.5:4.5”の範
囲内とすることができる。
(2) The cross-sectional area ratio of the narrowest part of the space forming the combustion gas flow path is defined as “A1: A2 = 8: 2 to 5.5: 4.
Action by in the range of 5 ":. Furnace pressure incinerators are generally -5~-30mmH 2 O approximately in the negative pressure of this order, that much oxygen between the barrier and the combustion chamber furnace wall The cross-sectional area A1 of the narrowest part of the space forming the downstream combustion gas flow furnace included therein and the cross-sectional area of the narrowest part of the space forming the upstream combustion gas flow furnace containing a large amount of unburned gas A
The cross-sectional area ratio with respect to "A1: A2 = 8: 2 to 5.5:
By setting the ratio within the range of 4.5 ", the above-mentioned combustion gas flow ratio can be set within the range of" F1: F2 = 8: 2 to 5.5: 4.5 ".

【0023】(3)燃焼ガス流路を形成する空間の最狭
部の最短距離L1およびL2を、0.3m以上とするこ
とによる作用:燃焼ガス流量は、被焼却物の性状による
影響で、時々刻々と変化し、上流側および下流側の燃焼
ガスの流れには微小な偏流が生じている。この偏流の影
響により、上流側および下流側を流れる燃焼ガスの流速
にかかわらず、障壁および障壁に相対する炉壁にダスト
が付着および堆積し始め、燃焼ガス流路を閉塞すること
がある。下流側の酸素を多く含む燃焼ガスの流路を形成
する空間の最狭部の最短距離L1および上流側の未燃ガ
スを多く含む燃焼ガス流路を形成する空間の最狭部の最
短距離L2を、それぞれ0.3m以上とすることによ
り、ダストが原因で起こる燃焼ガス流路の閉塞を防止で
きる。
(3) Action by setting the shortest distances L1 and L2 of the narrowest part of the space forming the combustion gas flow path to 0.3 m or more: The combustion gas flow rate is affected by the properties of the incinerated material. It changes every moment, and a minute drift occurs in the flow of the combustion gas on the upstream side and the downstream side. Due to the influence of this drift, dust may start to adhere and accumulate on the barrier and the furnace wall facing the barrier irrespective of the flow velocity of the combustion gas flowing on the upstream side and the downstream side, and may block the combustion gas flow path. The shortest distance L1 of the narrowest part of the space forming the flow path of the combustion gas containing much oxygen downstream and the shortest distance L2 of the narrowest part of the space forming the combustion gas flow path containing much unburned gas upstream. Is 0.3 m or more, it is possible to prevent the combustion gas flow path from being blocked due to dust.

【0024】(4)燃焼ガスが流路を通過するときの温
度を、830℃以上とすることによる作用:本発明で
は、酸素が多く含まれる下流側の燃焼ガスと、未燃ガス
が多く含まれる上流側の燃焼ガスとを、上記の流量比で
混合および攪拌させる方法に、更に、前記燃焼ガスの温
度を830℃以上にするという条件を付加することによ
り、焼却炉出口での一酸化炭素濃度を数ppm(10p
pm未満)に抑えることができる。
(4) Function by setting the temperature at which the combustion gas passes through the flow path to 830 ° C. or higher: In the present invention, the downstream combustion gas containing a large amount of oxygen and the unburned gas contain a large amount. The method of mixing and agitating the upstream combustion gas at the flow rate ratio described above, and further adding a condition that the temperature of the combustion gas is set to 830 ° C. or higher, so that carbon monoxide at the outlet of the incinerator is added. When the concentration is several ppm (10p
pm).

【0025】都市ゴミ等の廃棄物から発生する一酸化炭
素および炭化水素等の未燃成分は、より高温であるほど
分解するが、830℃前後に前記未燃成分の分解率が変
化する温度偏曲点を持つ。この830℃という偏曲点温
度は、燃焼ガス性状、即ち、燃焼ガス中の重金属を含む
ダスト、塩化水素ガスおよび煤等によって影響を受け
る、都市ゴミ等の廃棄物の焼却に特有に見られる温度で
ある。従って、本発明では、前記燃焼ガスの温度を83
0℃以上に限定すべきである。
The unburned components such as carbon monoxide and hydrocarbons generated from waste such as municipal garbage decompose as the temperature increases, but the temperature deviation at which the decomposition rate of the unburned components changes around 830 ° C. Has a curved point. The inflection point temperature of 830 ° C. is a characteristic characteristic of combustion gas properties, that is, a temperature peculiar to the incineration of waste such as municipal garbage, which is affected by dust containing heavy metals, hydrogen chloride gas and soot in the combustion gas. It is. Therefore, in the present invention, the temperature of the combustion gas is set to 83
Should be limited to 0 ° C. or higher.

【0026】例えば、ガスタービンあるいは工業炉等
と、都市ゴミ等の廃棄物の焼却炉とを比較すると、ガス
タービンあるいは工業炉等では、都市ガスまたはプロパ
ン等の燃料を燃焼するクリーン燃焼であり、都市ゴミ等
の廃棄物を燃焼する焼却炉に見られる上記の影響がない
ため、偏曲点温度は、前記都市ゴミ等の廃棄物のそれ
(830℃)よりも数十度低くなる。
For example, comparing a gas turbine or an industrial furnace with an incinerator for waste such as municipal garbage, the gas turbine or the industrial furnace is a clean combustion for burning fuel such as city gas or propane. Since there is no such an effect as seen in an incinerator burning waste such as municipal garbage, the inflection point temperature is several tens of degrees lower than that of the municipal garbage or the like waste (830 ° C.).

【0027】なお、障壁を用いない本発明範囲外の焼却
炉での燃焼ガスの混合方法、あるいは、障壁を用いても
本発明範囲の流量比を外れた燃焼ガスの混合方法におい
ても、前記温度偏曲点である830℃未満では、前記未
燃成分を数ppmに低減させることは困難である。
In the method of mixing combustion gas in an incinerator outside the scope of the present invention without using a barrier, or in the method of mixing combustion gas using a barrier and deviating from the flow rate ratio of the present invention even if a barrier is used, the above-mentioned temperature is not considered. If the inflection point is lower than 830 ° C., it is difficult to reduce the unburned component to several ppm.

【0028】[0028]

【実施例】次に、この発明を図面を参照しながら説明す
る。図2はこの発明の実施例に係る全連続式傾斜火格子
式2回流炉を示す断面図である。図2中の1は全連続式
傾斜火格子式2回流炉(以下、「2回流炉」という)の
燃焼室であり、この燃焼室1の一方側(図2の左側)に
は、被焼却物(都市ゴミ等の廃棄物)7を燃焼室1内に
投入するためのホッパ2が設けられている。燃焼室1の
底部には、被焼却物7を移動させながら燃焼するメッシ
ュ状の火格子11が、ホッパ2から遠ざかる方向に向け
て傾斜して設けられており、この火格子11には2つの
段差が形成されている。火格子11の下部には、燃焼用
空気を供給するための供給管4を連結した空洞ブロック
5が設けられている。ホッパ2と反対側の燃焼室上方に
は燃焼室出口1aが設けられ、出口1aにはここよりも
下流側のガス冷却設備のボイラ部(以下、「ボイラ部」
という)3が接続して設けられている。そして、燃焼室
1内には、出口1aの近傍に、燃焼ガスを分流するため
の障壁(邪魔板ともいう)6が設けられている。
Next, the present invention will be described with reference to the drawings. FIG. 2 is a sectional view showing a fully continuous inclined grate type double-flow furnace according to an embodiment of the present invention. Reference numeral 1 in FIG. 2 denotes a combustion chamber of a fully continuous inclined grate type two-stage furnace (hereinafter, referred to as a "two-stage furnace"), and one side (the left side in FIG. 2) of the combustion chamber 1 is incinerated. A hopper 2 is provided for charging an object (waste such as municipal waste) 7 into the combustion chamber 1. At the bottom of the combustion chamber 1, a mesh-shaped grate 11 that burns while moving the incineration material 7 is provided inclining in a direction away from the hopper 2. A step is formed. At the lower part of the grate 11, there is provided a hollow block 5 to which a supply pipe 4 for supplying combustion air is connected. A combustion chamber outlet 1a is provided above the combustion chamber on the opposite side of the hopper 2, and the outlet 1a has a boiler section (hereinafter, referred to as a "boiler section") of a gas cooling facility downstream of the combustion chamber.
3) are connected to each other. In the combustion chamber 1, a barrier (also referred to as a baffle plate) 6 for diverting the combustion gas is provided near the outlet 1a.

【0029】このような構造の2回流炉における都市ゴ
ミ等の廃棄物の焼却につき、以下に説明する。まず、図
2に示すように、ホッパ2から燃焼室1内に被焼却物7
を投入すると共に、燃焼用空気8を各供給管4および空
洞ブロック5を通して火格子11上を移動する被焼却物
7に供給しながら、被焼却物7を乾燥および燃焼させ
る。このとき、ホッパ2に近い側(上流側)の供給管4
および空洞ブロック5を通して供給される燃焼用空気の
量を、他の側(下流側)の供給管4および空洞ブロック
5を通して供給される燃焼用空気量よりも抑えることに
よって、上流側の被焼却物7から未燃ガスが多量に発生
する。このようにして発生した未燃ガスが多く含まれる
燃焼ガス9(矢印で示す)は、燃焼室1内を上昇し、障
壁6の上方から障壁6と燃焼室1の炉壁との間を通過し
障壁6の背面側(上面側)に流入する。
The incineration of waste such as municipal waste in a two-flow furnace having such a structure will be described below. First, as shown in FIG.
Is supplied to the incinerated material 7 moving on the grate 11 through the supply pipes 4 and the cavity blocks 5 to dry and burn the incinerated material 7. At this time, the supply pipe 4 close to the hopper 2 (upstream side)
And the amount of combustion air supplied through the cavity block 5 is made smaller than the amount of combustion air supplied through the supply pipe 4 and the cavity block 5 on the other side (downstream side), so that the incineration material on the upstream side is reduced. 7 generates a large amount of unburned gas. The combustion gas 9 (indicated by an arrow) containing a large amount of unburned gas thus generated rises in the combustion chamber 1 and passes between the barrier 6 and the furnace wall of the combustion chamber 1 from above the barrier 6. It flows into the back side (upper side) of the barrier 6.

【0030】一方、火格子11の下流側の供給管4およ
び空洞ブロック5を通して供給された空気により完全燃
焼し酸素が多く含まれる燃焼ガス10(矢印で示す)
は、燃焼室1内を上昇して障壁6の下方から障壁6と燃
焼室1の炉壁との間を通過し上記障壁6の背面側に流入
する。
On the other hand, a combustion gas 10 (indicated by an arrow) which is completely burned by air supplied through the supply pipe 4 and the cavity block 5 on the downstream side of the grate 11 and contains a large amount of oxygen.
Rises in the combustion chamber 1, passes between the barrier 6 and the furnace wall of the combustion chamber 1 from below the barrier 6, and flows into the rear side of the barrier 6.

【0031】そして、燃焼ガス9と燃焼ガス10とは、
障壁6の背面側(上面側)の所定の滞留空間で合流し、
ここで燃焼ガス同士の衝突がおこり、所定時間十分に混
合および攪拌され完全燃焼が達成され、高温状態が維持
され、ダイオキシンを含む有機塩素化合物等の有害物質
が熱分解される。そして、燃焼後の排ガス(出口1aか
ら排出された燃焼ガス)は、出口1aよりも下流側のボ
イラ部3に流入し冷却される。
The combustion gas 9 and the combustion gas 10 are
Merge in a predetermined stagnation space on the back side (upper side) of the barrier 6,
Here, the combustion gases collide with each other, and the mixture is sufficiently mixed and stirred for a predetermined time to achieve complete combustion, the high temperature state is maintained, and harmful substances such as organic chlorine compounds including dioxin are thermally decomposed. Then, the exhaust gas after combustion (combustion gas discharged from the outlet 1a) flows into the boiler unit 3 downstream of the outlet 1a and is cooled.

【0032】図8はこの発明の他の実施例に係る2回流
式廃熱ボイラ付き火格子炉を示す断面図である。図8に
示す焼却炉も図2と同様にこの発明の方法の実施によ
り、排ガス内の一酸化炭素および芳香族系炭化水素等を
多く含む未燃ガスならびにダイオキシンを含む有機塩素
化合物等の有害物質を減少し低濃度に抑えることができ
る。
FIG. 8 is a sectional view showing a grate furnace with a double-flow waste heat boiler according to another embodiment of the present invention. The incinerator shown in FIG. 8 is also similar to FIG. 2 in that the implementation of the method of the present invention results in unburned gas containing a large amount of carbon monoxide and aromatic hydrocarbons in exhaust gas and harmful substances such as organic chlorine compounds containing dioxin. Can be reduced to a low concentration.

【0033】図9は焼却炉の障壁の形状の1実施例を示
す断面図、図10は図9のA−A線断面図である。図
9、図10に示す障壁6は、処理量の多い、例えば、1
6.7t/h(400t/24h)以上の場合に有効な
形状である。ストーカ炉においては、処理量に対応して
炉幅が広くなるため、図10に示すように副煙道13を
二分するように支持壁12が設けられている。また、障
壁6および支持壁12は内部に熱交換部を持つ水冷構造
としてもよい。なお、図2、図8、図9、図10は本発
明の1実施例であり、本発明は上記の焼却炉に限定して
適用されるものではない。
FIG. 9 is a sectional view showing an embodiment of the shape of the barrier of the incinerator, and FIG. 10 is a sectional view taken along line AA of FIG. The barrier 6 shown in FIG. 9 and FIG.
This is an effective shape in the case of 6.7 t / h (400 t / 24 h) or more. In the stoker furnace, since the furnace width is increased in accordance with the throughput, the support wall 12 is provided so as to bisect the sub-flue 13 as shown in FIG. In addition, the barrier 6 and the support wall 12 may have a water-cooled structure having a heat exchange section inside. FIGS. 2, 8, 9 and 10 show one embodiment of the present invention, and the present invention is not limited to the above incinerator.

【0034】上述した図2に示す2回流炉を使用し、
(1)流量比、(2)断面積比、(3)閉塞防止効果、
および、(4)温度効果について調べた。
Using the two-flow furnace shown in FIG.
(1) flow rate ratio, (2) cross-sectional area ratio, (3) blockage prevention effect,
And (4) the temperature effect was investigated.

【0035】(1)流量比:焼却処理量(以下、「処理
量」という)が約6トン/時(t/h)の、図2に示す
ボイラ付き2回流炉の障壁6と燃焼室1の炉壁との間の
流路における酸素が多く含まれる下流側の燃焼ガス10
の流量F1と、前記流炉における未燃ガスが多く含まれ
る上流側の燃焼ガス9の流量F2との、流量比を変えて
焼却を実施し、ボイラ部3における排ガス中の一酸化炭
素(CO)の濃度を調べた。なお、一酸化炭素濃度は酸
素濃度によって変化するため、計測の指標である酸素濃
度12vol.%を用いて計測した(以下の一酸化炭素
濃度計測も同様)。その結果を図1に示す。図1に示す
ように、流量比が、“F1:F2=8:2〜5.5:
4.5”の範囲内のとき、その範囲外の流量比のときに
比べて、一酸化炭素の濃度を数ppm(具体的には3p
pm以下)の低さに抑えることができることがわかる。
また、炭化水素濃度についても、一酸化炭素濃度と同様
の挙動を示す。
(1) Flow ratio: The barrier 6 and the combustion chamber 1 of the two-flow furnace with a boiler shown in FIG. 2 having an incineration treatment amount (hereinafter referred to as “treatment amount”) of about 6 tons / hour (t / h). Downstream combustion gas 10 rich in oxygen in the flow path between
The incineration was carried out by changing the flow rate ratio between the flow rate F1 of the combustion gas 9 and the flow rate F2 of the upstream combustion gas 9 containing a large amount of unburned gas in the flow furnace, and carbon monoxide (CO) in the exhaust gas in the boiler section 3 was changed. ) Was examined. Since the concentration of carbon monoxide changes depending on the oxygen concentration, the oxygen concentration of 12 vol. % (The same applies to the following carbon monoxide concentration measurement). The result is shown in FIG. As shown in FIG. 1, the flow ratio is “F1: F2 = 8: 2 to 5.5:
When the flow rate ratio is within the range of 4.5 ″, the concentration of carbon monoxide is reduced to several ppm (specifically, 3
pm or less).
Also, the hydrocarbon concentration shows the same behavior as the carbon monoxide concentration.

【0036】また、これらの一酸化炭素濃度(酸素濃度
12vol.%)に対応したダイオキシン類の濃度(I
−TEQ ng/Nm3 )をボイラ部3で調べた。その
結果を図3に示す。図3に示すように、ダイオキシン類
濃度は、前記流量比“F1:F2=8:2〜5.5:
4.5”に対応した一酸化炭素濃度および全炭化水素濃
度の挙動とほぼ同様の低い値を示すことがわかる。
The dioxin concentration (I) corresponding to the carbon monoxide concentration (oxygen concentration 12 vol.%)
−TEQ ng / Nm 3 ) was examined in the boiler section 3. The result is shown in FIG. As shown in FIG. 3, the dioxin concentration was determined by the flow rate ratio “F1: F2 = 8: 2 to 5.5:
It can be seen that the carbon monoxide concentration and the behavior of the total hydrocarbon concentration corresponding to 4.5 ″ show low values almost similar to the behavior.

【0037】(2)断面積比:図2に示す2回流炉にお
いて、酸素が多く含まれる下流側の燃焼ガス10の流路
を形成する空間の最狭部の断面積A1および未燃ガスが
多く含まれる上流側の燃焼ガス9の流路を形成する最狭
部の空間の断面積A2の流量比に対するボイラ部3の排
ガス中の一酸化炭素濃度を調べた。その結果を図4に示
す。図4に示すように、前記断面積比が“A1:A2=
8:2〜5.5:4.5”のとき、その範囲外の断面積
比のときに比べて、一酸化炭素濃度を低く抑えることが
できることがわかる。また、炭化水素濃度も、一酸化炭
素濃度と同様の挙動を示し、前記断面積比が“A1:A
2=8:2〜5.5:4.5“のとき、その範囲外の断
面積比のときに比べて、低く抑えることができる。
(2) Cross-sectional area ratio: In the two-flow furnace shown in FIG. 2, the cross-sectional area A1 of the narrowest part of the space forming the flow path of the downstream combustion gas 10 containing a large amount of oxygen and the unburned gas are reduced. The concentration of carbon monoxide in the exhaust gas of the boiler unit 3 with respect to the flow rate ratio of the cross-sectional area A2 of the narrowest space forming the flow path of the upstream-side combustion gas 9 that is largely contained was examined. FIG. 4 shows the results. As shown in FIG. 4, the cross-sectional area ratio is “A1: A2 =
8: 2 to 5.5: 4.5 ″, it can be seen that the carbon monoxide concentration can be suppressed lower than when the cross-sectional area ratio is out of the range. It shows the same behavior as the carbon concentration, and the cross-sectional area ratio is “A1: A
When 2 = 8: 2 to 5.5: 4.5 ", the ratio can be suppressed lower than when the cross-sectional area ratio is out of the range.

【0038】次に、処理量が約3〜8t/hの2回流炉
(図2に示す)において、酸素が多く含まれる下流側の
燃焼ガス10の流量F1と、未燃ガスが多く含まれる上
流側の燃焼ガス9の流量F2との流量比“F1:F2”
を変えて燃焼を実施し、下流側の燃焼ガス10の流量F
1と、上流側の燃焼ガス9の流量F2の流量比に対す
る、下流側の燃焼ガス流炉を形成する空間の最狭部の断
面積A1と、上流側の燃焼ガス流炉を形成する空間の最
狭部の断面積A2との断面積比を調べた。その結果を図
5に示す。図5に示すように、断面積比“A1:A2=
8:2〜5.5:4.5”は、流量比“F1:F2=
8:2〜5.5:4.5”の比率とほぼ同じようになる
ことがわかる。処理量が異なる各工場の炉内に取り付け
られた障壁6の位置は、被焼却物の質に応じて大きく異
なるが、障壁6の配置にかかわらず、上記結果は変わら
ない。
Next, in a two-flow furnace (shown in FIG. 2) having a throughput of about 3 to 8 t / h, the flow rate F1 of the downstream combustion gas 10 containing a large amount of oxygen and the unburned gas are contained a lot. Flow rate ratio “F1: F2” with the flow rate F2 of the upstream combustion gas 9
And the combustion is performed, and the flow rate F of the combustion gas 10 on the downstream side is changed.
1 and the cross-sectional area A1 of the narrowest part of the space forming the downstream combustion gas flow furnace with respect to the flow ratio of the flow rate F2 of the upstream combustion gas 9 and the space forming the upstream combustion gas flow furnace. The cross-sectional area ratio with the cross-sectional area A2 of the narrowest part was examined. The result is shown in FIG. As shown in FIG. 5, the cross-sectional area ratio “A1: A2 =
8: 2 to 5.5: 4.5 ”is the flow rate ratio“ F1: F2 =
It can be seen that the ratio is almost the same as the ratio of 8: 2 to 5.5: 4.5 ". The position of the barrier 6 installed in the furnace of each factory having different treatment amounts depends on the quality of the incineration material. However, the above result does not change regardless of the arrangement of the barrier 6.

【0039】(3)閉塞防止効果:図2に示す2回流炉
において、障壁6によって分流された未燃ガスが多く含
まれる上流側の燃焼ガス9の流路を形成する空間の最狭
部の最短距離L2を本発明範囲外の0.25mとし、燃
焼ガス9の流速を1m/s、6m/sまたは15m/s
とし、前記各流速において燃焼ガス9の流量F2を変化
させ、前記最狭部の詰まりを調べた。なお、流量F2の
変化は被焼却物の処理量を変化させることによって実施
した。その結果、燃焼ガス流量が時々刻々と変動し、微
小な偏流の影響により、障壁6および障壁6と相対する
燃焼室1の炉壁に燃焼ガス中を浮遊しているダストが流
速に関係なく付着および堆積し始め、やがて前記流路を
閉塞した。
(3) Blocking prevention effect: In the two-stage furnace shown in FIG. 2, the narrowest part of the space forming the flow path of the upstream combustion gas 9 containing a large amount of unburned gas divided by the barrier 6 is formed. The shortest distance L2 is set to 0.25 m outside the range of the present invention, and the flow rate of the combustion gas 9 is set to 1 m / s, 6 m / s or 15 m / s.
The flow rate F2 of the combustion gas 9 was changed at each of the flow rates, and clogging of the narrowest portion was examined. The flow rate F2 was changed by changing the processing amount of the incineration material. As a result, the flow rate of the combustion gas fluctuates from time to time, and dust floating in the combustion gas adheres to the barrier 6 and the furnace wall of the combustion chamber 1 facing the barrier 6 irrespective of the flow velocity due to the influence of the minute drift. Then, the deposition started, and the flow path was closed.

【0040】次に、図2に示す2回流炉において、障壁
6によって分流された未燃ガスが多く含まれる上流側の
燃焼ガス9の流路を形成する空間の最狭部の最短距離L
2がどの程度必要なのかを調査した。即ち、最短距離L
2を0.17mから0.51mの間で変化させて、前記
最狭部の詰まりを調べた。なお、前記最狭部の最短距離
L2は、前記流路内に煉瓦を積むことにより変化させ
た。試験は、一般都市ゴミ、プラスチックゴミ、
プラスチックおよび不燃物を含む分別ゴミ、一般都市
ゴミおよび下水汚泥の混合、一般都市ゴミおよびし尿
汚泥の混合、ならびに、下水汚泥の前記〜うちの
何れかを被焼却物として使用して実施した。燃焼ガス流
速は、被焼却物の性状により、2m/sから17m/s
の間で変化させた。その結果、被焼却物の燃焼ガス流量
の変動および被焼却物の性状による変動によって、前記
最狭部の最短距離L2が0.3m未満のときに、燃焼ガ
スの流速にかかわらず、前記流路を流れる燃焼ガス中を
浮遊しているダストが障壁6および障壁6と相対する燃
焼室1の炉壁に付着および堆積し始め、やがて前記流路
を閉塞し、操業に支障をきたした。一方、前記最狭部の
最短距離L2が0.3m以上のとき、ダストの付着およ
び堆積はなかった。
Next, in the two-flow furnace shown in FIG. 2, the shortest distance L of the narrowest part of the space forming the flow path of the upstream combustion gas 9 containing a large amount of unburned gas separated by the barrier 6 is formed.
We investigated how much 2 was needed. That is, the shortest distance L
2 was changed from 0.17 m to 0.51 m, and the clogging of the narrowest portion was examined. Note that the shortest distance L2 of the narrowest portion was changed by stacking bricks in the channel. Tests include general urban waste, plastic waste,
Separation waste containing plastic and incombustibles, mixing of general municipal garbage and sewage sludge, mixing of general municipal garbage and night soil sludge, and using any one of the above-mentioned sewage sludge as incineration materials. The combustion gas flow rate ranges from 2 m / s to 17 m / s depending on the properties of the incineration material.
Varied between. As a result, when the shortest distance L2 of the narrowest portion is less than 0.3 m due to fluctuations in the flow rate of the combustion gas of the incineration material and fluctuations in the properties of the incineration material, the flow path does not matter regardless of the flow rate of the combustion gas. Dust floating in the combustion gas flowing through the chamber starts to adhere and accumulate on the barrier 6 and the furnace wall of the combustion chamber 1 opposed to the barrier 6, and eventually blocks the flow passage, thereby hindering the operation. On the other hand, when the shortest distance L2 of the narrowest portion was 0.3 m or more, there was no adhesion and accumulation of dust.

【0041】(4)温度効果:図2に示す2回流炉によ
って都市ゴミ等の廃棄物を燃焼した場合における、燃焼
室出口1aの燃焼ガス温度(以下、「炉出口温度」とい
う)の変化に対する、ボイラ部3の排ガス中の一酸化炭
素濃度の挙動を調べた。その結果を実線によって図6に
示す。比較のため、一般工業炉においても同様に、プロ
パン燃焼排ガスの炉出口温度の変化に対する、排ガス中
の一酸化炭素濃度の挙動を調べた。その結果を破線によ
って図6に併せて示す。
(4) Temperature effect: The change in the combustion gas temperature at the combustion chamber outlet 1a (hereinafter referred to as "furnace outlet temperature") when the waste such as municipal waste is burned by the two-flow furnace shown in FIG. The behavior of the concentration of carbon monoxide in the exhaust gas of the boiler section 3 was examined. The result is shown in FIG. 6 by a solid line. For comparison, the behavior of the concentration of carbon monoxide in the exhaust gas of a general industrial furnace with respect to the change of the outlet temperature of the propane combustion exhaust gas was similarly examined. The result is also shown in FIG. 6 by a broken line.

【0042】図6からわかるように、都市ゴミ等の廃棄
物を燃焼した場合は、830℃以上が未燃成分の分解率
が変化する温度偏曲点となるため、炉出口温度を、前記
温度偏曲点である830℃以上とすることにより、一酸
化炭素濃度を数ppm程度に抑えることができることが
わかる。即ち、2回流炉において都市ゴミ等の廃棄物を
燃焼したとき、燃焼ガス中には、消炎効果がある塩素系
の塩化水素ガスおよび重金属等を含む、その成分が複雑
なダストが生成されるため、プロパン燃焼時と比べ、燃
焼ガス性状が複雑になり、一酸化炭素および炭化水素等
の未燃成分を低濃度にするための温度偏曲点に数十度の
温度差が生じ、図6に示すように都市ゴミ等の廃棄物の
燃焼の温度偏曲点(●印)の方がプロパン燃焼の温度偏
曲点(▲印)より高くなる。
As can be seen from FIG. 6, when waste such as municipal waste is burned, the temperature inflection point at which the decomposition rate of unburned components changes above 830 ° C. It can be seen that the concentration of carbon monoxide can be suppressed to about several ppm by setting the inflection point to 830 ° C. or higher. That is, when waste such as municipal waste is burned in a double-flow furnace, dust containing complex components including chlorine-based hydrogen chloride gas and heavy metals having a fire-extinguishing effect is generated in the combustion gas. Compared with propane combustion, the properties of the combustion gas become complicated, and a temperature difference of several tens of degrees occurs at the temperature inflection point for lowering the unburned components such as carbon monoxide and hydrocarbons. As shown, the temperature inflection point (indicated by ●) of combustion of waste such as municipal waste is higher than that in propane combustion (indicated by ▲).

【0043】次に、図2に示す、処理量が約6t/hの
ボイラ付き2回流炉において、酸素が多く含まれる下流
側の燃焼ガス10の流量F1と、未燃ガスが多く含まれ
る上流側の燃焼ガス流量9の流量F2との流量比の変化
に対するボイラ部3の排ガス中の一酸化炭素濃度を調べ
た。このときの、酸素が多く含まれる下流側の燃焼ガス
10の平均温度は、700℃から900℃までの間で変
化させた。一方、未燃ガスが多く含まれる上流側の燃焼
ガス9の温度は900℃以上とした。その結果を図7に
示す。図7から、一酸化炭素濃度が数ppm(10pp
m未満)程度に低下するのは、下流側燃焼ガス温度が8
30℃以上のときであることがわかる。
Next, in a two-flow furnace with a boiler with a throughput of about 6 t / h shown in FIG. 2, the flow rate F1 of the downstream combustion gas 10 containing a large amount of oxygen and the upstream flow containing a large amount of unburned gas The concentration of carbon monoxide in the exhaust gas of the boiler unit 3 with respect to the change in the flow rate ratio of the combustion gas flow rate 9 on the side to the flow rate F2 was examined. At this time, the average temperature of the downstream combustion gas 10 containing a large amount of oxygen was changed between 700 ° C and 900 ° C. On the other hand, the temperature of the upstream combustion gas 9 containing a large amount of unburned gas was 900 ° C. or higher. FIG. 7 shows the result. FIG. 7 shows that the concentration of carbon monoxide was several ppm (10 pp).
m) when the downstream combustion gas temperature is 8
It turns out that it is the time of 30 degreeC or more.

【0044】また、処理量が約5.5t/hの2回流炉
における前記流量比を、本発明範囲内の“F1:F2=
7:3”とし、前記下流側の燃焼ガス10の温度を83
0℃とし、前記上流側の燃焼ガス9の温度を850℃し
た場合のボイラ部3の一酸化炭素濃度を測定した結果、
その濃度を数ppmに抑えることができた。
Further, the flow rate ratio in a two-stage furnace having a processing amount of about 5.5 t / h is set to “F1: F2 =
7: 3 ″, and the temperature of the downstream combustion gas 10 is 83
As a result of measuring the carbon monoxide concentration of the boiler unit 3 when the temperature of the upstream side combustion gas 9 was set to 850 ° C.
The concentration could be suppressed to several ppm.

【0045】[0045]

【発明の効果】以上説明したように、この発明によれ
ば、都市ゴミ、下水汚泥、し尿汚泥および可燃性産業廃
棄物等を、ストーカ炉等の焼却炉によって焼却する際
に、障壁により、ゴミの流れ方向上流側の未燃ガスを多
く含む燃焼ガスと、酸素を多く含む下流側の燃焼ガスと
を分流した後、再び合流することにより衝突させて混合
および攪拌する方法において、燃焼ガス流量比、燃焼ガ
ス流路を形成する空間の最狭部の断面積比、前記最狭部
の最短距離、および、燃焼ガスが流路を通過するときの
温度を規定したことにより、排ガス内の一酸化炭素およ
び芳香族系炭化水素等を多く含む未燃ガスならびにダイ
オキシンを含む有機塩素化合物等の有害物質を減少し低
濃度に抑えることができ、かくして、工業上有用な効果
がもたらされる。
As described above, according to the present invention, when municipal garbage, sewage sludge, human waste sludge, and combustible industrial waste are incinerated by an incinerator such as a stoker furnace, the waste is eliminated by a barrier. In the method in which the combustion gas containing a large amount of unburned gas on the upstream side in the flow direction and the combustion gas on the downstream side containing a large amount of oxygen are diverted and then joined again to collide and mix and stir, the combustion gas flow ratio By defining the cross-sectional area ratio of the narrowest part of the space forming the combustion gas flow path, the shortest distance of the narrowest part, and the temperature at which the combustion gas passes through the flow path, the monoxide in the exhaust gas is defined. Harmful substances such as unburned gas containing a large amount of carbon and aromatic hydrocarbons and organic chlorinated compounds containing dioxin can be reduced to a low concentration, thus providing an industrially useful effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に係る、処理量が約6t/h
のボイラ付き全連続式傾斜火格子式2回流炉における、
酸素が多く含まれる下流側の燃焼ガス流量F1と未燃ガ
スが多く含まれる上流側の燃焼ガス流量F2との流量比
“F1:F2”に対する、ボイラ部の排ガス中の一酸化
炭素濃度を示すグラフである。
FIG. 1 shows a processing amount of about 6 t / h according to an embodiment of the present invention.
Of the continuous continuous inclined grate type double-flow furnace with boiler of
Shows the concentration of carbon monoxide in the exhaust gas of the boiler section with respect to the flow ratio “F1: F2” of the downstream combustion gas flow rate F1 containing a large amount of oxygen and the upstream combustion gas flow rate F2 containing a large amount of unburned gas. It is a graph.

【図2】この発明の実施例に係る全連続式傾斜火格子式
2回流炉を示す断面図である。
FIG. 2 is a sectional view showing a fully continuous inclined grate type double-flow furnace according to an embodiment of the present invention.

【図3】この発明の実施例に係る、排ガス中の一酸化炭
素濃度に対応したダイオキシン類の濃度を示すグラフで
ある。
FIG. 3 is a graph showing the concentration of dioxins corresponding to the concentration of carbon monoxide in exhaust gas according to the example of the present invention.

【図4】この発明の実施例に係る、ボイラ付き全連続式
傾斜火格子式2回流炉における酸素が多く含まれる下流
側の燃焼ガス流路を形成する空間の最狭部の断面積A1
と、未燃ガスが多く含まれる上流側の燃焼ガス流路を形
成する空間の最狭部の断面積A2との断面積比“A1:
A2”に対する、ボイラ部の排ガス中の一酸化炭素濃度
を示すグラフである。
FIG. 4 is a cross-sectional area A1 of a narrowest part of a space forming a downstream combustion gas flow path containing a large amount of oxygen in a fully continuous inclined grate type double-flow furnace with a boiler according to an embodiment of the present invention.
And the cross-sectional area ratio “A1: of the cross-sectional area A2 of the narrowest part of the space forming the upstream combustion gas flow path containing a large amount of unburned gas.
It is a graph which shows carbon monoxide density | concentration in the exhaust gas of a boiler part with respect to A2 ".

【図5】この発明の実施例に係る、処理量が約3〜8t
/hのボイラ付き全連続式傾斜火格子式2回流炉におけ
る、酸素が多く含まれる下流側の燃焼ガス流量F1と、
未燃ガスが多く含まれる上流側の燃焼ガス流量F2との
流量比“F1:F2”に対する、酸素が多く含まれる下
流側の燃焼ガス流路を形成する空間の最狭部の断面積A
1と、未燃ガスが多く含まれる上流側の燃焼ガス流路を
形成する空間の最狭部の断面積A2との断面積比“A
1:A2”を示すグラフである。
FIG. 5 shows a processing amount of about 3 to 8 t according to the embodiment of the present invention.
/ H, a downstream side combustion gas flow rate F1 containing a large amount of oxygen in a fully continuous inclined grate type double-flow furnace with a boiler of
The cross-sectional area A of the narrowest part of the space forming the downstream combustion gas flow path containing a large amount of oxygen with respect to the flow ratio “F1: F2” to the flow rate F2 of the upstream combustion gas containing a large amount of unburned gas.
1 and the cross-sectional area ratio “A2” of the cross-sectional area A2 of the narrowest part of the space forming the upstream combustion gas flow path containing a large amount of unburned gas.
1: A2 ″.

【図6】この発明の実施例に係る、プロパン燃焼と都市
ゴミ等の廃棄物燃焼との炉出口温度に対するボイラ部の
排ガス中の一酸化炭素濃度の挙動を示すグラフである。
FIG. 6 is a graph showing the behavior of the concentration of carbon monoxide in the exhaust gas of the boiler section with respect to the furnace exit temperature of propane combustion and combustion of waste such as municipal waste, according to the embodiment of the present invention.

【図7】この発明の実施例に係る、処理量が約6t/h
のボイラ付き全連続式傾斜火格子式2回流炉において、
酸素が多く含まれる下流側の燃焼ガスの平均温度を70
0℃から900℃までの間で変化させた場合における、
酸素が多く含まれる下流側の燃焼ガス流量F1と、未燃
ガスが多く含まれる上流側の燃焼ガス流量F2との流量
比“F1:F2”に対する、ボイラ部の排ガス中の一酸
化炭素濃度を示すグラフである。
FIG. 7 shows a processing amount of about 6 t / h according to the embodiment of the present invention.
In a fully continuous inclined grate type double-flow furnace with a boiler,
The average temperature of the downstream combustion gas containing a large amount of oxygen is 70
When changed between 0 ° C and 900 ° C,
The carbon monoxide concentration in the exhaust gas of the boiler section is defined as the flow ratio “F1: F2” between the downstream combustion gas flow rate F1 containing a large amount of oxygen and the upstream combustion gas flow rate F2 containing a large amount of unburned gas. It is a graph shown.

【図8】この発明の他の実施例に係る2回流式廃熱ボイ
ラ付き火格子炉を示す断面図である。
FIG. 8 is a sectional view showing a grate furnace with a two-flow waste heat boiler according to another embodiment of the present invention.

【図9】焼却炉の障壁の形状の1実施例を示す断面図で
ある。
FIG. 9 is a sectional view showing an embodiment of a shape of a barrier of an incinerator.

【図10】図9のA−A線断面図である。FIG. 10 is a sectional view taken along line AA of FIG. 9;

【図11】従来のストーカ炉の1例を示す断面図であ
る。
FIG. 11 is a sectional view showing an example of a conventional stoker furnace.

【符号の説明】[Explanation of symbols]

1:燃焼室 1a:燃焼室出口 2:ホッパ 3:ボイラ部 4:供給管 5:空洞ブロック 6:障壁 7:被焼却物 8:燃焼用空気 9:未燃ガスが多く含まれる燃焼ガス 10:酸素が多く含まれる燃焼ガス 11:火格子 12:支持壁 13:副煙道 1: Combustion chamber 1a: Combustion chamber outlet 2: Hopper 3: Boiler 4: Supply pipe 5: Cavity block 6: Barrier 7: Incineration material 8: Combustion air 9: Combustion gas containing a large amount of unburned gas 10: Combustion gas containing much oxygen 11: Grate 12: Support wall 13: Secondary flue

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永関 三千男 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 澁谷 榮一 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平3−233207(JP,A) 実開 平3−5034(JP,U) (58)調査した分野(Int.Cl.7,DB名) F23G 5/00 109 F23G 7/06 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Michio Nagaseki 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Eiichi Shibuya 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Japan (56) References JP-A-3-233207 (JP, A) JP-A-3-5034 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) F23G 5 / 00 109 F23G 7/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被焼却物を移動させながら燃焼する火格
子が設備された燃焼室を備える焼却炉において、前記燃
焼室の出口近傍に、前記被焼却物の移動方向上流側の燃
焼ガスと前記移動方向下流側の燃焼ガスとを分岐するた
めの障壁を設け、前記移動方向上流側において前記被焼
却物から多量に発生する未燃ガスを含む上流側燃焼ガス
および前記上流側燃焼ガスよりも酸素を多く含む下流側
燃焼ガスを、それぞれ主として上流側および下流側の各
々から前記障壁と前記燃焼室炉壁間を通して所定の滞留
空間に流入させ、前記滞留空間で前記上流側燃焼ガスと
前記下流側燃焼ガスとを衝突させて混合する燃焼ガスの
混合方法において、 前記障壁と前記燃焼室炉壁との間の前記下流側燃焼ガス
の流路における前記下流側燃焼ガス流量F1と、前記障
壁と前記燃焼室炉壁との間の前記上流側燃焼ガスの流路
における前記上流側燃焼ガス流量F2との比を、F1:
F2=8:2〜5.5:4.5の範囲内とすることを特
徴とする燃焼ガスの混合方法。
1. An incinerator provided with a combustion chamber provided with a grate that moves and burns an incinerator while moving the incinerator near an outlet of the combustion chamber with a combustion gas upstream of a moving direction of the incinerator. A barrier is provided for branching off the combustion gas on the downstream side in the moving direction, and the upstream combustion gas containing a large amount of unburned gas generated from the incinerated material on the upstream side in the moving direction and the oxygen is higher than the upstream combustion gas. The downstream combustion gas containing a large amount of, mainly flows from the upstream side and the downstream side respectively into the predetermined retention space through the space between the barrier and the combustion chamber furnace wall, the upstream combustion gas and the downstream side in the retention space A method of mixing combustion gas by causing combustion gas to collide with the combustion gas, wherein the downstream combustion gas flow rate F1 in the flow path of the downstream combustion gas between the barrier and the combustion chamber furnace wall; The ratio of the upstream combustion gas flow rate F2 in the flow path of the upstream combustion gas between the wall and the combustion chamber furnace wall, F1:
F2 = 8: 2 to 5.5: 4.5.
【請求項2】 前記下流側燃焼ガスの流路を形成する空
間の最狭部の断面積A1と、前記上流側燃焼ガスの流路
を形成する空間の最狭部の断面積A2との比を、A1:
A2=8:2〜5.5:4.5の範囲内とする請求項1
記載の燃焼ガスの混合方法。
2. The ratio of the cross-sectional area A1 of the narrowest part of the space forming the flow path of the downstream combustion gas to the cross-sectional area A2 of the narrowest part of the space forming the flow path of the upstream combustion gas. To A1:
A2 = 8: 2 to 5.5: 4.5.
A method for mixing the combustion gases according to the above.
【請求項3】 前記下流側の燃焼ガスの流路を形成する
空間の最狭部の最短距離L1および前記上流側の燃焼ガ
スの流路を形成する空間の最狭部の最短距離L2が、そ
れぞれ0.3m以上である請求項1または2記載の燃焼
ガスの混合方法。
3. The shortest distance L1 of the narrowest part of the space forming the flow path of the downstream combustion gas and the shortest distance L2 of the narrowest part of the space forming the flow path of the upstream combustion gas are as follows: 3. The method for mixing combustion gases according to claim 1, wherein each of the lengths is 0.3 m or more.
【請求項4】 前記下流側の燃焼ガスが前記流路を通過
するときの温度および前記上流側の燃焼ガスが前記流路
を通過するときの温度が、それぞれ830℃以上である
請求項1、2または3記載の燃焼ガスの混合方法。
4. The temperature at which the downstream combustion gas passes through the flow path and the temperature at which the upstream combustion gas passes through the flow path are each 830 ° C. or higher. 4. The method for mixing combustion gases according to 2 or 3.
JP6156436A 1994-06-16 1994-06-16 Combustion gas mixing method Expired - Fee Related JP3052737B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6156436A JP3052737B2 (en) 1994-06-16 1994-06-16 Combustion gas mixing method
TW084105723A TW265402B (en) 1994-06-16 1995-06-07 Method for mixing combustion gas
KR1019950015785A KR0133618B1 (en) 1994-06-16 1995-06-14 Method for mixing combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6156436A JP3052737B2 (en) 1994-06-16 1994-06-16 Combustion gas mixing method

Publications (2)

Publication Number Publication Date
JPH085046A JPH085046A (en) 1996-01-12
JP3052737B2 true JP3052737B2 (en) 2000-06-19

Family

ID=15627718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6156436A Expired - Fee Related JP3052737B2 (en) 1994-06-16 1994-06-16 Combustion gas mixing method

Country Status (3)

Country Link
JP (1) JP3052737B2 (en)
KR (1) KR0133618B1 (en)
TW (1) TW265402B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6030913B2 (en) * 2012-10-11 2016-11-24 川崎重工業株式会社 Stoker-type incinerator

Also Published As

Publication number Publication date
KR0133618B1 (en) 1998-04-22
KR960001599A (en) 1996-01-25
JPH085046A (en) 1996-01-12
TW265402B (en) 1995-12-11

Similar Documents

Publication Publication Date Title
JP4889176B2 (en) Method and apparatus for burning solid fuel, especially solid waste
JP3052737B2 (en) Combustion gas mixing method
JP3956862B2 (en) Combustion control method for waste incinerator and waste incinerator
TW448273B (en) Process for the thermal treatment of solids
WO2000031470A1 (en) Waste incineration method and device therefor
Lee et al. Co-firing of paper sludge with high-calorific industrial wastes in a pilot-scale nozzle-grate incinerator
JP4227307B2 (en) Method for reducing harmful substances in exhaust gas and incinerator
JP3092470B2 (en) Two-stream waste incinerator
JP2005308272A (en) Fire grate type waste incinerator
JPH085047A (en) Mixing method for combustion gas
JP4227306B2 (en) Method for reducing harmful substances in exhaust gas
JP5162285B2 (en) Gasification melting method and gasification melting apparatus
JP3567756B2 (en) Waste treatment furnace
JP3598882B2 (en) Two-stream waste incinerator and its operation method
JP2004077013A (en) Operation method of waste incinerator, and waste incinerator
JP2004163009A (en) Operation method of waste incineration system and waste incineration system
JP2654870B2 (en) Garbage incinerator with fan-type spray type secondary air supply nozzle
JP3430873B2 (en) Waste incinerator
JP3032400B2 (en) NOx reduction method in plasma furnace
JPH04240308A (en) Combustion gas mixing structure in refuse incinerator
EP1500875A1 (en) Method of operating waste incinerator and waste incinerator
JP3438860B2 (en) Incinerator combustion control device
JP2548514Y2 (en) Combustion gas mixing structure in refuse incinerator
JP2003327976A (en) Pressure two-stage gasification method for combustible waste
JPH04115225U (en) Combustion gas mixing structure in garbage incinerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees