JPH04105046A - Measuring method for inter-lattice oxygen concentration of drawup silicon wafer - Google Patents

Measuring method for inter-lattice oxygen concentration of drawup silicon wafer

Info

Publication number
JPH04105046A
JPH04105046A JP2224713A JP22471390A JPH04105046A JP H04105046 A JPH04105046 A JP H04105046A JP 2224713 A JP2224713 A JP 2224713A JP 22471390 A JP22471390 A JP 22471390A JP H04105046 A JPH04105046 A JP H04105046A
Authority
JP
Japan
Prior art keywords
silicon wafer
oxygen concentration
pulled
polished
interstitial oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2224713A
Other languages
Japanese (ja)
Inventor
Hiroshi Shirai
宏 白井
Mikio Watanabe
渡辺 美喜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2224713A priority Critical patent/JPH04105046A/en
Priority to EP91112865A priority patent/EP0469572B1/en
Priority to DE69130245T priority patent/DE69130245T2/en
Priority to KR1019910013266A priority patent/KR0156939B1/en
Priority to US07/738,043 priority patent/US5287167A/en
Publication of JPH04105046A publication Critical patent/JPH04105046A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To calculate the inter-lattice oxygen concentration of pullup Si wafer through a simple measuring process by sensing the photo-penetrativenesses of a pullup Si wafer unground chemically and a floating band Si wafer whose both surfaces are ground into mirror face. CONSTITUTION:In a measuring device 10 a Michelson interferometer 12 prepares an interferential beam of light using a beam of light given from a light source 11, and a polarizer 13 makes the interferential beams of light into parallel beams of polarized light. As No. 1 process this parallel polarized light is projected to a specimen M (pullup Si wafer unground chemically) at a Brustar angle, and the photo-penetrativeness of the specimen M is measured by a sensor 14. As No. 2 process the parallel polarized light is put incident to an object R (floating band Si wafer with both surfaces ground into mirror face) at the Brustar angle, and the photo-penetrativeness of the object R is measured by the sensor 14. As No. 3 process, a calculating device 15 calculates the photo- absorptiveness from the sensing results of the sensor 14, and then the inter- lattice oxygen concentration of the specimen M can be calculated.

Description

【発明の詳細な説明】 (1)発明の目的 [産業上の利用分野] 本発明は、引上シワコンウェーハの格子間酸素濃度測定
方法に関し、特に、未化学研磨の引上シリコンウェーハ
に対し平行偏光をブリュースター角で入射せしめて測定
した光透過特性と表裏両面が鏡面研磨された対照として
の浮遊帯域シリコンウェーハに対し平行偏光をブリュー
スター角で入射せしめて測定した光透過特性とから引上
シリコンウェーハの格子間酸素濃度を算出してなる引上
シリコンウェーハの格子間酸素濃度測定方法に関するも
のである。
Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] The present invention relates to a method for measuring interstitial oxygen concentration in pulled wrinkled wafers, and in particular, to a method for measuring interstitial oxygen concentration in pulled wrinkled silicon wafers that have not been chemically polished. The results are derived from the light transmission characteristics measured with parallel polarized light incident at Brewster's angle and the light transmission characteristics measured with parallel polarized light incident at Brewster's angle on a floating band silicon wafer as a control whose front and back surfaces are mirror-polished. The present invention relates to a method for measuring interstitial oxygen concentration of a pulled silicon wafer by calculating the interstitial oxygen concentration of the upper silicon wafer.

[従来の技術] 従来、この種の引上シリコンウェーハの格子間酸素濃度
測定方法としては、製造ラインから抜き取られた未化学
研磨の引上シリコンウェーハと、表裏両面が引上シリコ
ンウェーハの表裏両面と同一の光学的挙動を確保するよ
う加工された対間としての浮遊帯域シリコンウェー八と
に対して赤外光を同時に入射せしめることにより、引上
シリコンウェーハの光透過特性および浮遊帯域シリコン
ウェーハの光透過特性を測定して引上シリコンウェーハ
の格子間酸素濃度を求めてなるものが、提案されていた
[Prior Art] Conventionally, this type of method for measuring the interstitial oxygen concentration of pulled silicon wafers has been carried out using a pulled silicon wafer that has not been chemically polished and which has been extracted from a production line, and a pulled silicon wafer whose front and back surfaces are both the front and back sides of the pulled silicon wafer. By simultaneously injecting infrared light into a pair of floating zone silicon wafers that have been processed to ensure the same optical behavior as the floating zone silicon wafer, the optical transmission characteristics of the pulled silicon wafer and the floating zone silicon wafer can be evaluated. A method has been proposed in which the interstitial oxygen concentration of a pulled silicon wafer is determined by measuring the light transmission characteristics.

[解決すべき問題点] しかしながら、従来の引上シリコンウェーハの格子間酸
素濃度測定方法では、引上シリコンウェーハの表裏両面
が未だ鏡面研磨されていなかったので、(1)光学的な
挙動を同一とするために対照としての浮遊帯域シリコン
ウェーハの表裏両面も引上シリコンウェーハの表裏両面
と同一の加工を施さなければならない欠点があり、ひい
ては[iil測定作業が煩雑となる欠点があり、更には
(iii)測定精度を改善できない欠点もあった。
[Problems to be solved] However, in the conventional method for measuring the interstitial oxygen concentration of pulled silicon wafers, since both the front and back surfaces of the pulled silicon wafers have not yet been mirror-polished, (1) it is difficult to ensure that the optical behavior is the same; This has the disadvantage that both the front and back sides of a floating zone silicon wafer as a control must be processed in the same way as both the front and back sides of a pulled silicon wafer, which also has the disadvantage of making the measurement work complicated. (iii) There was also the drawback that measurement accuracy could not be improved.

そこで、本発明は、これらの欠点を除去する目的で、表
裏両面が鏡面研磨された浮遊帯域ジl)コンウェー八を
そのまま対照として使用可能とすることにより測定作業
を簡潔とじかつ測定精度を改善してなる引上シリコンウ
ェーハの格子間酸素濃度測定方法を提供せんとするもの
である。
Therefore, in order to eliminate these drawbacks, the present invention simplifies the measurement work and improves measurement accuracy by making it possible to use a floating band diagonal with mirror-polished surfaces on both sides as a control. The present invention aims to provide a method for measuring interstitial oxygen concentration in pulled silicon wafers.

(2)発明の構成 [問題点の解決手段] 本発明により提供される問題点の解決手段は、[(a)
未化学研磨の引上シリコンウェーハに対し平行偏光をブ
リュースター角で入射せしめることにより引上シワコン
ウェ ハの光透過特性を測定するための第1の工程と、 (b1表裏両面が鏡面研磨された対照としての浮遊帯域
シリコンウェーハに対し平行偏光をブリュースター角で
入射せしめることにより浮遊帯域シリコンウェーハの光
透過特性を測定するための第2の工程と、 (C)第1の工程によって測定された引上シリコンウェ
ーハの光透過特性と第2の工程によって測定された浮遊
帯域シリコンウェーハの光透過特性とから引上シリコン
ウェーハの格子間酸素濃度を算出するための第3の工程
と を備えてなる引上シリコンウェーハの格子間酸素濃度測
定方法」 である。
(2) Structure of the invention [Means for solving the problems] The means for solving the problems provided by the present invention are [(a)
A first step for measuring the light transmission characteristics of a pulled wrinkled silicon wafer by making parallel polarized light incident at the Brewster angle on an unchemically polished pulled silicon wafer; (C) measuring the light transmission properties of the floating band silicon wafer by making parallel polarized light incident on the floating band silicon wafer at Brewster's angle; a third step for calculating the interstitial oxygen concentration of the pulled silicon wafer from the light transmission characteristics of the silicon wafer and the light transmission characteristics of the floating zone silicon wafer measured in the second step; ``Method for measuring interstitial oxygen concentration in silicon wafers.''

[作用コ 本発明にかかる引上シリコンウェーハの格子間酸素濃度
測定方法は、上述の[問題点の解決手段]の欄に明示し
たごとく、未化学研磨の引上シリコンウェーハの光透過
特性と表裏両面が鏡面研磨された浮遊帯域シリコンウェ
ーハの光透過特性とから引上シリコンウェーハの格子間
酸素濃度を算出しているので、 (i1表裏両面が鏡面研磨された浮遊帯域シリコンウェ
ーハを加工することなく鏡面のままで使用可能とする作
用 をなし、ひいては (11)測定作業を簡潔とする作用 をなし、更に fiii)測定精度を改善する作用 をなす。
[Function] The method for measuring the interstitial oxygen concentration of a pulled silicon wafer according to the present invention is based on the light transmission characteristics of a pulled silicon wafer that has not been chemically polished and Since the interstitial oxygen concentration of the pulled silicon wafer is calculated from the light transmission characteristics of the floating zone silicon wafer with mirror polishing on both sides, (i1) without processing the floating zone silicon wafer with mirror polishing on both the front and back sides. It has the effect of making it usable as a mirror surface, which in turn has the effect of (11) simplifying the measurement work, and fiii) improving the measurement accuracy.

[実施例〕 次に、本発明にかかる引上シリコンウェーハの格子間酸
素濃度測定方法について、その好ましい実施例を挙げ、
添付図面を参照しつつ、具体的に説明する。
[Example] Next, a preferred example of the method for measuring interstitial oxygen concentration of a pulled silicon wafer according to the present invention will be given.
This will be explained in detail with reference to the accompanying drawings.

ユ添佳2皿辺皿朋工 第1図は、本発明にかかる引上シリコンウェハの格子間
酸素濃度測定方法の一実施例を実行する測定装置を示す
ための簡略構成図である。
Figure 1 is a simplified configuration diagram showing a measuring device for carrying out an embodiment of the method for measuring the interstitial oxygen concentration of pulled silicon wafers according to the present invention.

第2図ないし第4図は、本発明にかかる引上シリコンウ
ェーハの格子間酸素濃度測定方法の一実施例を説明する
ための説明図である。
FIGS. 2 to 4 are explanatory diagrams for explaining one embodiment of the method for measuring interstitial oxygen concentration in a pulled silicon wafer according to the present invention.

例の  ・ まず、本発明にかかる引上シリコンウェーハの格子間酸
素濃度測定方法の一実施例について、その構成および作
用を詳細に説明する。
Examples - First, the structure and operation of an embodiment of the method for measuring the interstitial oxygen concentration of a pulled silicon wafer according to the present invention will be described in detail.

本発明にかかる引上シリコンウェーハの格子間酸素濃度
測定方法は、未化学研磨の引上シリコンウェーハ(゛未
化学研磨引上シリコンウェーハという)に対し平行偏光
をブリュースター角で入射せしめることにより引上シリ
コンウェーハ(すなわち未化学研磨引上シリコンウェー
ハ)の光透過特性(ここでは透過光強度■。ssi以下
同様)を測定するための第1の工程と、表裏両面が鏡面
研磨された対照としての浮遊帯域シリコンウェハ(°“
鏡面研磨浮遊帯域シリコンウェーハゾという)に対し平
行偏光をブリュースター角φ8で入射せしめることによ
り浮遊帯域シリコンウェーハ(すなわち鏡面研磨浮遊帯
域シリコンウェハ)の光透過特性(ここでは透過光強度
■。;以下同様)を測定するための第2の工程と、第1
の工程によって測定された引上シリコンウェーハ(すな
わち未化学研磨引上シリコンウェーハ)の光透過特性(
ここでは透過光強度■。6.)と第2の工程によって測
定された浮遊帯域シリコンウェハ(すなわち鏡面研磨浮
遊帯域シリコンウェハ)の光透過特性(ここでは透過光
強度■。)とから引上シリコンウェーハの格子間酸素濃
度[01c] を算出するための第3の工程とを備えて
いる。
The method for measuring the interstitial oxygen concentration of a pulled silicon wafer according to the present invention involves making parallel polarized light incident on a pulled silicon wafer that has not been chemically polished (referred to as an "unchemically polished pulled silicon wafer") at the Brewster angle. The first step is to measure the light transmission characteristics (here, the transmitted light intensity ■; the same applies below for ssi) of the upper silicon wafer (i.e., a non-chemically polished pulled silicon wafer), and the first step is to measure the light transmission characteristics (here, the transmitted light intensity ■) of the upper silicon wafer (i.e., the pulled silicon wafer that has not been chemically polished). Floating zone silicon wafer (°“
By making parallel polarized light incident on a mirror-polished floating-band silicon wafer (herein referred to as a mirror-polished floating-band silicon wafer) at a Brewster angle φ8, the light transmission characteristics (here, transmitted light intensity ■) of a floating-band silicon wafer (namely, a mirror-polished floating-band silicon wafer) are determined. a second step for measuring the same);
The optical transmission properties of pulled silicon wafers (i.e. non-chemically polished pulled silicon wafers) measured by the process of
Here, the transmitted light intensity ■. 6. ) and the light transmission characteristics (here, the transmitted light intensity ■) of the floating zone silicon wafer (i.e., the mirror-polished floating zone silicon wafer) measured in the second step, and the interstitial oxygen concentration [01c] of the pulled silicon wafer. and a third step for calculating.

第1.第2の工程で、それぞれ、引上シリコンウェーハ
(すなわち未化学研磨引上シリコンウェーハ)および浮
遊帯域シリコンウェーハ(すなわち鏡面研磨浮遊帯域シ
リコンウェーハ)に対してそれぞれブリュースター角φ
8で平行偏光を入射せしめる根拠は、引上シリコンウェ
ーハ(すなわち未化学研磨引上シリコンウェーハ)およ
び浮遊帯域シリコンウェーハ(すなわち鏡面研磨浮遊帯
域シリコンウェーハ)への平行偏光の入射および出射に
際して反射が生じることを実質的に阻止し、引上シリコ
ンウェーハ(すなわち未化学研磨引上シリコンウェーハ
)および浮遊帯域シリコンウェーハ(すなわち鏡面研磨
浮遊帯域シリコンウェーハ)の内部で多重反射が生じる
ことを防止することにある。ここで、平行偏光とは、入
射対象(ここでは未化学研磨引上シリコンウェーハなら
びに鏡面研磨浮遊帯域シリコンウェーハ)への入射面に
平行な成分のみを有する偏光をいう。また、引上シリコ
ンウェーハとは、引上法(いわゆる゛チョクラルスキー
法”)によって製造されたシリコン単結晶から作成され
たシリコンウェーハをいい、通常はシリコン単結晶の切
断工程によって発生した表裏両面の破砕層を除去するた
めの化学研磨に先立って表裏両面の平坦度を確保するた
めに機械研磨されている。更に、浮遊帯域シリコンウェ
ーハとは、浮遊帯域溶融法によって製造されたシリコン
単結晶から作成されたシリコンウェーハをいう。
1st. In the second step, the Brewster angle φ
The reason for making parallel polarized light incident in step 8 is that reflection occurs when parallel polarized light enters and exits a pulled silicon wafer (i.e., a non-chemically polished pulled silicon wafer) and a floating band silicon wafer (i.e., a mirror-polished floating band silicon wafer). The objective is to substantially prevent the occurrence of multiple reflections within pulled silicon wafers (i.e., non-chemically polished pulled silicon wafers) and floating band silicon wafers (i.e., mirror-polished floating band silicon wafers). . Here, parallel polarized light refers to polarized light that has only components parallel to the plane of incidence on the incident objects (here, unchemically polished pulled silicon wafers and mirror-polished floating zone silicon wafers). In addition, a pulled silicon wafer refers to a silicon wafer created from a silicon single crystal manufactured by a pulling method (so-called "Czochralski method"), and usually has both front and back surfaces generated by the cutting process of the silicon single crystal. The floating zone silicon wafer is mechanically polished to ensure flatness on both the front and back surfaces prior to chemical polishing to remove the fractured layer of the silicon wafer. A manufactured silicon wafer.

第2の工程で、浮遊帯域シリコンウェーハが対照として
採用されている根拠は、その格子間酸素濃度[0イ1が
引上シリコンウェーハの格子間酸素濃度[0,c]に比
べて極めて小さいことにある。また、浮遊帯域シリコン
ウェーハの表裏両面が鏡面研磨されている根拠は、入射
光(ここでは平行偏光)が表裏両面で散乱されることを
防止することにある。
The reason why the floating zone silicon wafer is used as a control in the second step is that its interstitial oxygen concentration [0i1 is extremely small compared to the interstitial oxygen concentration [0,c] of the pulled silicon wafer. It is in. Further, the reason why both the front and back surfaces of the floating zone silicon wafer are mirror-polished is to prevent incident light (here, parallel polarized light) from being scattered on both the front and back surfaces.

第3の工程で、第1の工程によって測定された引上シリ
コンウェーハ(すなわち未化学研磨引上シリコンウェー
ハ)の光透過特性(ここでは透過光強度I。sslと第
2の工程によって測定された浮遊帯域シリコンウェーハ
(すなわち鏡面研磨浮遊帯域シリコンウェーハ)の光透
過特性(ここでは透過光強度I0)とから引上シリコン
ウェーハの格子間酸素濃度[0+。1を算出する要領は
、以下のとおりである。
In the third step, the light transmission properties of the pulled silicon wafer (i.e., non-chemically polished pulled silicon wafers) measured by the first step (here, the transmitted light intensity I.ssl and the The procedure for calculating the interstitial oxygen concentration [0+.1 of the pulled silicon wafer from the light transmission characteristics (here, the transmitted light intensity I0) of the floating zone silicon wafer (that is, the mirror-polished floating zone silicon wafer) is as follows. be.

まず、引上シリコンウェーハの格子間酸素濃度[0,C
Iは、引上シリコンウェーハの格子間酸素の振動に起因
した光吸収係数(°゛引上シリコンウェーハの光吸収係
数゛ともいう)aEと変換係数k(現在3.03XlO
”個/cm2と考えられている;以下同様)とを用いて [0+c] =kat のごとく表現できる。ここで、引上シリコンウェーハの
光吸収係数α、は、格子間酸素の振動に起因した波数1
106cm−’における肉厚dの引上シリコンウェーハ
の吸光度Aとブリュースター角φ8で入射された平行偏
光の光路長ff= 1.[]42dとを用いて、ランベ
ルト−ベールの法w上から、のごとく表現できる。
First, the interstitial oxygen concentration [0, C
I is the optical absorption coefficient (also referred to as the optical absorption coefficient of the pulled silicon wafer) aE caused by the vibration of interstitial oxygen in the pulled silicon wafer and the conversion coefficient k (currently 3.03XlO
It can be expressed as [0+c] = kat using the following formula: [0+c] = kat.Here, the optical absorption coefficient α of the pulled silicon wafer is the wave number 1
Absorbance A of a pulled silicon wafer with thickness d at 106 cm-' and optical path length ff of parallel polarized light incident at Brewster angle φ8 = 1. []42d can be expressed as follows from the Lambert-Beer modulus w.

引上シリコンウェーハの吸光度Aは、両面鏡面加工され
た引上シリコンウェーハ(゛鏡面研磨引上シリコンウェ
ーノヅともいう)の光透過特性(ここでは透過光強度■
)と浮遊帯域シリコンウェーハ(すなわち鏡面研磨浮遊
帯域シリコンウェーハ)の光透過特性(ここでは透過光
強度■。)とを用いて のごとく表現できるので、未化学研磨引上シリコンウェ
ーハの光透過特性(ここでは透過光強度工。islと鏡
面研磨浮遊帯域シリコンウェーハの光透過特性(ここで
は透過光強度■。)と未化学研磨引上シリコンウェーハ
の表面における光散乱特性(ここでは散乱光強度Is’
)と未化学研磨引上シリコンウェーハの裏面における光
散乱特性(ここでは散乱光強度1.□)とを用いて A=召。(■°”s + I s++ I 92)■。
The absorbance A of a pulled silicon wafer is the light transmission characteristic (here, the transmitted light intensity
) and the light transmission characteristics (in this case, transmitted light intensity) of a floating zone silicon wafer (i.e., a mirror-polished floating zone silicon wafer), so the light transmission characteristics of an unchemically polished pulled-up silicon wafer ( Here, the transmitted light intensity is calculated.Isl and the light transmission characteristics of the mirror-polished floating zone silicon wafer (here, the transmitted light intensity ■) and the light scattering characteristics on the surface of the unchemically polished pulled-up silicon wafer (here, the scattered light intensity Is')
) and the light scattering characteristics on the back surface of the unchemically polished pulled silicon wafer (here, the scattered light intensity is 1.□), A=symbol. (■°”s + I s++ I 92)■.

のごとく表現できる。It can be expressed as follows.

したがって、引上シリコンウェーハの格子間酸素濃度[
0,c]は、 U○” ” 1.042d × 、、、I Q!1!l + I“+Is5工。
Therefore, the interstitial oxygen concentration of the pulled silicon wafer [
0,c] is U○"" 1.042d ×,,,I Q! 1! l + I"+Is5 engineering.

と求められる。is required.

ここで、れ(1°”+1“′+1″′) は、未化学研
磨引上シリコンウェーハの光透過特性(ここでは透過光
強度I oss)およびその表裏両面における光散乱特
性(ここでは散乱光強度1.、、 1.21の和と鏡面
研磨浮遊帯域シリコンウェーハの光透過特性(ここでは
透過光強度I。)との比の逆数の自然対数である吸光度
特性から算出されるが、具体的には格子間酸素濃度[0
:c]がOでない場合の吸光度特性(実線で示す)の波
数1106cm−’における値(すなわちピーク値)と
格子間酸素濃度[0,c]がOである場合の吸光度特性
(破線で示す)の波数11.06cm”’における値と
から第2図に示したごとく求められる。
Here, (1°"+1"'+1"') is the light transmission property of the unchemically polished pulled silicon wafer (here, the transmitted light intensity Ioss) and the light scattering property on both the front and back surfaces (here, the scattered light It is calculated from the absorbance characteristic, which is the natural logarithm of the reciprocal of the ratio of the sum of the intensities 1., 1.21 and the light transmission characteristic of the mirror-polished floating zone silicon wafer (here, the transmitted light intensity I.). is the interstitial oxygen concentration [0
:c] is not O (indicated by a solid line) at a wave number of 1106 cm-' (i.e. peak value) and interstitial oxygen concentration [0,c] is O (indicated by a broken line) The value at a wave number of 11.06 cm'' is obtained as shown in FIG.

例の ′−5 また、第1図を参照しつつ、本発明にかかる9上シリコ
ンウェーハの格子間酸素濃度測定方法の一実施例を実行
するための測定装置について、その構成および作用を詳
細に説明する。
Example '-5 Also, with reference to FIG. 1, the configuration and operation of a measuring device for carrying out an embodiment of the method for measuring the interstitial oxygen concentration of a silicon wafer according to the present invention will be explained in detail. explain.

川は、本発明にかかる引上シリコンウェーハの格子間酸
素濃度測定方法を実行するための測定装置であって、ク
ローバ−灯などの光源工1と、光源11から与えられた
光を半透明112Aによって2つに分けて可動鏡12B
および固定5ttzcによって反射せしめたのち重ね合
わせることにより干渉光を形成するマイケルソン干渉計
12と、マイケルソン干渉計12から与えられた光(す
なわち干渉光)を偏光せしめて得た平行偏光を試料にこ
ては未化学研磨引上シリコンウェーハ)Mおよび対照に
こては鏡面研磨浮遊帯域シリコンウェーハ)Rに与える
ための偏光子I3と、試料Mの光透過特性にこては平行
偏光の透過光強度I。sslおよび対照Rの光透過特性
 (ここでは平行偏光の透過光強度工。)を検出するた
めの検出器14と、検出器■4に接続されでおり試料M
の光透過特性(すなわち透過光強度工。6.)および対
照Rの光透過特性(すなわち透過光強度r。)から吸光
度特性を算出したのち試料Mの格子間酸素濃度を算出す
るための計算装置I5とを備えている。試料Mおよび対
間Rと検出罷工4との間には、必要に応じ、反射tR1
6A16Bが挿入されている。ちなみに、マイケルソン
干渉計12と偏光子13との間には、必要に応じ、反射
鏡(図示せず)が挿入されていてもよい。
This is a measuring device for carrying out the method for measuring the interstitial oxygen concentration of pulled silicon wafers according to the present invention, and includes a light source 1 such as a crowbar lamp, and a translucent 112A that transmits light from a light source 11. The movable mirror 12B is divided into two parts by
and a Michelson interferometer 12 that forms interference light by reflecting it by a fixed 5ttzc and superimposing it, and a parallel polarized light obtained by polarizing the light given from the Michelson interferometer 12 (i.e., interference light) to the sample. The trowel is a non-chemically polished pulled-up silicon wafer (M) and the control trowel is a mirror-polished floating zone silicon wafer (R). Strength I. A detector 14 is connected to the detector 14 for detecting the light transmission characteristics of the ssl and the reference R (in this case, transmitted light intensity of parallel polarized light), and a sample M is connected to the detector 4.
A calculation device for calculating the interstitial oxygen concentration of the sample M after calculating the absorbance characteristics from the light transmission characteristics (i.e., transmitted light intensity r.) of the control R (i.e., the transmitted light intensity r.) It is equipped with I5. If necessary, there is a reflection tR1 between the sample M and the pair R and the detection strike 4.
6A16B is inserted. Incidentally, a reflecting mirror (not shown) may be inserted between the Michelson interferometer 12 and the polarizer 13, if necessary.

しかして、測定装置且では、光源11から与えられた光
からマイケルソン干渉計12によって作成された干渉光
が、偏光子13によって平行偏光とされたのち、試料M
および対照Rに与えられる。
Therefore, in the measuring device, the interference light created by the Michelson interferometer 12 from the light given from the light source 11 is converted into parallel polarized light by the polarizer 13, and then the interference light is transmitted to the sample M.
and control R.

試IIMおよび対照Rでは、その光学特性に応じて吸収
ならびに散乱が行なわれるので、検出器14による検出
結果から計算装置15によって算出された吸光度特性は
、第2図に示したごとき形状となる。
Since the sample IIM and the control R undergo absorption and scattering according to their optical properties, the absorbance characteristics calculated by the calculation device 15 from the detection results by the detector 14 have a shape as shown in FIG.

計算装置15は、第2図もしくはこれに相当する第1表 試料 (すなわち未化学研磨引上シリコンウェハ)Mの
光吸収係数α、を ” =1.042d のごとく算出し、更に試料 (すなわち未化学研磨引上
シリコンウェーハ)Mの格子間酸素濃度[0,elを のごとく算出する。
The calculation device 15 calculates the optical absorption coefficient α of the sample M shown in FIG. Calculate the interstitial oxygen concentration [0, el of chemically polished pulled silicon wafer) M.

ユ且体丞り 加えて、本発明にかかる引上シリコンウェーハの格子間
酸素濃度測定方法の理解を促進する目的で、具体的な数
値などを挙げて説明する。
In addition, for the purpose of promoting understanding of the method for measuring the interstitial oxygen concentration of a pulled silicon wafer according to the present invention, specific numerical values will be given and explained.

!置皿に互 引上シリコンウェーハは、まず1表裏両面が機械研磨さ
れた状態(すなわち未化学研磨引上シリコンウェーハの
状態)で、本発明にかかる格子間酸素濃度測定方法にし
たがって格子間酸素濃度[0、CIが測定された(第1
表参照)。
! First, the pulled-up silicon wafer is placed on a placing plate in a state where both the front and back surfaces have been mechanically polished (that is, the state of a non-chemically polished pulled-up silicon wafer), and the interstitial oxygen concentration is measured according to the interstitial oxygen concentration measuring method according to the present invention. [0, CI was measured (first
(see table).

そののち、引上シリコンウェーハは、表裏両面が化学研
磨ののち鏡面研磨され、この状態(すなわち鏡面研磨引
上シリコンウェーハの状態)で、本発明にかかる格子間
酸素濃度測定方法にしたがって格子間酸素濃度[01e
ドが測定された(第1表参照)。
After that, the pulled silicon wafer is subjected to chemical polishing and mirror polishing on both the front and back surfaces, and in this state (that is, the state of the mirror polished pulled silicon wafer), the interstitial oxygen concentration is measured according to the method of measuring interstitial oxygen concentration according to the present invention. Concentration [01e
(see Table 1).

未化学研磨引上シリコンウェーハについて測定された格
子間酸素濃度[0,cl と鏡面研磨引上シリコンウェ
ーハについて測定された格子間酸素濃度[0,cl”と
は、それぞれを縦軸Yおよび横軸Xとするグラフ上にプ
ロットしたところ、第3図に示すとおり、直線Y=X上
にあって十分に一致していた。
The interstitial oxygen concentration [0,cl'' measured for unchemically polished pulled silicon wafers and the interstitial oxygen concentration [0,cl'' measured for mirror polished pulled silicon wafers are expressed by the vertical axis Y and the horizontal axis, respectively. When plotted on a graph defined as X, as shown in FIG. 3, they were on the straight line Y=X and were in good agreement.

これにより、本発明によれば、未化学研磨引上シリコン
ウェーハおよび両面研磨浮遊帯域シリコンウェーハをそ
のまま試料および対照として採用することにより、引上
シリコンウェーハの格子間酸素濃度[0,clを直接に
測定できることが判明した。
Therefore, according to the present invention, by directly adopting unchemically polished pulled silicon wafers and double-sided polished floating zone silicon wafers as samples and controls, the interstitial oxygen concentration [0, cl of pulled silicon wafers can be directly determined. It turns out that it can be measured.

1皿匠二二■ 引上シリコンウェーハは、まず、シリコン単結晶を切断
工程で切断した状態(すなわち未化学研磨引上シリコン
ウェーハの状態)で、本発明にかかる格子間酸素濃度測
定方法にしたがって格子間酸素濃度[0,clが測定さ
れた(第2表参照)。
1. Takumi Takumi ■ Pulled silicon wafers are prepared by cutting silicon single crystals in a cutting process (i.e., unchemically polished pulled silicon wafers) according to the method for measuring interstitial oxygen concentration according to the present invention. The interstitial oxygen concentration [0, cl was measured (see Table 2).

箪−旦一人 そののち、引上シリコンウェーハは、表裏両面が化学研
磨ののち鏡面研磨され、この状態(すなわち鏡面研磨引
上シリコンウェーハの状態)で、本発明にかかる格子間
酸素濃度測定方法にしたがって格子間酸素濃度[0,c
ドが測定された(第2表参照)。
After that, the pulled silicon wafer was subjected to chemical polishing and mirror polishing on both the front and back sides, and in this state (that is, the state of the mirror polished pulled silicon wafer), it was subjected to the method for measuring interstitial oxygen concentration according to the present invention. Therefore, the interstitial oxygen concentration [0, c
(see Table 2).

未化学研磨引上シリコンウェーハについて測定された格
子間酸素濃度[0霞と鏡面研磨引上シリコンウェー八に
ついて測定された格子間酸素濃度[0,cIoとは、そ
れぞれを縦軸Yおよび横軸Xとするグラフ上にプロット
したところ、第4図に示すとおり、直線Y=X上にあっ
て十分に一致していた。
The interstitial oxygen concentration measured for unchemically polished pulled silicon wafers [0 haze and the interstitial oxygen concentration measured for mirror polished pulled silicon wafers [0, cIo] are the vertical axis Y and the horizontal axis X, respectively. When plotted on the graph shown in FIG. 4, it was found that they were on the straight line Y=X and were in good agreement.

これにより、本発明によれば、未化学研磨引上シリコン
ウェーハおよび両面研磨浮遊帯域シリコンウェー八をそ
のまま試料および対照として採用することにより、引上
シワコンウェーハの格子間酸素濃度EO,c)を直接に
測定できることが判明した。
Therefore, according to the present invention, the interstitial oxygen concentration EO,c) of the pulled wrinkled wafer can be determined by directly adopting the non-chemically polished pulled silicon wafer and the double-sided polished floating zone silicon wafer as samples and controls. It turns out that it can be measured directly.

」!形医り なお、上述では、マイケルソン干渉計12を利用した場
合についてのみ説明したが、本発明は、これに限定され
るものではなく、マイケルソン干渉計に代え分光器を利
用する場合をも包摂している。
”! Note that although the above explanation has been made only for the case where the Michelson interferometer 12 is used, the present invention is not limited to this, and may also be applied to the case where a spectrometer is used instead of the Michelson interferometer. Inclusive.

(3)発明の効果 上述より明らかなように、本発明にかかる引上シリコン
ウェーハの格子間酸素濃度測定方法は、上述の[問題点
の解決手段]の欄に開示したごとく、未化学研磨の引上
シリコンウェーハの光透過特性と表裏両面が鏡面研磨さ
れた浮遊帯域シリコンウェーハの光透過特性とから引上
シリコンウェーハの格子間酸素濃度を算出しているので
、(i)表裏両面が鏡面研磨された浮遊帯域シリコンウ
ェー八を加工することなく鏡面のままで使用可能とでき
る効果 を有し、ひいては (11)測定作業を簡潔とできる効果 を有し、更に (iii)測定精度を改善できる効果 を有する。
(3) Effects of the Invention As is clear from the above, the method for measuring interstitial oxygen concentration of pulled silicon wafers according to the present invention, as disclosed in the above-mentioned [Means for solving problems], Since the interstitial oxygen concentration of the pulled silicon wafer is calculated from the light transmission characteristics of the pulled silicon wafer and the light transmission characteristics of the floating zone silicon wafer whose front and back surfaces are mirror-polished, (i) both the front and back surfaces are mirror-polished; This has the effect of making it possible to use the floating zone silicon wafer as it is without any processing, which in turn has the effect of (11) simplifying the measurement work, and (iii) the effect of improving measurement accuracy. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる引上シリコンウェーハの格子間
酸素濃度測定方法の一実施例を実行するための装置を示
す簡略構成図、第2図ないし第4図は本発明にかかる引
上シリコンウェーハの格子間酸素濃度測定方法の一実施
例を説明するための説明図である。 10・・・・・・・・・・・・格子間酸素濃度測定装置
・・・・・・・・・・光源 12・・・・・・・・・・・・・マイケルソン干渉計1
2A・ ・・・・・半透明鏡 12B・・・・・・・・・・可動鏡 12G  ・・・・・・・・・固定鏡 13・・・・・・・・・ ・・偏光子 14・・・・・・・・・・・・検出器 15・・・・・・・・・・・・計算装置16A、16B
・・・・・・・・反射鏡M・・・・・・・・・・・・・
・試料 R・・・・・・・・・・・・・・対照
FIG. 1 is a simplified configuration diagram showing an apparatus for carrying out an embodiment of the method for measuring the interstitial oxygen concentration of pulled silicon wafers according to the present invention, and FIGS. 2 to 4 show pulled silicon wafers according to the present invention. FIG. 2 is an explanatory diagram for explaining one embodiment of a method for measuring interstitial oxygen concentration in a wafer. 10・・・・・・・・・・・・Interstitial oxygen concentration measuring device・・・・・・・・・・Light source 12・・・・・・・・・・Michelson interferometer 1
2A...Semi-transparent mirror 12B...Movable mirror 12G...Fixed mirror 13...Polarizer 14 .........Detector 15......Calculating devices 16A, 16B
・・・・・・Reflector M・・・・・・・・・・・・・・・
・Sample R・・・・・・・・・・・・・・・Contrast

Claims (1)

【特許請求の範囲】 (a)未化学研磨の引上シリコンウェーハに対し平行偏
光をブリュースター角で入射 せしめることにより引上シリコンウェー ハの光透過特性を測定するための第1の 工程と、 (b)表裏両面が鏡面研磨された対照としての浮遊帯域
シリコンウェーハに対し平行 偏光をブリュースター角で入射せしめる ことにより浮遊帯域シリコンウェーハの 光透過特性を測定するための第2の工程 と、 (c)第1の工程によって測定された引上シリコンウェ
ーハの光透過特性と第2の工 程によって測定された浮遊帯域シリコン ウェーハの光透過特性とから引上シリコ ンウェーハの格子間酸素濃度を算出する ための第3の工程と を備えてなる引上シリコンウェーハの格子間酸素濃度測
定方法。
[Scope of Claims] (a) A first step for measuring the light transmission characteristics of a pulled silicon wafer by making parallel polarized light incident on the pulled silicon wafer at the Brewster angle, which has not been chemically polished; b) a second step for measuring the light transmission properties of the floating zone silicon wafer by making parallel polarized light incident at the Brewster angle on a floating zone silicon wafer as a control whose front and back surfaces are mirror-polished; ) Calculating the interstitial oxygen concentration of the pulled silicon wafer from the light transmission characteristics of the pulled silicon wafer measured in the first step and the light transmission characteristics of the floating zone silicon wafer measured in the second step. A method for measuring interstitial oxygen concentration in a pulled silicon wafer, comprising: a third step.
JP2224713A 1990-07-31 1990-08-27 Measuring method for inter-lattice oxygen concentration of drawup silicon wafer Pending JPH04105046A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2224713A JPH04105046A (en) 1990-08-27 1990-08-27 Measuring method for inter-lattice oxygen concentration of drawup silicon wafer
EP91112865A EP0469572B1 (en) 1990-07-31 1991-07-31 A method measuring interstitial oxygen concentration
DE69130245T DE69130245T2 (en) 1990-07-31 1991-07-31 Method of measuring interstitial oxygen concentration
KR1019910013266A KR0156939B1 (en) 1990-07-31 1991-07-31 Method of measuring interstitial oxygen concentration
US07/738,043 US5287167A (en) 1990-07-31 1991-07-31 Method for measuring interstitial oxygen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2224713A JPH04105046A (en) 1990-08-27 1990-08-27 Measuring method for inter-lattice oxygen concentration of drawup silicon wafer

Publications (1)

Publication Number Publication Date
JPH04105046A true JPH04105046A (en) 1992-04-07

Family

ID=16818086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2224713A Pending JPH04105046A (en) 1990-07-31 1990-08-27 Measuring method for inter-lattice oxygen concentration of drawup silicon wafer

Country Status (1)

Country Link
JP (1) JPH04105046A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533081A (en) * 1978-08-30 1980-03-08 Matsushita Electronics Corp Method of measuring impurity amount in semiconductor wafer
JPS56154648A (en) * 1980-04-30 1981-11-30 Fujitsu Ltd Measurement of semiconductor impurity concentration
JPS56160643A (en) * 1980-05-16 1981-12-10 Fujitsu Ltd Measuring method for impurity concentration and distribution thereof
JPS6117031A (en) * 1984-07-03 1986-01-25 Nec Corp Method and apparatus for measuring concentration of interstitial oxygen in silicon crystal
JPS6483135A (en) * 1987-09-25 1989-03-28 Hitachi Ltd Measuring apparatus of polarized infrared ray for thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533081A (en) * 1978-08-30 1980-03-08 Matsushita Electronics Corp Method of measuring impurity amount in semiconductor wafer
JPS56154648A (en) * 1980-04-30 1981-11-30 Fujitsu Ltd Measurement of semiconductor impurity concentration
JPS56160643A (en) * 1980-05-16 1981-12-10 Fujitsu Ltd Measuring method for impurity concentration and distribution thereof
JPS6117031A (en) * 1984-07-03 1986-01-25 Nec Corp Method and apparatus for measuring concentration of interstitial oxygen in silicon crystal
JPS6483135A (en) * 1987-09-25 1989-03-28 Hitachi Ltd Measuring apparatus of polarized infrared ray for thin film

Similar Documents

Publication Publication Date Title
JPH02244106A (en) Method for measuring optical constant of thin film and optical integrated circuit or semiconductor element produced by using this method
JPS6334975B2 (en)
JPS62190728A (en) Method and apparatus for monitoring etching end point
US5287167A (en) Method for measuring interstitial oxygen concentration
JPH04105046A (en) Measuring method for inter-lattice oxygen concentration of drawup silicon wafer
JP2855473B2 (en) Method for measuring interstitial oxygen concentration of pulled silicon wafer
JP2897932B2 (en) Method for measuring interstitial oxygen concentration of pulled silicon wafer
JP3046724B2 (en) Wafer thickness measurement method
US5808745A (en) Method for measuring a substitutional carbon concentration
JPS61200407A (en) Fourier transformation type infrared film thickness measuring apparatus
JPH04106925A (en) Manufacture of silicon wafer
JP2855476B2 (en) Silicon wafer manufacturing method
JPH04109146A (en) Substitution type carbon concentration measuring method for pickup silicone wafer
JPH04109145A (en) Substitution type carbon concentration measuring method for pickup silicone wafer
JP2909680B2 (en) Method for measuring interstitial oxygen or substitutional carbon concentration in silicon wafer
JP2897931B2 (en) Silicon wafer manufacturing method
JP2897933B2 (en) Silicon wafer manufacturing method
JP2002340794A (en) Method for measuring infrared absorption of semiconductor wafer
JPH03111739A (en) Method for determing quantity of concentration of oxygen in solid solution in silicon crystal by infrared ray absorbing method
RU2787807C1 (en) Method for determining film thickness
JP2855474B2 (en) Silicon wafer manufacturing method
JPH08285725A (en) Method and equipment for measuring refractive index of wafercomprising glass substance
JPS60195437A (en) Evaluating method of crystal
JP2855475B2 (en) Silicon wafer manufacturing method
SU1659792A1 (en) Interference technique for measuring index of refraction and index of absorption