JPS60195437A - Evaluating method of crystal - Google Patents

Evaluating method of crystal

Info

Publication number
JPS60195437A
JPS60195437A JP5085384A JP5085384A JPS60195437A JP S60195437 A JPS60195437 A JP S60195437A JP 5085384 A JP5085384 A JP 5085384A JP 5085384 A JP5085384 A JP 5085384A JP S60195437 A JPS60195437 A JP S60195437A
Authority
JP
Japan
Prior art keywords
crystal
light
transmittance
sample
dislocation density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5085384A
Other languages
Japanese (ja)
Other versions
JPH0410578B2 (en
Inventor
Masahiko Morita
正彦 森田
Shiro Sato
史郎 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP5085384A priority Critical patent/JPS60195437A/en
Publication of JPS60195437A publication Critical patent/JPS60195437A/en
Publication of JPH0410578B2 publication Critical patent/JPH0410578B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers
    • G01N21/5911Densitometers of the scanning type

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure quickly and easily a distribution of a transition density in a crystal without breaking down the crystal, by measuring a difference of transmittivity between plural points, as a function of a moving distance of a light spot. CONSTITUTION:Light 1 which can transmit through in a sample 5 is made incident vertically on the surface of the sample 5 through a lens 3 and a mask 4, and vibrating incident light spots 16, 17 are given onto the sample by rotating a chopper 2. Also, light which has transmitted through the sample 5 is detected by a photodetector 6' of the end part of an optical fiber 6. Subsequently, an output of the photodetector 6' is provided to a synchronous rectifying amplifier 11, and a difference of a transmitting light intensity between two points on the surface of the sample 5 is derived, and recorded by a recorder 14 as a distribution of a transition density of the crystal 5.

Description

【発明の詳細な説明】 [技術分野] 本発明は結晶の評価方法、例えば半i4 <4< 4’
;晶〈デバイスを作製するために、結晶を破壊すること
なく、迅速に、かつ容易に転位密度の分A1を/111
1定する方法に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for evaluating crystals, for example, semi-i4 < 4 <4'
; To fabricate a crystal device, the dislocation density can be quickly and easily reduced by A1 to /111 without destroying the crystal.
This relates to a method for determining

[従来技術] 現在作製されている土・導体中結晶には多くの転位が含
まれており、例えばCaASm結晶は、10’〜105
cIl/cm3程度の転位(線状欠陥)を含んでいるこ
とが知られている。
[Prior art] Currently produced soil/conductor crystals contain many dislocations, for example, CaASm crystals have 10' to 105 dislocations.
It is known that it contains dislocations (linear defects) on the order of cIl/cm3.

これら転位の存在は、結晶中にトラップベ1”R7を作
り、キャリアーの塙動度を低トさせたり、あるいは発光
ダイオードやレーザータイオードの発光特性や寿命を劣
化するなどデバイス4〜性に!II−影響を及ぼす。
The presence of these dislocations creates traps in the crystal, lowers the mobility of carriers, and deteriorates the light emitting characteristics and life of light emitting diodes and laser diodes. - influence;

また、一般に、転位vfI度はウェーハ毎に異なり、ウ
ェーハ面内においても不均一な分!1をとることが多い
Furthermore, in general, the degree of dislocation vfI differs from wafer to wafer, and is also non-uniform within the wafer surface! Often takes 1.

従来、結晶中の転(17密度は電気的に測r−″するこ
とができないので1次のカフ人かとられていた。
Conventionally, the density (17) in a crystal could not be measured electrically, so it was considered to be a first-order Café density.

(1)エッチピットが、 この方法は、溶液反応を利用したもので、゛r導体結晶
ごとに、適当な腐食液、例えば1〕δAsrp結晶に対
しては硫酸¥04と過酸化水素(Hへ)のぜ:を合水溶
給を用い、この溶液に結晶を浸して、転位が結晶表面に
交わった個所を溶解させてくぼみ(エッチピット)を作
り、これを光学顕微鏡などを用いて、4−t eする。
(1) Etch pits are removed. This method utilizes a solution reaction, and for each conductor crystal, a suitable corrosive solution, for example 1) For δAsrp crystals, sulfuric acid and hydrogen peroxide (H) are added. ) Noze: Using a water solution, the crystal is immersed in this solution, and the places where dislocations intersect with the crystal surface are dissolved to create etch pits. I will do it.

この方法は、結晶表面にくぼみを作るので、1Iill
定した結晶をそのままデバイスの作製に用いることかで
きないという欠点を有している。さらに、腐食液の成分
が結晶中に侵入する恐れも大きく、特に分子線エビタク
シ−rMBljで作製された超薄1模結晶についてのa
ll定には適用することができない。
This method creates depressions on the crystal surface, so
This method has the disadvantage that the determined crystal can only be used as is for manufacturing devices. Furthermore, there is a great possibility that the components of the corrosive liquid will enter the crystal, especially when it comes to ultra-thin 1-mock crystals prepared by molecular beam shrimp taxi-rMBlj.
It cannot be applied to

(2)エッチヒロック法 この方法では、(1)に6ベた方法と異なり、転位か結
晶表面に交った個所が隆起するように腐食したり熱処理
を行う。
(2) Etch Hillock Method In this method, unlike the method (1) above, corrosion or heat treatment is performed so that the locations where dislocations intersect with the crystal surface are raised.

例えば、転位か交わった個所と熱化学反14−を起して
特殊な酸化物を生成する物豹を結晶表面に塗布しておき
、熱処理を施して酸化物を生成させる。次に、転ず)シ
のない表面部分にある物質を溶解して転付か表面と交わ
った個所に酸化物の隆起を残し、これを(1)と同様に
光学wJ微にOなどを用いて1数する。
For example, a material that generates a special oxide by causing a thermochemical reaction with the intersection of dislocations is applied to the crystal surface, and heat treatment is performed to generate the oxide. Next, dissolve the material on the surface where there is no blemish, leave a bump of oxide at the place where it intersects with the surface, and use optical wj, 0, etc. Count by 1.

この方法も、長時間にわたって結晶を高11.tlで熱
処理する必要がある場合も生し、結晶の微細4昂進が損
傷されるという欠点を有している。
This method also produces crystals with a high temperature of 11. There are also cases where it is necessary to heat-treat at tl, which has the disadvantage that the fine crystals are damaged.

(3)デフレーション法 転位が存在している個所には、−躬にに一力が崗いてお
り、不純物原子をこのような結晶中に高温で拡散させる
と、不純物原子は転位のJr傍に東まりやすい、母体結
晶が可視光に対して透明であって、不純物原子が可視領
域に吸収をもつならば、可視光によりこのような結晶を
照射し、光学w4微鏡を用いて観察すると、転位のとこ
ろが色づいて見える。この方法を用いると。
(3) Deflation method There is an extremely strong force at the location where dislocations exist, and when impurity atoms are diffused into such a crystal at high temperature, the impurity atoms will be located near the Jr of the dislocation. If the host crystal is transparent to visible light and the impurity atoms have absorption in the visible region, then when such a crystal is irradiated with visible light and observed using an optical W4 microscope, Dislocations appear colored. Using this method.

転位の立体配置を観察することが回部である。Observation of the steric configuration of dislocations is the turning part.

しかし、この方法も、高温で熱処理な打うので、破壊検
査の一種である。
However, this method also involves heat treatment at high temperatures, so it is a type of destructive inspection.

(4)X線回折a1微法 一般に完全結晶では多毛反射が起こるので、X線の回折
強度は弱い。1.かし、結晶中に転位があると、多毛反
射による散乱が生じないので、このような結晶からのX
線回折強度は、強くなる。従って、X線フィルム、転機
あるいはX線に感度をもつテレビカメラなどを用いるこ
とによって転位を撮像することができる。
(4) X-ray diffraction a1 micromethod In general, perfect crystals have multihair reflections, so the diffraction intensity of X-rays is weak. 1. However, if there are dislocations in the crystal, scattering due to multihair reflection does not occur, so the X from such a crystal
The line diffraction intensity becomes stronger. Therefore, dislocations can be imaged by using an X-ray film, a turning point, a television camera sensitive to X-rays, or the like.

しかし、X線回折WIm法は、シリコン結晶では広く用
いられているが、GaAsのような半導体はS】に比べ
てX線に対する吸収係数が104@f1度大きいので、
撮像に長時間を要する。また、強力なX線を用いて短時
間に撮像を行うこともできるが、装置が極めて高価なも
のとなる。したがって、従来、GaAsに対しては、欠
へはあるものの、エッチピット状による評価が主として
行われていた。
However, although the X-ray diffraction WIm method is widely used for silicon crystals, semiconductors such as GaAs have an absorption coefficient for X-rays 104@f1 degrees larger than that of S].
It takes a long time to capture an image. Furthermore, although it is possible to perform imaging in a short time using powerful X-rays, the equipment becomes extremely expensive. Therefore, conventionally, GaAs has been mainly evaluated based on the etch pit shape, although this has been lacking.

[発明の目的] そこで、本発明の[目的は、かかる欠点を解決して半導
体結晶などの結晶中の転位奮迅の分!0を、結晶を破壊
することなく、迅速かつ容易に−II+定する結晶の評
価方法を提供することにある。
[Object of the Invention] Therefore, the object of the present invention is to solve these drawbacks and speed up dislocation in crystals such as semiconductor crystals. An object of the present invention is to provide a crystal evaluation method that quickly and easily determines -II+ 0 without destroying the crystal.

[発明の構成] かかる目的を達成するために、本発明では結晶試料を透
過する波長の光線を、結晶試料!−の複数の点に一定周
期をもって交〃に照射し、その光線の結晶からの透過光
を検出して?[i気1ご号にf′J?し、一定周期に同
期させた同期信号を発)1:させて、電気信号に対して
、同期イハ号と同期して位相Wi感検波を行って、複数
の点の各2点間の透過−Vの差を信号として検出し、次
に、結晶試ネ;1而にに照射する複数の光点を、測定方
向に移動させて停止し、その停止位置において透過率の
差を71111定し、順次に移動と測定を繰り返すこと
により、複数の点の間の透過率の差を光点の移動距離の
関斂として測定するものである。
[Structure of the Invention] In order to achieve the above object, the present invention uses a crystal sample! - Alternately irradiate multiple points at a certain period and detect the transmitted light from the crystal? [F'J in the first issue? 1: Then, the electrical signal is subjected to phase Wi sensing detection in synchronization with the synchronous Iha signal, and the transmission between each two of the multiple points is detected. Detecting the difference in V as a signal, then moving a plurality of light spots irradiated onto the crystal sample in the measurement direction and stopping, and determining the difference in transmittance at the stopped position, By sequentially repeating movement and measurement, the difference in transmittance between a plurality of points is measured as a function of the moving distance of the light point.

[実Afa例] 以下に図面を、911.(l、て本発明の詳細な説明す
る。
[Actual Afa Example] The drawings are shown below. (1) A detailed explanation of the present invention will be given below.

第1図は本発明測定方法に用いるl!lit定装置の一
実施例である。第1図において、lは試ネ゛15中を透
過することができる例えば近赤外単色光であり、この光
を二段のスリ・ントを911’ Lこ、没けたナヨッパ
2により、1−下方向に交r1’に入れ替わる一本の光
線を発生させる。この光線1はレンズ3およびマスク4
を通して試料5の表面に電的に入射させる。ここで、光
マスク4は、迷光を遮蔽するためのものであり、試料5
の前方に設ける。試料5の表面」−の入射光スボ・ン1
=18.+7は周波gQ]。
Figure 1 shows l! used in the measuring method of the present invention. This is an example of a lit constant device. In FIG. 1, l is, for example, near-infrared monochromatic light that can be transmitted through the sample 15, and this light is passed through a two-stage slit 911'L, and the sunken Nayoppa 2 transmits the light to 1- A single beam of light is generated which intersects r1' in the downward direction. This ray 1 is transmitted through a lens 3 and a mask 4.
An electric current is made incident on the surface of the sample 5 through the sample 5. Here, the optical mask 4 is for shielding stray light, and the optical mask 4 is for shielding the sample 5.
installed in front of the Incident light on the surface of sample 5
=18. +7 is the frequency gQ].

〜to’ Hzおよび振幅d(約1+am)でh下に&
動するようにチョッパ2を回転させる。なお、この周波
数は後述する受光素子の応答特性により快められる。試
料5を透過した光15を、試料5に接近して、例えば約
0.5mmの間隙で設置δされた光ファイバ6へ入射さ
せる。その光ファイ/へ6の端面に設置されたPbS受
光素子6′により光15を検出して、信号lOに変換す
る。このイへ号lOを同朋整Jにr、増幅器11に導く
~to' Hz and amplitude d (approximately 1+am) below h &
Rotate chopper 2 so that it moves. Note that this frequency can be improved by the response characteristics of the light-receiving element, which will be described later. The light 15 that has passed through the sample 5 is made to approach the sample 5 and enter an optical fiber 6 installed with a gap of, for example, about 0.5 mm. The light 15 is detected by a PbS light-receiving element 6' installed on the end face of the optical fiber 6 and converted into a signal lO. The signal 10 is routed to the amplifier 11.

一方、チョッパ2の外側のスリットまたは中心側のスリ
ットのいずれか1つのスリットを光線が通過するように
、発光ダイオード7およびフォトトランジスタ8を互い
に対向して配設し、発光ダイオード7からの光をフォト
トランジスタ8により受光して電気信号に変換する。こ
の信号9を同期信号として1R号10とともに同期整1
ff、増幅器11に入力する。ここで、帯域幅を絞って
位相敏感検波を行うことにより、46号10に対する同
期整疏出力を得、この出力を記録計14に記録する。
On the other hand, the light emitting diode 7 and the phototransistor 8 are arranged to face each other so that the light beam passes through either the outer slit or the center slit of the chopper 2. The phototransistor 8 receives the light and converts it into an electrical signal. This signal 9 is used as a synchronization signal to synchronize 1 with 1R number 10.
ff, input to the amplifier 11. Here, by narrowing down the bandwidth and performing phase sensitive detection, a synchronous rectification output for No. 46 10 is obtained, and this output is recorded on the recorder 14.

このようにして試料面−にの2点16と17の透過光強
度の差がめられる。
In this way, the difference in transmitted light intensity between the two points 16 and 17 on the sample surface can be determined.

試料5表面」二の他の2点間の透過光強電の差を測定す
るために、第1図に示すように、試料5を矢印13の方
向に、振幅d(すなわち、2点16と17との間の距#
d=約IIIII11)の整数倍の距#Xだけ不連続的
に移動する。すなわち、約1mm移動して試料5を止め
て2点間の透過光強度の差を411定する。この−11
1定か終了すると、さらにそこから約1aun移動して
、2点間の透過光強度の差を4111定する。このよう
にして、転位密度をめたい位置に光か当たるように試料
5を移動させて以Hの測定を繰り返すことにより、所望
の測定を行うことができる。
In order to measure the difference in transmitted light intensity between two other points on the surface of the sample 5, as shown in FIG. Distance between #
It moves discontinuously by a distance #X that is an integral multiple of d=approximately III11). That is, the sample 5 is stopped after moving about 1 mm, and the difference in transmitted light intensity between the two points is determined. This -11
When the 1 value is determined, the distance is further moved by about 1 aun, and the difference in transmitted light intensity between the two points is determined by 4111 times. In this way, the desired measurement can be performed by moving the sample 5 so that the light hits the position where the dislocation density is desired and repeating the following measurements.

次に、本発明方法による測定手順を説明する。Next, the measurement procedure according to the method of the present invention will be explained.

まず、チョッパ2の位置を上下に移動して前述した二本
の光線lの試ネ;lへの入射光強度が相等しくなるよう
に調整して、その位置にチョッパ2を固定する。そして
その入射光強度1o ’Jj測定する。
First, the chopper 2 is moved up and down to adjust the intensity of the light incident on the two light beams 1 to be equal to each other, and the chopper 2 is fixed at that position. Then, the intensity of the incident light 1o'Jj is measured.

つぎに、試ネ45を第1図に示すように光路中に挿入し
て入射光強度IOに対する透過光強度Iを1lll定す
る。このときの光点の位置を原点CX=O)とする。こ
の測定により、第2図に示すように、原点における光透
過率T(0) = I/I。か得られる。
Next, a test tube 45 is inserted into the optical path as shown in FIG. 1 to determine the transmitted light intensity I relative to the incident light intensity IO. The position of the light spot at this time is defined as the origin CX=O). As a result of this measurement, as shown in FIG. 2, the light transmittance at the origin is T(0) = I/I. or can be obtained.

次に、光点の走査距離Xを光点の振幅dの整蚊倍ad(
ll1m112+31”’ I n )だけ移動させて
試料をその場所に固定し、前述した方法で二点間の透過
光強度を測定する。そのとき各走査距#Kにおける透過
強度の変化分のイぽ1をそれぞれΔ■1.ΔI2゜ΔI
3.・・・ΔInとする。換、■すれば、x−dだけ1
11.中力してまずΔ■、を測>i、’ L、次にまた
x−dだけ移すJ1シてΔr、を測定する。以下同様の
4111定を繰返す。ここで、ΔIi/Io(i=l、
2,3.・・−、n )のイlI′1は振幅dだけ敲れ
た2点x = (i−1)dとidとの間の光h iM
十の差に等しい、これを各走査t・踵における光透過率
の変化分ΔTiとおく、すなわち、6丁1=ΔIi/ 
Io (i= 1.2s・・、n )である、このよう
に定めると、原点からndだけ離れた点における光iA
過4/は T(nd)= T(o)十、ΣΔT1 +=1 = T(o)+(3’ΔIi) / To (+)11 により1ノーえられる。この式中のΔ11には符しを含
めである。
Next, the scanning distance X of the light spot is multiplied by the amplitude d of the light spot ad(
ll1m112+31"' I n ) and fix the sample at that location, and measure the intensity of transmitted light between the two points using the method described above. At this time, the change in transmitted intensity at each scanning distance #K is respectively Δ■1.ΔI2゜ΔI
3. ...Let it be ΔIn. If you change, ■, then only x-d is 1
11. First, Δ■ is measured with a neutral force, and then Δr is measured by moving J1 by x−d again. The same 4111 constant is repeated thereafter. Here, ΔIi/Io (i=l,
2, 3. ...-, n) is the light h iM between the two points x = (i-1) d and id, which is increased by the amplitude d.
This is equal to the difference of 10, and this is set as the change in light transmittance at each scan t/heel, ΔTi, that is, 6 pieces 1 = ΔIi/
Io (i = 1.2s..., n), and when defined in this way, the light iA at a point nd apart from the origin
4/ is given by T(nd) = T(o) ten, ΣΔT1 +=1 = T(o)+(3'ΔIi) / To (+)11. Δ11 in this formula includes the sign.

1!In ’A−’するイけに結晶を移動する間隔文が
光改の振幅dに一致しない場合には、 九′ T(x)= T(o)+(Q /d) Σ (ΔIi/
Io )−;1 (2) により任意の走査距#Xの位置の光透過率をめる。ここ
で、 (ΔIi/Io)は、(1)式におけると同様に
、振幅dだけ離れた2点間の光透過率の差である。(2
)式は、2点間の光透過率の差が2点間の距離に比例す
ると仮足して導出したものである。
1! If the interval sentence that moves the crystal in order to do In 'A-' does not match the amplitude d of the light change, then 9' T(x) = T(o) + (Q /d) Σ (ΔIi/
Io)-;1 (2) Calculate the light transmittance at a position of arbitrary scanning distance #X. Here, (ΔIi/Io) is the difference in light transmittance between two points separated by the amplitude d, as in equation (1). (2
) was derived by assuming that the difference in light transmittance between two points is proportional to the distance between the two points.

以1−のようにして、第2因に示すように、所定の走査
経路に沿った光透過率分布曲線丁が得られる。
As described in 1- above, a light transmittance distribution curve along a predetermined scanning path is obtained as shown in the second factor.

このような本発明による測定方法を用いて、不純物をド
ープしないGaAs中結晶のウェーハについて、信号強
度および光透過率の分布を測定した結果を第3図に示す
FIG. 3 shows the results of measuring the distribution of signal intensity and light transmittance for a GaAs medium crystal wafer not doped with impurities using the measuring method according to the present invention.

また、同一走査径路についてエッチビット法により測定
した転位密度分4jを第3図と対比して第4図に示す。
Further, the dislocation density 4j measured by the etch bit method on the same scanning path is shown in FIG. 4 in comparison with FIG.

第3図および第4図の分1ti曲線から各A÷査距瑚X
の点について光透iI!S率T(x)と転位密ta°と
の関係をめると、第5図の相関曲線がf!)られ、光透
過率と転位密度との間に相関関係があることが確認され
た。
From the minute 1ti curves in Figures 3 and 4, each A ÷ scanning distance X
Regarding the point of light transmission II! When considering the relationship between the S ratio T(x) and the dislocation density ta°, the correlation curve in Figure 5 is f! ), and it was confirmed that there is a correlation between optical transmittance and dislocation density.

X1IJ3図は光検出器として硫化鉛PbSセルを使用
し、両面化学研磨された非ドープGaAs試料に半透明
波長1550nm(0,8eV)の光を照射して、光点
振幅1.015mmおよび振動周波数100Hzのドで
測定したものである。
Figure X1IJ3 uses a lead sulfide PbS cell as a photodetector to irradiate a non-doped GaAs sample with semi-transparent wavelength of 1550 nm (0.8 eV), which has been chemically polished on both sides, to obtain a light spot amplitude of 1.015 mm and vibration frequency. It was measured at 100Hz.

第4図は同じ試料を420℃の苛性カリ KO)I溶液
中に5分間浸して腐食させ、得られたエウチピットの密
度を反射S緻鏡により計測した結果であり、結晶の面方
位は(1001である。
Figure 4 shows the results of corroding the same sample by immersing it in a caustic potash KO) I solution at 420°C for 5 minutes, and measuring the density of the resulting Euchi pits using a reflective S-microscope. be.

第5図の相関曲線によれば光透過率は転位密度に対して
逆比例的に変化する。この結果は定性的に次のように解
釈することができる。
According to the correlation curve in FIG. 5, the light transmittance changes inversely proportional to the dislocation density. This result can be interpreted qualitatively as follows.

GaAsのバンドギャップ1.4eVより小さいエネル
ギーの光が単結晶中を通過する際に光の透過を妨げる四
回は、不純物や転位の分布の不均一性、すなわち、不純
物原子による光のり収、あるいは転位による光散乱が原
因となる拡散反射が考えられる。不純物は吸光性の準位
を形成するから、透過τFは照射光に対する波長依存性
をもつはずであるか、そのような現象は観測されていな
い、したがって、ウェーへ面内における透過光強度の不
均一性は、転位による光散乱に起因すると解釈すること
ができる。
When light with an energy smaller than the GaAs band gap of 1.4 eV passes through a single crystal, the four times that the light is blocked are due to non-uniform distribution of impurities and dislocations, that is, light convergence due to impurity atoms, or Diffuse reflection caused by light scattering due to dislocations is considered. Since impurities form a light-absorbing level, the transmission τF should have a wavelength dependence on the irradiated light, or such a phenomenon has not been observed. The uniformity can be interpreted as being due to light scattering due to dislocations.

このように、あらかじめ光透過率と転位密度との関係を
表す特性曲線を得ておけば、標準試料と同じ不純物含有
量、厚みおよび表面状態をもつ同種類の半導体結晶中に
含まれる転位密度は、その結晶について透過率分布を測
定することにより、あらかじめめておいた。透過率転位
密度の相関から容易にめることができる。
In this way, by obtaining a characteristic curve representing the relationship between optical transmittance and dislocation density in advance, the dislocation density contained in the same type of semiconductor crystal with the same impurity content, thickness, and surface condition as the standard sample can be calculated. , was determined in advance by measuring the transmittance distribution of the crystal. It can be easily determined from the correlation between transmittance and dislocation density.

また、単にウェーハ面内において、転位密度の低い個所
を特定する目的の場合には、前述した特性曲線をあらか
じめ得ておくことが必ずしも必要でない。また、かかる
目的かの場合には、両面を研磨した試料は必゛&°でな
く、片面か11い面の場合でも−Ill定に支障はない
Further, if the purpose is simply to identify a location with a low dislocation density within the wafer surface, it is not necessarily necessary to obtain the above-mentioned characteristic curve in advance. In addition, for such purpose, it is not necessary to use a sample with both sides polished, and even if the sample is polished on one side or 11 sides, there is no problem in determining -Ill.

[効果] 以上述べたことから明らかなように、本発明によれば次
のような効果を発揮することかで、なる。
[Effects] As is clear from the above description, the present invention provides the following effects.

(1)透Il!S小強度の微細な協化を高?、・8爪で
−1+1 ′Ji“するることができる。
(1) Toru Il! High S subtle cooperation of low strength? ,・-1+1 'Ji'' can be done with 8 claws.

1′2)安価でかつfall巾に扱える装置を用いて、
結晶を破壊することなく、+IN(’を弄:1α分4]
をI川)」″することができ、しかもノ1破壊的測定で
あるために、 Al11定した結晶をそのままデ/へイ
ス作成に用いることかできる。
1'2) Using equipment that is inexpensive and can be handled throughout the fall,
Without destroying the crystal, +IN (play with ': 1α min 4)
Moreover, since it is a highly destructive measurement, the Al11-determined crystal can be used as it is for the production of de/heis.

(3)1枚の結晶ウェー/’%をA+++定する時間は
10分以内であり、エッチ兎ピ・ント1人などに比べて
ilL ’+中なIl+11定かできる。
(3) It takes less than 10 minutes to determine A+++ for one crystal weight/'%, and it is possible to determine Il+11 in ilL'+ compared to the case of one person.

(4)巾に、大まかな低転位密度の個所を特定すれば昆
りる場合には、透過率の面内分布は相対的なものでよい
。そのような場合には片面が研磨され、他力の面はスラ
イスされたままの相い面のウェーハ試料を用いることか
できる。
(4) If it is possible to specify a rough location with a low dislocation density, the in-plane distribution of transmittance may be relative. In such cases, it is possible to use a wafer sample with one side polished and the other side sliced.

(5)広い面Jhをもつ試料の転位密度分布の411定
が1丁能である。
(5) The 411 constant of the dislocation density distribution of a sample with a wide surface Jh is 1-dimensional.

(6)本発明測定力法は結晶ウェー/\の自動化測定に
適しており、また走査を迅速に行うことができるので、
−次元的走査により転位密度の等Sl。
(6) The measuring force method of the present invention is suitable for automated measurement of crystal wafers, and scanning can be performed quickly.
- equal Sl of dislocation density by dimensional scanning;

鱈(トポロジカル)表示を電算機などとの併用により行
うことができる。
Topological display can be performed using a computer etc.

(7)同様な理由から、結晶中を透過する波長をもつレ
ーザービームを光源として用いることにより、また信号
を加算処理を経ずにそのまま用いることにより、微小な
転位性4jパターンを表示する顕微鏡を作ることも可能
である。本発明側’+i、“方法により得られる信号に
は微分的特徴があるので、この特徴はかかる表示にあた
り、像のコントラストを高める!−で有利である。
(7) For the same reason, by using a laser beam with a wavelength that can pass through the crystal as a light source, and by using the signal as it is without undergoing addition processing, a microscope that displays minute dislocation 4J patterns can be developed. It is also possible to make one. Since the signal obtained by the method of the present invention has a differential feature, this feature is advantageous in increasing the contrast of the image in such a display.

(8)本発明測定方法 の半導体結晶の転位密度分布の測定のみならず、広く絶
縁体結晶あるいは金属結晶の転位密度分布のA111定
にも有効に適用することができる。
(8) The measuring method of the present invention can be effectively applied not only to the measurement of the dislocation density distribution of semiconductor crystals, but also to the A111 constant of the dislocation density distribution of insulator crystals or metal crystals.

(9)また、本発明測′A:′方法において、大川光の
波長を変えて透過光強1α゛分!rIをI!ll+定す
ることにより、転位密度分布のみならず、不紳物濃1匹
分布を測定することも可能である。
(9) In addition, in the measurement 'A:' method of the present invention, the wavelength of the Okawa light is changed to increase the transmitted light intensity by 1α゛! rI to I! By determining ll+, it is possible to measure not only the dislocation density distribution but also the single-dislocation density distribution.

なお、」―述した実施例では、試料1−の2つの点に一
定周期で交互に光を照射しているが、本発明はこの例に
限られずチョッパのスリットを3段あるいは4段など任
、低所望の複数段にわたって^1置することにより、試
料1−の複数点に光を順次に!1に射するようにしても
よい。その場合には、l1ll’l &の同期整流出力
のうち、Ij:に隣接する出力同士の間で透過率の差を
i!)るようにすればよい。
In the embodiment described above, light is irradiated alternately at two points on the sample 1- at a constant cycle, but the present invention is not limited to this example, and the chopper slits can be arranged in any number of stages, such as three or four stages. , By placing ^1 over multiple desired stages, light is sequentially applied to multiple points on the sample 1-! 1 may be set. In that case, the difference in transmittance between the outputs adjacent to Ij: among the synchronous rectified outputs of l1ll'l & is calculated as i! ).

さらにまた、試料の移動方向、すなわち光点の走査方向
は第2図のように一定方向にする必要はなく、任7姪所
望の方向に定めることかでき、しかもその移ツhと停止
1〕の間隔は必ずしも一定にする必要はなく、その走査
と同期して同期信号かでるようにしておけば、可変間隔
で走査を行うことができる。
Furthermore, the moving direction of the sample, that is, the scanning direction of the light spot, does not need to be fixed in a fixed direction as shown in FIG. It is not necessary to make the intervals constant; if a synchronization signal is generated in synchronization with the scanning, scanning can be performed at variable intervals.

さらにまた、試料ウェーハを切断、加1−せずにその才
ま測定にかけられるという便宜がある0本発明方法と同
じように、転位箇所における光散乱を利用する結晶評価
法としては光散乱トモグラフィー法かあり、これはウェ
ー7X而と並行な細い光ビー1、を入射して、面に垂直
な散乱光成分を検出する方法である。しかし、この方法
ではウェー/\を数mm幅の長方形に切断し、かつその
断面を光学研磨する必要があり、さらに、厚さ1mm以
下の薄いウェーハでは測定が困難である。これに対して
、本発明4111定方法にはかかる欠点はない。
Furthermore, light scattering tomography is a crystal evaluation method that utilizes light scattering at dislocation sites, similar to the method of the present invention, which has the convenience of being able to measure the crystallinity of a sample wafer without cutting or processing it. In this method, a thin light beam 1 parallel to the wave 7X is incident, and a scattered light component perpendicular to the surface is detected. However, in this method, it is necessary to cut the wafer into a rectangle several mm wide and optically polish the cross section, and furthermore, it is difficult to measure thin wafers with a thickness of 1 mm or less. In contrast, the 4111 method of the present invention does not have such drawbacks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施して転位密度分布を測定する
装置の一実施例を示す構成図、第2図は本発明における
光透過率の測?手順を説明するための線図、 wIJ3図は走査距離菫に対する信号および透過率の分
布を示す特性曲線図。 第4図は走査距離Xに対する転位密度の分布を示す特性
曲線図、 pl’% 5図は転位密1片に対するj大過光の相関を
小す相関曲線図である。 1・・・近赤外tIt色光線、 2・・・チョッパ、 3・・・レンズ。 4・・・光マスク、 5・・・結晶試料、 6・・・光ファイバ、 6′・・・受光末子、 7・・・発光グイオート、 8・・・フォトトランジスタ、 8・・・回期48号、 lO・・・検出イハ号、 11・・・同期整流増幅器、 13・・・走査方向、 14・・・記録A1. 15・・・試才1透過光、 18 、17・・・入射光スポット。 手続補正音 昭←j9年3n3o1] 特許庁長官 若 杉 和 夫 殿 1、事件の表示 結晶の評価方法 3、補正をする者 事件との関係 特許出瀬人 (435)日本放送協会 (1)明細書第1/頁第λ行目の「透過強度」を「透過
光強度」に訂正する。 (2) 同第13頁第〃行目〜第14I頁第7θ行目を
次の通りに訂正する。 1−GaAsのバンドギャップ1.4 eVより小さい
エネルギーの光が単結晶中を通過する際に光の透過を妨
げる要因は、転位近傍に析出する不純物元素による光散
乱に起因すると考えられる。その結果転位密度の大きい
場所では光透過率が小さく、逆に転位密度の小さい場所
では光透過率が大となる。」 (3) 同第1グ頁第16行目の1透過率転位密度」を
随過率対転位密度」に訂正する。 (4) 同第17頁第2行目〜第j行目の[(9)また
、・・・・・・である。]を削除する。 以 上。
FIG. 1 is a block diagram showing an embodiment of an apparatus for measuring dislocation density distribution by carrying out the method of the present invention, and FIG. Diagram for explaining the procedure. Figure wIJ3 is a characteristic curve diagram showing the distribution of signal and transmittance with respect to the scanning distance. FIG. 4 is a characteristic curve diagram showing the distribution of dislocation density with respect to scanning distance X, and pl'% Figure 5 is a correlation curve diagram that reduces the correlation of j large excess light with respect to one piece of dislocation density. 1... Near-infrared tIt colored light rays, 2... Chopper, 3... Lens. 4... Optical mask, 5... Crystal sample, 6... Optical fiber, 6'... Light receiving terminal, 7... Light emitting group, 8... Phototransistor, 8... Period 48 No., lO...Detection Iha No., 11...Synchronous rectification amplifier, 13...Scanning direction, 14...Record A1. 15... Trial 1 transmitted light, 18, 17... Incident light spot. Procedural amendment sound ← J9 year 3n3o1] Commissioner of the Japan Patent Office Kazuo Wakasugi 1, evaluation method of display crystals in the case 3, relationship with the person making the amendment Patent Deseto (435) Japan Broadcasting Corporation (1) Specifications Correct "transmitted intensity" in the λth line of page 1 of the book to "transmitted light intensity". (2) Line 13 on page 13 to line 7θ on page 14I are corrected as follows. The reason why light with an energy smaller than the band gap of 1.4 eV of 1-GaAs is prevented from passing through a single crystal is thought to be due to light scattering by impurity elements precipitated near dislocations. As a result, the light transmittance is low at locations where the dislocation density is high, and conversely, the light transmittance is high at locations where the dislocation density is low. (3) ``1 transmittance dislocation density'' on the 16th line of the same page 1 is corrected to ``passage rate vs. dislocation density''. (4) Page 17, line 2 to line j [(9) Also... ] Delete. that's all.

Claims (1)

【特許請求の範囲】 l)結晶試ネ4を透過する波長の光線を、+tfi記結
晶試料上の複数の点に一定周期をもってり/lに11(
(射し、その光線のnfl記結晶からの透過光を検出し
て電気信号に変換し、前記一定周期に回11)1させた
同期信号を発生させて、前記電気信号に対して、前記同
期信号と同期して位相敏感検波を行って、前記複数の点
の各2点間の透過率の差を信号として検出し、次に、前
記紀晶試才111’li +”。 に照射する前記複数の光点を、/I11′Ii:′方向
に移動させて停止し、その停+1−位置においてl1i
t記透過率の差を測定し、順次に前記移動とIf4定を
繰り返すことにより、前記複数の点の間の透過率の差を
前記光点の移動距離の間歇としてIf4定することを特
徴とする結晶の評価方法。 2)前記測定を行って検出された信号をその移動前の位
置にて検出された信号にIIIFi次!+!植すること
により、透uM =ijを前記光点の移動距離の関蚊と
して/Ill :+i2することを特徴とする特許請求
の篩囲第1項記載の結晶の評価方法。 3)前記結晶と化学的組成、不純物含有に、厚み、およ
び表面状jn;が同じであって転位密度の分布が既知の
標準試料につき、前記透′!4率の差を前記標準試料l
−の所定の径路について測定し、前記転位密度と、前期
透過率との関係をあらかじめめ、次いで、前記結晶につ
いて前記透過率を前記所定の径路と同一の径路について
測定し、その測定値から、前記転位密度と前記透過率と
の関係を用いて、転位密度分布を測定することを特徴と
する特許請求の範囲ri42項記藏の結晶の評価方法。 (以 下 余 白 )
[Scope of Claims] l) A light beam with a wavelength transmitted through the crystal sample 4 is transmitted to a plurality of points on the crystal sample +tfi with a constant period/l to 11(
(the light transmitted from the nfl crystal is detected and converted into an electric signal, and a synchronization signal is generated at the constant period 11), and the synchronization signal is A phase-sensitive detection is performed in synchronization with the signal to detect the difference in transmittance between each two of the plurality of points as a signal, and then the above-mentioned light beam is irradiated onto the 111'li+''. Move the plurality of light spots in the /I11'Ii:' direction and stop, and at the stop +1- position l1i
By measuring the difference in transmittance t and sequentially repeating the movement and the If4 constant, the difference in transmittance between the plurality of points is determined as If4 as the interval of the moving distance of the light spot. How to evaluate crystals. 2) The signal detected by performing the above measurement is converted to the signal detected at the position before the movement. +! 2. The method for evaluating a crystal according to claim 1, characterized in that by planting the light spot, the transmittance uM =ij is set as a function of the moving distance of the light spot by /Ill:+i2. 3) For a standard sample having the same chemical composition, impurity content, thickness, and surface condition as the crystal and having a known dislocation density distribution, 4 rate difference from the standard sample l
- to determine the relationship between the dislocation density and the transmittance in advance, then measure the transmittance of the crystal along the same path as the predetermined path, and from the measured value, 43. The method for evaluating a black crystal as set forth in claim 42, wherein a dislocation density distribution is measured using the relationship between the dislocation density and the transmittance. (Margin below)
JP5085384A 1984-03-19 1984-03-19 Evaluating method of crystal Granted JPS60195437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5085384A JPS60195437A (en) 1984-03-19 1984-03-19 Evaluating method of crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5085384A JPS60195437A (en) 1984-03-19 1984-03-19 Evaluating method of crystal

Publications (2)

Publication Number Publication Date
JPS60195437A true JPS60195437A (en) 1985-10-03
JPH0410578B2 JPH0410578B2 (en) 1992-02-25

Family

ID=12870276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5085384A Granted JPS60195437A (en) 1984-03-19 1984-03-19 Evaluating method of crystal

Country Status (1)

Country Link
JP (1) JPS60195437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102702U (en) * 1985-12-19 1987-06-30
WO2002009839A1 (en) * 2000-07-28 2002-02-07 Basf Aktiengesellschaft Regulation of a wash column in a melt cristallisation process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102702U (en) * 1985-12-19 1987-06-30
JPH033046Y2 (en) * 1985-12-19 1991-01-28
WO2002009839A1 (en) * 2000-07-28 2002-02-07 Basf Aktiengesellschaft Regulation of a wash column in a melt cristallisation process
US7323016B2 (en) 2000-07-28 2008-01-29 Basf Aktiengesellschaft Regulation of a wash column in a melt crystallization process

Also Published As

Publication number Publication date
JPH0410578B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
EP0118199B1 (en) An apparatus for measuring carrier lifetimes in a semiconductor
TW201205062A (en) Sample inspection device and sample inspection method
JPS62190728A (en) Method and apparatus for monitoring etching end point
Liu et al. Design of a submillimeter crack-detection tool for Si photovoltaic wafers using vicinal illumination and dark-field scattering
JPH0529423A (en) Evaluation of bonding state and impurity on surface of silicon wafer
JPH06132373A (en) Lifetime evaluation method and device of semiconductor material
US4755049A (en) Method and apparatus for measuring the ion implant dosage in a semiconductor crystal
JPS60195437A (en) Evaluating method of crystal
Ajito et al. Strain imaging analysis of Si using Raman microscopy
CN109075092A (en) detection device and detection method
JP3730289B2 (en) Defect measuring method and apparatus for semiconductor wafer
JP2937557B2 (en) Diffusion layer depth measuring device
JPH07167793A (en) Phase difference semiconductor inspection device and its production method
JPH0862122A (en) Method for evaluating oxygen precipitation defect density of silicon water
US5512999A (en) Method for nondestructive measurement of dislocation density in GaAs
JPS6253944B2 (en)
JP3338118B2 (en) Method for manufacturing semiconductor device
JPS61173171A (en) Method for measuring resistivity of semiconductor wafer
JP3939179B2 (en) Fine particle detection device, fine particle production device
JPH033946B2 (en)
JPH10154734A (en) Method for evaluating semiconductor crystal
JP3758706B2 (en) Semiconductor substrate sorting method
JP3210489B2 (en) Silicon wafer and method for evaluating withstand voltage of oxide film
JP2856562B2 (en) Insulation film inspection method
White et al. Contactless nondestructive technique for the measurement of minority-carrier lifetime and diffusion length in silicon