JPH04103946A - Multi-room air conditioner - Google Patents

Multi-room air conditioner

Info

Publication number
JPH04103946A
JPH04103946A JP2219257A JP21925790A JPH04103946A JP H04103946 A JPH04103946 A JP H04103946A JP 2219257 A JP2219257 A JP 2219257A JP 21925790 A JP21925790 A JP 21925790A JP H04103946 A JPH04103946 A JP H04103946A
Authority
JP
Japan
Prior art keywords
room
temperature
compressor
indoor
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2219257A
Other languages
Japanese (ja)
Other versions
JP2760144B2 (en
Inventor
Yoshiro Tsuchiyama
吉朗 土山
Masataka Ozeki
正高 尾関
Koji Ebisu
戎 晃司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2219257A priority Critical patent/JP2760144B2/en
Priority to US07/745,352 priority patent/US5247806A/en
Publication of JPH04103946A publication Critical patent/JPH04103946A/en
Application granted granted Critical
Publication of JP2760144B2 publication Critical patent/JP2760144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To realize a room temperature control and a proper control of a heat pump cycle in a simple way by a method wherein temperature detectors for respective rooms and an overheat degree detecting means of a refrigerant at an outlet of a vaporizer are provided, and capacities of a plurality of room expansion valves and compressors are controlled so as to make the respective room temperatures coincide with respective set room temperatures. CONSTITUTION:A compressor 2 which is variable in the capacity, temperature detectors 7A, 7B and 7C for respective rooms and an overheat degree detecting means 10 are provided. If standard load capacities of respective indoor units 4A, 4B and 4C are represented by Ci (i=1, 2...: corresponding to the respective indoor units), differences between respective set room temperatures and respective room temperatures are represented by Di (i=1, 2...), the compressor 2 is operated by a value Uc (a capacity command of the compressor 2) which is obtained from expressions (1) and (2) by using a control operation functions fj (j=1, 2...) and an additional operator SIGMA. When an error of a detected overheat degree with respect to a target overheat degree is represented by ESH, opening degrees Ui (i=1, 2...) of expansion valves 6A, 6B and 6C for the respective rooms are set by expressions (3), (4) and (5). Further, if differences between an outdoor temperature and set room temperatures of the respective rooms are represented by Ti (i=1, 2...), the openings (degrees Ui of the expansion valves of the respective rooms are set by an expression (11), with USHO as a constant value and Ki as a coefficient.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は1台の室外機と、この室外機に並列的に接続し
た複数の室内機とを備え 室温制御およびヒートポンプ
サイクルの制御を行なう多室型空気調和機に関すも 従来の技術 一般紙 多室型空気調和機は第3図に示すように構成さ
れていa 以下、その構成について説明すも 図に示すようく 室外機1は圧縮機2と室外熱交換器3
とで構成していも 室内機4A、4&4Ci友 室内熱
交換器5A、 5& 5Ci室内膨張弁6A、6B、 
 6C,および室温検知器7A、7& 7Cを備え 室
外機1および各室内機4 A。
[Detailed Description of the Invention] Industrial Application Field The present invention is a multi-room type device that includes one outdoor unit and a plurality of indoor units connected in parallel to the outdoor unit, and controls room temperature and heat pump cycle. Conventional technology related to air conditioners General paper A multi-room air conditioner is configured as shown in Figure 3.The configuration will be explained below.The outdoor unit 1 is connected to the compressor 2 and Outdoor heat exchanger 3
Indoor unit 4A, 4&4Ci indoor heat exchanger 5A, 5&5Ci indoor expansion valve 6A, 6B,
6C, and room temperature detectors 7A, 7 & 7C.Outdoor unit 1 and each indoor unit 4A.

4& 4Cの各ガス側および液側をそれぞれガス側管路
8および液側管路9で接続して閉回路となし 閉回路の
内部に冷媒を封入してヒートポンプサイクルを形成して
いも 圧縮機吸入圧力検出器10と圧縮機吸入温度検出
器11は過熱度検出手段を形成し 圧縮機吸入部分の過
熱度を算出すもすなわ板 検出した圧力における使用冷
媒の飽和温度を求へ 検出した温度との差が過熱度にな
もまた 外気温検出器12は外気温度を検出し 各室の
設定温度との差を計算することにより、各室の熱負荷を
算出ができるようにしたものであa上記構成において、
室外熱交換器3は凝縮器として働き、各室内熱交換器5
A、5& 5Cは蒸発器として働き、各部屋の空気から
吸熱することにより、各部屋を冷房すも このとき、各
室内膨張弁6A、6B、  6Cの開度を増加すると、
冷媒の流量が増加し 冷房能力が増加して各室の温度を
低下させも その温度は各室温検知器7A、7&  7
Cにより検知されも な耘 暖房時に限 四方弁(図示せず)を用いて圧縮機
2の入力と出力を切り換えることにより、冷媒の流れる
方向が逆になり、室内熱交換器8A、5& 5Cは凝縮
器をなり、室外側熱交換器3は蒸発器になム 従来 このような多室形空気調和機の各室内膨張弁制御
の方法はいわゆるPID制御方式 あるいは条件に応じ
て操作量を決定する表検索方式が採用されていも これ
らの制御(制御手段はマイクロコンピュータなどで実現
され 手段そのものは図示せず)において沫 PID制
御方式では目標値に対する誤差情報を得て、誤差情報の
比へ積分、微分を算出し 算出結果を制御対象に対して
適当な比で加算して操作量を決定していたX 表検索方
式で(よ 現在の設定温度 各種の検出量に応じた制御
量の表を予め設定しておく方法であも 制御操作量(よ
 各室の膨張弁開度と圧縮機能力などであった 発明が解決しようとする課題 しかしなが収 このような多室型空気調和機でCL  
各室間に干渉があり、設定温変通りに制御することと、
ヒートポンプサイクルが高効率で動作するための制孤 
たとえば過熱度制御などを両立して行うことは複雑であ
り困難であった本発明は上記課題を解決するもので、室
温制御とヒートポンプサイクルの適正な制御とを簡単な
方法で実現することを第1の目的としていもまた フィ
ードフォワード制御を付加することにより連応性を改善
することを第2の目的としていも 課題を解決するための手段 本発明(上 上記第1の目的を達成するために能力を可
変できる圧縮機と室温検知器と過熱度検出手段とをCL
  各室内機の標準負荷容量をCi(i=1.2.・・
・、:室内機に対応)、各室設定温度と各室温度との差
をDi(i−IJ・・・)として、前記圧縮機の能力指
令Ucを、制御演算関数fj()(j=1、2、・・・
)、加算演算子Σを用いて、以下の犬E=Σ (Ci×
Di)       ・ ・ ・(1)Uc= f l
 (E)            ・ ・(2)で得ら
れる値Ucにより圧縮機を運転し 目標とする過熱度に
対する検出した過熱度との誤差をESHとし 各室の膨
張弁の開度[J i(1−L2.3、・・・)を、以下
の志 USH= f 2 (ESH) + USHO・・(3
)[)av=E/ΣCi      −−−(4)Ui
=USH+f 3 (Di−Dav)  ・ ・ ・(
5)で設定するようにしたことを第1の課題解決手段と
していも まな 第2の目的を達成するためく 能力を可変できる
圧縮機と室温検知器と過熱度検出手段と外気温検知器を
有し 各室内機の標準負荷容量をCi (i=1、2,
・・・)、各室設定温度と各室温度との差をDi(i=
1.2・・・)として、外気温度と各室設定温度との差
を’f i (i=1、2,・・・)を用いて、前記圧
縮機の能力指令Ucを、Aiを定数とし 制御演算関数
f j ()(j=1、2、・・・)を用いて、以下の
犬E=Σ (Ci×Di)        ・・・(7
)Uc= f l (E)  +Σ (Aix Cix
 Ti)  ・・(8)で得られる値Ucにより圧縮機
を運転し 目標とする過熱度に対する検出した過熱度の
誤差をESHとり、  USHOを一定のmKiを係数
として、各室の膨張弁の開度Ui (i−L2.3、・
・・)を、以下の民USH= f 2 (ESH) +
 USHO・・・(9)Dav=E/ΣCi     
     ・・(10)Ui=USH+ f 3 (D
i−Dav)、+KixCiXTi・・・(11) で設定したことを第2の課題解決手段としていも作用 本発明は上記した第1の課題解決手段により、式(1)
は設定温に対する室温の誤差を室内機の熱容量で重みを
つけて加算したものであり、式(2)の制御演算関数に
より目標値に追従する制御系を構成u 式(3)(4)
は過熱度に対しては各室の膨張弁開度の平均値で制御を
行−入 各室への冷媒の分配は膨張弁開度の平均値から
のずれを用いて行なうことを示していa すなわ板 冷
媒分配制御は分配比の制御であり、弁開度の絶対量は制
御する必要が無いたべ 操作量が1つ余るので、ヒート
ポンプサイクルの状態量である過熱度を制御することが
可能になも また 第2の課題解決手段により、式(8)の第2項G
L  総熱負荷を圧縮機の仕事に換算する項であり、予
め必要な熱量に対応する操作量を与えるフィードフォワ
ード制御量になり、連応性と定常特性を改善できも 実施例 以下、本発明の一実施例について第1図および第2図を
参照しながら説明すa な叙 全体のシステムは第3図
と同じであり、説明を省略すも第1図ζ友 各室の室内
膨張弁6A、 6& 6cの開度を制御するための制御
系のブロック図で、圧縮機吸入圧力検出器1o、圧縮機
吸入温度検出器11により求められた過熱度情報(上 
目標とする過熱度と比較され その誤差をPIDコント
ロ−ラ13に人力され、%  PIDコントローラ13
で1よ 過熱度を制御するためのPID演算が行われム
 PIDコントローラ13の出力は各室膨張弁制御のた
めの加算器14、15へ送られも また設定温度と検出
した室温との誤差情報Diの情報は標準負荷容量16、
17および加算器18および割り算器19を経て、室温
との誤差情報の負荷の重み付き平均情報Davに換算さ
れ4 重み付き平均情報[)ayは比較器20、21に
送られて、各室の室温誤差と比較されも したがって、
比較器20.21の出力は各室室温誤差Diの平均値に
対する差になム 比較器20、21の出力はPIDコン
トローラ22、23に送られて、室温を設定値にならし
めるための膨張弁制御演算が行われもPIDコントロー
ラ22、23の出力は加算器14、15へ送られも 加
算器14.15でCヨ  過熱度誤差情報からの膨張弁
開度指令情報と、温度誤差情報からの膨張弁開度指令情
報とを加算すム加算した結果を実際の室内膨張弁6A、
 6&6Cの開度指令として、各室の膨張弁開度制御手
段(図示せず)へ送り、各室内膨張弁6A、 6広6C
の開度を制御すム 第2図は圧縮機2の能力制御を行うための制御系のブロ
ック図で、第1図と同じ演算を用いているものは同じ符
号で示していも 室温の誤差情報をDiを各室の標準負
荷容量16、17を経て、加算器18に入力すも すな
わ板 つぎの演算が行われも Σ (DixCi) 加算器18では各室の室温誤差と熱負荷容量との積和演
算結果が求まり、結果をPIDコントローラ24に入力
す、k  PIDコントローラ24は室温が設定温度に
なるように圧縮機2の能力を制御するためのPID演算
が行われ4  PIDコントローラ24の演算結果はイ
ンバータ25に送られ圧縮機2の回転数情報に変換され
た也 圧縮機2を駆動すa 第1医 第2図の制御系の動作状態を要約すると、各室
の室内膨張弁6A、 6& 6Cの開度の平均情報でヒ
ートポンプサイクルの過熱度を制御し 室温誤差情報で
各室の膨張弁開度平均値からのずれを与えることにより
熱分配を制御すム 圧縮機制御も同様に 室温誤差情報
をもとに全平均熱量に対するフィードバック制御系を構
成す谷な耘 過熱度の検出方法として圧縮機2の吸入圧
力と吸入温度とを用いる方法で説明した力(他の方法(
たとえば 室内膨張弁出口の温度と蒸発器出口の温度と
の差を用いる方法)であっても本発明は適用することが
でき、本発明の内容を越えるものではな(〜 また 室内機4A、4& 4Cの負荷予測として標準熱
負荷を用いたカミ 実際の設置されているところの熱負
荷とは必ずしも一致しない力(一致しない部分による誤
差ζよ 室温の誤差として検出されて、フィードバック
制御で解消することができるので問題にはならな(〜 つぎ1 本発明の他の実施例について第4図および第5
図を参照しながら説明すa な耘 上記実施例と同じ構
成のものは同一符号を付して説明を省略すも 第4図は各室の室内膨張弁の開度を制御するための制御
系のブロック図で、PIDコントローラ22、23の出
力は加算器14、15に送られもまた 外気温度と設定
温度との偏差情報Tiは標準負荷容量26、27に入力
されも 標準負荷容量26、27では設置されている室
内機4A14B、  4Cの標準的な負荷の計数を乗ム
 必要な熱量としてその結果をブロック28、29へ送
もブロック28、29では熱量に対応して冷媒流量をど
れだけ増加する必要があるかという係数Kを乗じて、室
内膨張弁6A、6& 6Cの開度情報に変換すム ブロ
ック28、29の出力は加算器14、15へ送られ 加
算器14、15でCよ 過熱度誤差情報からの膨張弁開
度指令情報と、温度誤差情報からの膨張弁開度指令情報
と熱負荷情報からの膨張弁開度指令情報を加算すも 加
算した結果を実際の膨張弁の開度指令として、各室の膨
張弁開度制御手段(図示せず)へ送り、各室膨張弁の開
度を制御すも 第5図は圧縮機2の能力制御を行うための制御系のブロ
ック図で、 PIDコントローラ24の演算結果は加算
器30に送られも また 外気温度と各基設定温との偏
差情報は各室の標準負荷容量31、32を経て必要とす
る熱量情報を得た後、ブロック33、34で圧縮機の能
力に換算されて加算器35へ送られも 加算機35の出
力は加算機30へ送られ 加算器30の出力はインバー
タ25に送られて圧縮機2の回転数情報に変換された紘
 圧縮機2を駆動すa 第4医 第5図の制御系の動作状態を要約すると、各室
の膨張弁の開度の平均情報でヒートポンプサイクルの過
熱度を制御し 室温誤差情報で各室の膨張弁開度平均値
からのずれを与えることにより熱分配を制御すム さら
に外気温と設定温度との差により定常時の熱量をフィー
ドフォワード制御量として与えも 圧縮機制御も同様へ
 室温誤差情報をもとに全平均熱量に対するフィードバ
ック制御系を構成し さらに外気温と設定温度との差に
より定常時の熱量をフィードフォワード制御量として与
えるものであム な耘 上記実施例ではフィードバック制御演算方法とし
てPID制御を用いて説明した力(現代制御理論を用い
た方法であっても本発明の内容を越えるものではなL〜
 また 多室型の空気調和機で説明した力t 室内機が
一台の場合でも有効であることはいうまでもなしも 発明の効果 以上の実施例から明らかなように本発明によれば 各室
内機の標準負荷容量をCi (i=1.2.・・・、:
室内機に対応)、各室設定温度と各室温度との差を1)
i(i=1.2・・・)として、前記圧縮機の能力指令
Ucを制御演算関数f j □  (j−L2、・・・
)、加算演算子Σを用いて以下の人 E=Σ(Ci×Di)     ・・・(1)Uc= 
f 1 (E)       ・・・(2)で得られる
値Ucにより圧縮機を運転し 目標とする過熱度に対す
る検出した過熱度との誤差をESHとし 各室の室内膨
張弁の開度Ui(i=1、2,3、・・・)を以下の民 USH= f 2 (ES)l)+ USHO・ ・(
3)D av= E /ΣCi         ・ 
・ ・(4)Ui=USH+ f 3 (Di−Dav
)  ・ ・ ・(5)で設定するようにしたか収 室
温制御とヒートポンプサイクルの適正な制御とを簡単な
方法で実現できるものて その効果は非常に太き(tま
た 外気温度と各室設定温度との差をTi(i=1.2
.・・・)を用いて、前記圧縮機の能力指令Ucを、A
iを定数とし 制御演算関数fjO(j−L2、・・・
)、加算演算子Σを用いて以下の式8式%(7) で得られる値Ucにより圧縮機を運転し 目標とする過
熱度に対する検出した過熱度の誤差をES)Iとり、 
 USHOを一定のtKiを係数として、各室の室内膨
張弁の開度U 1 (1=1、2,3、・・・)を、以
下の丈 USH= f 2  (ESH)+ USHO・・・(
9)])av= E/ΣCi        ・・(1
0)Ui=USH十f 3 (Di−Di)+KixC
ixTi・・・(11) で設定したか収 フィードフォワード制御を付加するこ
とができ、連応性を改善できも
The gas side and liquid side of 4 & 4C are connected by gas side pipe 8 and liquid side pipe 9 respectively to form a closed circuit. Even if refrigerant is sealed inside the closed circuit to form a heat pump cycle, compressor suction The pressure detector 10 and the compressor suction temperature detector 11 form a superheat degree detection means, which calculates the degree of superheat of the compressor suction portion. The outside air temperature detector 12 detects the outside air temperature and calculates the difference from the set temperature of each room to calculate the heat load of each room. In the above configuration,
The outdoor heat exchanger 3 works as a condenser, and each indoor heat exchanger 5
A, 5 & 5C act as evaporators and cool each room by absorbing heat from the air in each room. At this time, if the opening degree of each indoor expansion valve 6A, 6B, 6C is increased,
Even if the flow rate of the refrigerant increases, the cooling capacity increases, and the temperature in each room decreases, the temperature will be reflected by each room temperature detector 7A, 7 & 7.
By switching the input and output of compressor 2 using a four-way valve (not shown), the direction of refrigerant flow is reversed, and indoor heat exchangers 8A, 5 & 5C are The condenser is the condenser, and the outdoor heat exchanger 3 is the evaporator. Conventionally, the method of controlling each indoor expansion valve of such a multi-room air conditioner is the so-called PID control method, or the operation amount is determined according to the conditions. Even if a table search method is adopted, in these controls (the control means is realized by a microcomputer, etc., and the means itself is not shown), the PID control method obtains error information with respect to the target value, integrates it into a ratio of the error information, The manipulated variable was determined by calculating the differential and adding the calculated result to the controlled object at an appropriate ratio. However, the method of setting the control operation amount (such as the expansion valve opening degree and compression function of each chamber) can solve the problems that the invention was trying to solve.
There is interference between each room, and it is necessary to control the temperature according to the set temperature.
Arc control for high efficiency heat pump cycle operation
For example, controlling the degree of superheating at the same time was complicated and difficult.The present invention solves the above problems, and the first step is to realize room temperature control and appropriate control of the heat pump cycle in a simple manner. In order to achieve the above first objective, the present invention (above) is a means for solving the problems, even if the second objective is to improve the coordination by adding feedforward control. A variable compressor, a room temperature detector, and a superheat degree detection means are CL.
The standard load capacity of each indoor unit is Ci (i=1.2...
・, :corresponds to the indoor unit), and the difference between the set temperature of each room and the temperature of each room is Di(i-IJ...), and the capacity command Uc of the compressor is expressed as the control calculation function fj()(j= 1, 2,...
), using the addition operator Σ, the following dog E=Σ (Ci×
Di) ・ ・ ・(1) Uc= fl
(E) ・ ・The compressor is operated according to the value Uc obtained in (2), and the error between the detected degree of superheat and the target degree of superheat is set as ESH, and the opening degree of the expansion valve of each chamber [J i (1-L2 .3,...) as follows, USH= f 2 (ESH) + USHO...(3
) [) av=E/ΣCi ---(4) Ui
=USH+f 3 (Di-Dav) ・ ・ ・(
In order to achieve the second objective, we will use the settings set in 5) as the first means of solving the problem.In order to achieve the second objective, we will have a compressor with variable capacity, a room temperature detector, a superheat detection means, and an outside temperature detector. The standard load capacity of each indoor unit is Ci (i=1, 2,
), the difference between each room set temperature and each room temperature is Di (i=
1.2...), the difference between the outside air temperature and the set temperature of each room is 'f i (i=1, 2,...), the capacity command Uc of the compressor is set, and Ai is a constant. Using the control calculation function f j () (j = 1, 2, ...), the following dog E = Σ (Ci × Di) ... (7
) Uc= f l (E) +Σ (Aix Cix
Ti)...Operate the compressor using the value Uc obtained in (8), take the error of the detected degree of superheat to the target degree of superheat as ESH, and use USHO as a constant mKi as a coefficient to open the expansion valve of each chamber. Degree Ui (i-L2.3,・
), the following civil USH = f 2 (ESH) +
USHO...(9) Dav=E/ΣCi
...(10) Ui=USH+f3(D
i-Dav), +KixCiXTi...(11) The present invention also works even if the settings are set as the second problem-solving means.
is the addition of the room temperature error with respect to the set temperature, weighted by the heat capacity of the indoor unit, and a control system that follows the target value is constructed using the control calculation function of equation (2).Equations (3) and (4)
indicates that the degree of superheat is controlled using the average value of the expansion valve opening of each chamber.The distribution of refrigerant to each chamber is performed using the deviation from the average value of the expansion valve opening. In other words, refrigerant distribution control is the control of the distribution ratio, and there is no need to control the absolute amount of valve opening.Since there is one remaining manipulated variable, it is possible to control the degree of superheat, which is the state quantity of the heat pump cycle. By the second problem-solving means, the second term G of equation (8)
L is a term that converts the total heat load into compressor work, and is a feedforward control amount that provides a manipulated variable corresponding to the required amount of heat in advance, and can improve coordination and steady-state characteristics. One embodiment will be explained with reference to FIGS. 1 and 2.A. The entire system is the same as that shown in FIG. 3, and the explanation will be omitted. This is a block diagram of the control system for controlling the opening degrees of 6 & 6c, and superheat degree information (upper
It is compared with the target degree of superheating, and the error is manually input to the PID controller 13 and calculated as %.
1. PID computation is performed to control the degree of superheating. The output of the PID controller 13 is sent to adders 14 and 15 for controlling the expansion valves in each chamber. Also, error information between the set temperature and the detected room temperature is sent. Di information is standard load capacity 16,
17, an adder 18, and a divider 19, the load of error information with respect to the room temperature is converted into weighted average information Dav. Compared to the room temperature error, therefore,
The outputs of the comparators 20 and 21 correspond to the difference between the room temperature error Di and the average value.The outputs of the comparators 20 and 21 are sent to the PID controllers 22 and 23, which control the expansion valves to adjust the room temperature to the set value. Even when control calculations are performed, the outputs of the PID controllers 22 and 23 are sent to the adders 14 and 15. The result of adding the expansion valve opening command information is added to the actual indoor expansion valve 6A,
The command is sent to the expansion valve opening control means (not shown) in each chamber as the opening command for the expansion valves 6A and 6C.
Fig. 2 is a block diagram of the control system for controlling the capacity of compressor 2. Items using the same calculations as in Fig. 1 are indicated by the same symbols. Di is input to the adder 18 through the standard load capacity 16 and 17 of each room. The product-sum calculation result is determined and the result is input to the PID controller 24.The PID controller 24 performs PID calculation to control the capacity of the compressor 2 so that the room temperature reaches the set temperature. The calculation result is sent to the inverter 25 and converted into rotation speed information of the compressor 2.The operating state of the control system shown in Fig. 2 can be summarized as follows: The degree of superheating of the heat pump cycle is controlled using the average information of the opening degrees of 6 & 6C, and the heat distribution is controlled by giving the deviation from the average value of the expansion valve opening degree of each chamber using the room temperature error information.The same applies to compressor control. A feedback control system for the total average heat quantity is constructed based on room temperature error information.
For example, the present invention can be applied to a method using the difference between the temperature at the outlet of the indoor expansion valve and the temperature at the outlet of the evaporator), and does not go beyond the scope of the present invention. The standard heat load is used to predict the load of 4C. A force that does not necessarily match the heat load of the actual installation (error ζ due to the mismatch) is detected as an error in room temperature and can be resolved by feedback control. This should not be a problem since it is possible to
This will be explained with reference to the figures.Those having the same configuration as those in the above embodiment will be given the same reference numerals and the explanation will be omitted. In the block diagram, the outputs of PID controllers 22 and 23 are sent to adders 14 and 15, and the deviation information Ti between the outside air temperature and the set temperature is input to standard load capacities 26 and 27. Then, multiply the standard load factor of the installed indoor units 4A, 14B, and 4C and send the result to blocks 28 and 29 as the required amount of heat.Blocks 28 and 29 calculate how much the refrigerant flow rate should be increased in response to the amount of heat. The outputs of blocks 28 and 29 are sent to adders 14 and 15; Add the expansion valve opening command information from the superheat degree error information, the expansion valve opening command information from the temperature error information, and the expansion valve opening command information from the thermal load information. The opening command is sent to the expansion valve opening control means (not shown) in each chamber to control the opening of the expansion valve in each chamber. In the block diagram, the calculation results of the PID controller 24 are sent to the adder 30, and the deviation information between the outside air temperature and the set temperature of each unit is obtained through the standard load capacities 31 and 32 of each room to obtain the required heat amount information. After that, the output of the adder 35 is sent to the adder 30, and the output of the adder 30 is sent to the inverter 25, and the output of the adder 30 is sent to the To summarize the operating status of the control system shown in Figure 5, the degree of superheating of the heat pump cycle is controlled using the average information of the opening degrees of the expansion valves of each chamber. The heat distribution is controlled by giving the deviation from the average value of the expansion valve opening of each room using the room temperature error information.Furthermore, the amount of heat at steady state can be given as a feedforward control amount based on the difference between the outside temperature and the set temperature. The same applies to machine control. A feedback control system for the total average heat amount is configured based on the room temperature error information, and the heat amount at steady state is given as a feedforward control amount based on the difference between the outside temperature and the set temperature. In the embodiment, the force explained using PID control as a feedback control calculation method (even a method using modern control theory does not exceed the content of the present invention).
In addition, it goes without saying that the force t explained in the case of a multi-room air conditioner is effective even when there is only one indoor unit. The standard load capacity of the machine is Ci (i=1.2...,:
Compatible with indoor units), the difference between each room temperature setting and each room temperature 1)
i (i=1.2...), the capacity command Uc of the compressor is controlled by a calculation function f j □ (j-L2,...
), using the addition operator Σ, the following person E = Σ (Ci × Di) ... (1) Uc =
f 1 (E) ... The compressor is operated according to the value Uc obtained in (2), and the error between the detected degree of superheat and the target degree of superheat is set as ESH, and the opening degree Ui (i = 1, 2, 3, ...) as the following civil USH = f 2 (ES)l) + USHO・・(
3) Dav=E/ΣCi・
・ ・(4) Ui=USH+f3(Di-Dav
) ・ ・ ・The settings in (5) can be used to achieve proper room temperature control and heat pump cycle control in a simple way. Ti (i=1.2
.. ), the capacity command Uc of the compressor is expressed as A
Let i be a constant and control calculation function fjO(j-L2,...
), the compressor is operated according to the value Uc obtained from the following equation 8 (7) using the addition operator Σ, and the error in the detected degree of superheat relative to the target degree of superheat is taken as ES)I,
Using USHO as a constant tKi, the opening degree U 1 (1=1, 2, 3, ...) of the indoor expansion valve of each chamber is determined by the following length USH = f 2 (ESH) + USHO... (
9)])av=E/ΣCi...(1
0) Ui = USH ten f 3 (Di-Di) + KixC
ixTi...(11) Feedforward control can be added to improve coordination.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の多室型空気調和機の室内膨
張弁の制御系のブロック図 第2図は同多室型空気調和
機の圧縮機の制御系のブロック阻第3図は一般の多室型
空気調和機の構成医 第4図は本発明の他の実施例の多
室型空気調和機の室内膨張弁の制御系のブロック図 第
5図は同多室型空気調和機の圧縮機の制御系のブロック
図であム ト・・室外a 2・・・圧縮a 3・・・室外熱交換器
 4A、 4& 4C・・・室内風 5A、 5& 5
C・・・室内熱交換器 6A、6&6C・・・室内膨張
弁、 7A、7&7C・・・室温検知Bto・・・圧縮
機吸入圧力検出器(過熱度検出手段)、 11・・・圧
縮機吸入温度検出器(過熱度検出手段)。 代理人の氏名 弁理士 粟野重孝 はか1名ご
Figure 1 is a block diagram of the control system for the indoor expansion valve of a multi-chamber air conditioner according to an embodiment of the present invention. Figure 2 is a block diagram of the control system of the compressor of the multi-chamber air conditioner. 4 is a block diagram of the control system of the indoor expansion valve of a multi-chamber air conditioner according to another embodiment of the present invention. FIG. This is a block diagram of the control system of the compressor of the machine.Outdoor A 2...Compression A 3...Outdoor heat exchanger 4A, 4 & 4C...Indoor air 5A, 5 & 5
C... Indoor heat exchanger 6A, 6&6C... Indoor expansion valve, 7A, 7&7C... Room temperature detection Bto... Compressor suction pressure detector (superheat degree detection means), 11... Compressor suction Temperature detector (superheat detection means). Name of agent: Patent attorney Shigetaka Awano (1 person)

Claims (5)

【特許請求の範囲】[Claims] (1)能力を可変できる圧縮機と室外熱交換器とからな
る1台の室外機と、室内熱交換器と室内膨張弁を備え前
記室外機に並列的に接続した複数の室内機と、前記各室
内機を設置した各室温を検知する各室温検知器と、蒸発
器出口冷媒の平均過熱度を検知する過熱度検出手段とを
具備し、前記各室設定温度に各室室温を一致させるよう
に前記複数の室内膨張弁および圧縮機能力を制御する多
室型空気調和機であって、各室内機の標準負荷容量をC
i(i=1、2、・・・、:室内機に対応)、各室設定
温度と各室温度との差をDi(i=1、2・・・)とし
て、前記圧縮機の能力指令Ucを、制御演算関数fj(
)(j=1、2、・・・)、加算演算子Σを用いて以下
の式E=▲数式、化学式、表等があります▼・・・(1
) Uc=f1(E)・・・(2) で得られる値Ucにより圧縮機を運転し、目標とする過
熱度に対する検出した過熱度との誤差をESHとし、各
室の室内膨張弁の開度Ui(i=1、2、3、・・・)
を以下の式 USH=f2(ESH)+USHO・・・(3)Dav
=▲数式、化学式、表等があります▼・・・(4) Ui=USH+f3(Di−Dav)・・・(5)で設
定するようにしてなる多室型空気調和機。
(1) One outdoor unit consisting of a variable capacity compressor and an outdoor heat exchanger, a plurality of indoor units each including an indoor heat exchanger and an indoor expansion valve and connected in parallel to the outdoor unit; Each indoor unit is equipped with a room temperature detector that detects the room temperature of each room installed, and a degree of superheat detection means that detects the average degree of superheat of the refrigerant at the outlet of the evaporator, so that the room temperature of each room matches the set temperature of each room. A multi-room air conditioner that controls the plurality of indoor expansion valves and compression function, wherein the standard load capacity of each indoor unit is C.
i (i=1, 2, . . . :corresponds to the indoor unit), and the difference between the set temperature of each room and the temperature of each room is Di (i=1, 2, . . .), and the capacity command of the compressor is Uc is the control calculation function fj(
) (j=1, 2,...), using the addition operator Σ, the following formula E=▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1
) Uc=f1(E)...(2) The compressor is operated according to the value Uc obtained from Degree Ui (i=1, 2, 3,...)
The following formula USH=f2(ESH)+USHO...(3)Dav
=▲There are mathematical formulas, chemical formulas, tables, etc.▼...(4) Ui=USH+f3(Di-Dav)...(5) A multi-room air conditioner.
(2)各室の膨張弁の開度Uiを式(5)に代わり、U
i=USH+f4(Ci×Di−Dav)・・・(6)
で設定してなる請求項1記載の多室型空気調和機。
(2) Instead of the opening degree Ui of the expansion valve of each chamber in equation (5), U
i=USH+f4(Ci×Di-Dav)...(6)
The multi-room air conditioner according to claim 1, wherein the multi-room air conditioner is set as follows.
(3)能力を可変できる圧縮機と室外熱交換器とからな
る1台の室外機と、室内熱交換器と室内膨張弁を備え前
記室外機に並列的に接続した複数の室内機と、前記各室
内機を設置した各室温を検知する各室温検知器と、外気
の温度を検知する外気温検知器と、蒸発器出口冷媒の平
均過熱度を検知する過熱度検出手段を具備し、前記各室
設定温度に各室室温を一致させるように前記複数の室内
膨張弁および圧縮機能力を制御する多室型空気調和機で
あって、各室内機の標準負荷容量をCi(i=1、2、
・・・)、各室設定温度と各室温度との差をDi(i=
1、2・・・)として、外気温度と各室設定温度との差
をTi(i=1、2、・・・)を用いて、前記圧縮機の
能力指令Ucを、Aiを定数とし制御演算関数fj()
(j=1、2、・・・)、加算演算子Σを用いて以下の
式E=▲数式、化学式、表等があります▼・・・(7) Uc=▲数式、化学式、表等があります▼・・・(8) で得られる値Ucにより圧縮機を運転し、目標とする過
熱度に対する検出した過熱度の誤差をESHとし、US
HOを一定の値、Kiを係数として、各室の室内膨張弁
の開度Ui(i=1、2、3、・・・)を以下の式、U
SH=f2(ESH)+USHO・・・(9)Dav=
▲数式、化学式、表等があります▼・・・(10) Ui=USH+f3(Di−Di)+Ki×Ci×Ti
・・・(11) で設定してなる多室型空気調和機。
(3) one outdoor unit consisting of a variable-capacity compressor and an outdoor heat exchanger, a plurality of indoor units each including an indoor heat exchanger and an indoor expansion valve and connected in parallel to the outdoor unit; Each indoor unit is equipped with a room temperature detector for detecting each room temperature, an outside temperature detector for detecting the temperature of the outside air, and a degree of superheat detection means for detecting the average degree of superheat of the refrigerant at the outlet of the evaporator. A multi-room air conditioner that controls the plurality of indoor expansion valves and compression function so that the room temperature matches the set room temperature, wherein the standard load capacity of each indoor unit is set to Ci (i=1, 2 ,
), the difference between each room set temperature and each room temperature is Di (i=
1, 2...), the difference between the outside air temperature and the set temperature of each room is Ti (i = 1, 2,...), and the capacity command Uc of the compressor is controlled with Ai as a constant. Arithmetic function fj()
(j=1, 2,...), using the addition operator Σ, the following formula E=▲There are mathematical formulas, chemical formulas, tables, etc.▼...(7) Uc=▲There are mathematical formulas, chemical formulas, tables, etc. ▼... (8) Operate the compressor with the value Uc obtained, and let the error of the detected degree of superheat against the target degree of superheat be ESH, and calculate the US
With HO as a constant value and Ki as a coefficient, the opening degree Ui (i=1, 2, 3,...) of the indoor expansion valve of each chamber is calculated using the following formula, U
SH=f2(ESH)+USHO...(9)Dav=
▲There are mathematical formulas, chemical formulas, tables, etc.▼...(10) Ui=USH+f3(Di-Di)+Ki×Ci×Ti
...(11) A multi-room air conditioner configured as follows.
(4)各室の室内膨張弁の開度Uiを(11)式に代わ
り、 Ui=USH+f4(Ci×Di−Dav)・・・(1
2)で設定してなる請求項3記載の多室型空気調和機。
(4) Replace the opening degree Ui of the indoor expansion valve of each chamber with equation (11), Ui=USH+f4(Ci×Di-Dav)...(1
4. The multi-room air conditioner according to claim 3, wherein the multi-room air conditioner is configured in accordance with 2).
(5)制御演算関数fj()が比例演算と一階以上の微
分演算と一階以上の積分演算のうち、少なくとも2つの
演算の結果の線形和であるようにしてなる請求項1また
は3記載の多室型空気調和機。
(5) The control calculation function fj() is a linear sum of the results of at least two calculations among a proportional calculation, a first-order or higher differential calculation, and a first-order or higher integral calculation. multi-room air conditioner.
JP2219257A 1990-08-20 1990-08-20 Multi-room air conditioner Expired - Lifetime JP2760144B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2219257A JP2760144B2 (en) 1990-08-20 1990-08-20 Multi-room air conditioner
US07/745,352 US5247806A (en) 1990-08-20 1991-08-15 Multi-system air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2219257A JP2760144B2 (en) 1990-08-20 1990-08-20 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH04103946A true JPH04103946A (en) 1992-04-06
JP2760144B2 JP2760144B2 (en) 1998-05-28

Family

ID=16732687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2219257A Expired - Lifetime JP2760144B2 (en) 1990-08-20 1990-08-20 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP2760144B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208813A (en) * 1994-01-20 1995-08-11 Mitsubishi Electric Corp Air conditioner
KR100339552B1 (en) * 1999-08-18 2002-06-03 구자홍 Multi air conditioner and operating control method for the same
JP2012037203A (en) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd System for cooling and recovering exhaust heat of electronic apparatus
WO2016035121A1 (en) * 2014-09-01 2016-03-10 三菱電機株式会社 Air conditioning system control device and air conditioning system control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208813A (en) * 1994-01-20 1995-08-11 Mitsubishi Electric Corp Air conditioner
KR100339552B1 (en) * 1999-08-18 2002-06-03 구자홍 Multi air conditioner and operating control method for the same
JP2012037203A (en) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd System for cooling and recovering exhaust heat of electronic apparatus
WO2016035121A1 (en) * 2014-09-01 2016-03-10 三菱電機株式会社 Air conditioning system control device and air conditioning system control method
JPWO2016035121A1 (en) * 2014-09-01 2017-04-27 三菱電機株式会社 Air conditioning system control apparatus and air conditioning system control method
US10533763B2 (en) 2014-09-01 2020-01-14 Mitsubishi Electric Corporation Controller of air-conditioning system and method for controlling air-conditioning system

Also Published As

Publication number Publication date
JP2760144B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
JPH1068554A (en) Optimization of set value in steam compression cycle
EP0448345A1 (en) Air conditioning system
MX2013013907A (en) Device and method for optimization of chilled water plant system operation.
JP6910554B2 (en) Air conditioner and air conditioner
JP2654222B2 (en) Cooling / heating mixed type multi-refrigeration cycle
JPH04103946A (en) Multi-room air conditioner
JP2743595B2 (en) Multi-room air conditioner
JPS6124937A (en) Control of multiple room air-conditioning system
JP2002327950A (en) Air conditioner
JP3384150B2 (en) Multi-room air conditioner and operation method thereof
JP2568747B2 (en) Multi-room air conditioner
JPH04165249A (en) Multiple-room type air conditioner
JPH04283362A (en) Air conditioner
JPH11325638A (en) Multiroom type of air conditioner
JP2502831B2 (en) Multi-room air conditioner
JPH046355A (en) Multiple-room type air-conditioner
Dong et al. Mode switching control for a multi-functional variable refrigerant flow system
JPH0464851A (en) Control device for multi-chamber type air conditioner
JPH04297761A (en) Multichamber air conditioner
JPH04283361A (en) Multichamber type air conditioner
JPH10300255A (en) Air conditioner
JPH046371A (en) Multi-room type air-conditioning machine
WO2019180952A1 (en) Air-conditioning device
JPH06147671A (en) Cooling control device for multi-chamber type air conditioner
JP2624041B2 (en) Multi-room air conditioner