JPH07208813A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH07208813A
JPH07208813A JP6004743A JP474394A JPH07208813A JP H07208813 A JPH07208813 A JP H07208813A JP 6004743 A JP6004743 A JP 6004743A JP 474394 A JP474394 A JP 474394A JP H07208813 A JPH07208813 A JP H07208813A
Authority
JP
Japan
Prior art keywords
degree
refrigerant
valve opening
heat exchanger
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6004743A
Other languages
Japanese (ja)
Inventor
Junichi Kameyama
純一 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6004743A priority Critical patent/JPH07208813A/en
Publication of JPH07208813A publication Critical patent/JPH07208813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide an air conditioner in which disturbance of flow rate of refrigerant at a throating device can be prevented and stable operation can always be performed even if the operating condition is varied when the degree of opening of the throating device is controlled in response to the degree of over-heating of refrigerant within an indoor device during cooling operation. CONSTITUTION:A valve opening degree control device 11 calculates the over-heating degree of gaseous refrigerant on the refrigerant discharging side of an indoor heat exchanger B in reference to each of refrigerant temperatures detected by the second and the third temperature sensing means 9, 10 and the valve opening degree of the throating device 5 is controlled on the basis of the difference between the calculated over-heating degree and the target over-heating degree. In this case, at first, an over- cooling degree of the liquid refrigerant at the refrigerant discharging side of an outdoor heat exchanger 3 is calculated in response to the pressure and the temperature obtained from the first pressure sensing means 7 and the first temperature sensing means 8. Subsequently, when the over-cooling degree is low, the target over-heating degree is changed to be set to a larger value. With such an arrangement as above, the valve opening degree of the throating device is reduced and a high pressure side refrigerant pressure is increased, so that a sufficient high over-cooling degree can be stably assured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、室内側熱交換器の冷
媒出側における冷媒の過熱度によって絞り装置の弁開度
を制御する空気調和装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for controlling the valve opening of a throttle device by the degree of superheat of the refrigerant on the refrigerant outlet side of an indoor heat exchanger.

【0002】[0002]

【従来の技術】以下、この種の空気調和装置の従来技術
について説明する。図19は従来の空気調和装置を示す
全体構成図である。図19において、Aは室外機である
熱源機、Bは室内機、1は圧縮機、2は四方切換弁、3
は室外側熱交換器、4はアキュムレータ、5は絞り装
置、6は室内側熱交換器、9は絞り装置5と室内側熱交
換器6の一方の接続部に取り付けられた第2の温度検出
手段、10は室内側熱交換器6の他方の接続部に取り付
けられた第3の温度検出手段、11dは第2の温度検出
手段9及び第3の温度検出手段10によって検出された
それぞれの温度からガス冷媒の過熱度を求め、その求め
られた過熱度とこれに対応して予め設定された所定の目
標過熱度とを比較し、その偏差に基づいて絞り装置5の
弁開度を制御する弁開度制御手段である。また、図19
において、実線矢印は冷房運転時の冷媒が流れる方向を
示している。
2. Description of the Related Art The prior art of this type of air conditioner will be described below. FIG. 19 is an overall configuration diagram showing a conventional air conditioner. In FIG. 19, A is a heat source unit which is an outdoor unit, B is an indoor unit, 1 is a compressor, 2 is a four-way switching valve, 3
Is an outdoor heat exchanger, 4 is an accumulator, 5 is a throttling device, 6 is an indoor heat exchanger, 9 is a second temperature detector attached to one of the connecting portions of the throttling device 5 and the indoor heat exchanger 6. Means 10 is a third temperature detecting means attached to the other connecting portion of the indoor heat exchanger 6, and 11d is a temperature detected by the second temperature detecting means 9 and the third temperature detecting means 10. The superheat degree of the gas refrigerant is obtained from the obtained superheat degree, and the obtained superheat degree is compared with a predetermined target superheat degree set in advance, and the valve opening degree of the expansion device 5 is controlled based on the deviation. It is a valve opening control means. In addition, FIG.
In, the solid arrow indicates the direction in which the refrigerant flows during the cooling operation.

【0003】このような空気調和装置において、圧縮機
1より吐出された高温高圧のガス冷媒は、四方切換弁2
を経て室外側熱交換器3に送られ室外空気と熱交換して
ここで液化された後、絞り装置5で減圧され、さらに室
内側熱交換器6へ送られて、室内空気と熱交換しガス化
して室内を冷房する。そして、ガス化した冷媒は、四方
切換弁2、アキュムレータ4を経て圧縮機1へ吸入され
る。このような冷房運転の場合、弁開度制御手段11d
は、第2の温度検出手段9及び第3の温度検出手段10
で検出されたそれぞれの温度から室内側熱交換器6出側
におけるガス冷媒の過熱度を求め、その過熱度と所定の
目標過熱度とを比較して得た偏差に基づいて、絞り装置
5の弁開度を増加あるいは減少させて冷媒流量を制御す
るようになっている。
In such an air conditioner, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is supplied to the four-way switching valve 2
After being sent to the outdoor heat exchanger 3 and exchanged heat with the outdoor air to be liquefied there, the pressure is reduced by the expansion device 5 and further sent to the indoor heat exchanger 6 to exchange heat with the indoor air. It gasifies and cools the room. Then, the gasified refrigerant is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4. In the case of such a cooling operation, the valve opening control means 11d
Is the second temperature detecting means 9 and the third temperature detecting means 10.
The superheat degree of the gas refrigerant on the outlet side of the indoor heat exchanger 6 is obtained from the respective temperatures detected in step S1, and based on the deviation obtained by comparing the superheat degree with a predetermined target superheat degree, The flow rate of the refrigerant is controlled by increasing or decreasing the valve opening.

【0004】[0004]

【発明が解決しようとする課題】従来の空気調和装置
は、以上のように構成されているので、例えば室外空気
温度が低下した場合、高圧側の冷媒圧力が低下すること
に大きく起因して室外側熱交換器3での熱交換量が低下
する。そのため、室外側熱交換器3出側における冷媒の
過冷却度が減少して冷媒が気液二相状態となり、室内機
Bの絞り装置5を通過する冷媒流量が極度に減少するこ
とがあり、これによって安定した冷房能力が得られなく
なるという問題があった。また、絞り装置5における冷
媒流量が減少することによって、低圧側の冷媒圧力が低
下するため、冷媒吐出温度が上昇して圧縮機1が損傷す
るおそれを生じるという問題があった。
Since the conventional air conditioner is constructed as described above, for example, when the outdoor air temperature is lowered, the refrigerant pressure on the high pressure side is largely reduced, and the air conditioner is greatly affected. The amount of heat exchange in the outer heat exchanger 3 decreases. Therefore, the degree of supercooling of the refrigerant on the outlet side of the outdoor heat exchanger 3 decreases, the refrigerant becomes a gas-liquid two-phase state, and the refrigerant flow rate passing through the expansion device 5 of the indoor unit B may extremely decrease. As a result, there is a problem that stable cooling capacity cannot be obtained. Further, since the refrigerant flow rate in the expansion device 5 decreases, the refrigerant pressure on the low-pressure side decreases, so that the refrigerant discharge temperature rises and the compressor 1 may be damaged.

【0005】この発明は、上記従来の問題点に鑑みてな
されたものであって、運転条件が変化した場合において
も冷凍サイクルにおける冷媒流量の乱れを防止し、常に
安定した運転を行うことができる空気調和装置の提供を
目的とするものである。
The present invention has been made in view of the above-mentioned problems of the prior art. Even when operating conditions change, the refrigerant flow rate is prevented from being disturbed in the refrigeration cycle, and stable operation can always be performed. It is intended to provide an air conditioner.

【0006】[0006]

【課題を解決するための手段】上記した目的を達成する
ために、本発明は、圧縮機、室外側熱交換器、絞り装
置、室内側熱交換器を冷媒配管を介して順次接続してな
る冷凍サイクルを備え、室内側熱交換器の冷媒出側にお
ける冷媒の過熱度とこれに対応する目標過熱度との偏差
に基づいて絞り装置の弁開度を制御するようにした空気
調和装置において、室外側熱交換器の冷媒出側における
冷媒の過冷却度を検出する過冷却度検出手段と、過冷却
度検出手段により検出された過冷却度に応じて目標過熱
度を演算し設定する第1の目標過熱度設定手段とを設け
た構成を採用したものである。
In order to achieve the above object, the present invention comprises a compressor, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger, which are sequentially connected through a refrigerant pipe. In an air conditioner that includes a refrigeration cycle and controls the valve opening degree of the expansion device based on the deviation between the superheat degree of the refrigerant on the refrigerant outlet side of the indoor heat exchanger and the corresponding target superheat degree, Supercooling degree detecting means for detecting the degree of supercooling of the refrigerant on the refrigerant outlet side of the outdoor heat exchanger, and first calculating and setting a target degree of superheat according to the degree of supercooling detected by the degree of supercooling detection means. The target superheat degree setting means is used.

【0007】また、圧縮機、室外側熱交換器、絞り装
置、室内側熱交換器を冷媒配管を介して順次接続してな
る冷凍サイクルを備え、室内側熱交換器の冷媒出側にお
ける冷媒の過熱度とこれに対応して予め設定された目標
過熱度との偏差に基づいて絞り装置の弁開度を制御する
ようにした空気調和装置において、室外側熱交換器の冷
媒出側における冷媒の過冷却度を検出する過冷却度検出
手段と、過冷却度検出手段により検出された過冷却度に
応じて絞り装置の弁開度動作範囲を演算し設定する第1
の弁開度動作範囲設定手段とを設けたものである。
Further, a refrigeration cycle in which a compressor, an outdoor heat exchanger, a throttle device, and an indoor heat exchanger are sequentially connected via a refrigerant pipe is provided, and the refrigerant on the refrigerant outlet side of the indoor heat exchanger is In the air conditioner configured to control the valve opening degree of the expansion device based on the deviation between the superheat degree and the preset target superheat degree corresponding to this, in the refrigerant outlet side of the outdoor heat exchanger A subcooling degree detecting means for detecting a subcooling degree, and a first degree for calculating and setting a valve opening operation range of the expansion device according to the subcooling degree detected by the subcooling degree detecting means.
And a valve opening operating range setting means.

【0008】更に、圧縮機、室外側熱交換器、複数の室
内機にそれぞれ配備された絞り装置及び室内側熱交換器
を冷媒配管を介して順次接続してなる冷凍サイクルを備
え、それぞれの室内側熱交換器の冷媒出側における冷媒
の過熱度とこれらに対応する目標過熱度との偏差に基づ
いて絞り装置の弁開度をそれぞれ制御するようにした空
気調和装置において、複数の室内機の内、運転中の室内
機に係る運転容量を検出する運転容量検出手段と、運転
容量検出手段により検出された運転容量の総和を演算す
る総運転容量演算手段と、総運転容量演算手段により演
算された運転容量の総和に応じて目標過熱度を演算し設
定する第2の目標過熱度設定手段とを設けたものであ
る。
Further, a refrigeration cycle in which a compressor, an outdoor heat exchanger, a throttle device provided in each of a plurality of indoor units and an indoor heat exchanger are sequentially connected through a refrigerant pipe is provided, and each room is provided. In the air conditioner configured to control the valve opening degree of the expansion device based on the deviation between the superheat degree of the refrigerant on the refrigerant outlet side of the inner heat exchanger and the target superheat degree corresponding to these, in the plurality of indoor units Among them, the operating capacity detecting means for detecting the operating capacity of the operating indoor unit, the total operating capacity calculating means for calculating the sum of the operating capacities detected by the operating capacity detecting means, and the total operating capacity calculating means Second target superheat degree setting means for calculating and setting the target superheat degree according to the sum of the operating capacities is provided.

【0009】そして、圧縮機、室外側熱交換器、複数の
室内機にそれぞれ配備された絞り装置及び室内側熱交換
器を冷媒配管を介して順次接続してなる冷凍サイクルを
備え、それぞれの室内側熱交換器の冷媒出側における冷
媒の過熱度とこれらに対応して予め設定された目標過熱
度との偏差に基づいて絞り装置の弁開度をそれぞれ制御
するようにした空気調和装置において、複数の室内機の
内、運転中の室内機に係る運転容量を検出する運転容量
検出手段と、運転容量検出手段により検出された運転容
量の総和を演算する総運転容量演算手段と、総運転容量
演算手段により演算された運転容量の総和に応じて絞り
装置の弁開度動作範囲を演算し設定する第2の弁開度動
作範囲設定手段とを設けたものである。
A compressor, an outdoor heat exchanger, a throttle device provided in each of a plurality of indoor units, and an indoor heat exchanger are connected in sequence through a refrigerant pipe to provide a refrigeration cycle. In the air conditioner configured to control the valve opening degree of the expansion device based on the deviation between the superheat degree of the refrigerant on the refrigerant outlet side of the inner heat exchanger and the target superheat degree set in advance corresponding to these, Of the plurality of indoor units, operating capacity detecting means for detecting the operating capacity of the operating indoor unit, total operating capacity calculating means for calculating the sum of the operating capacities detected by the operating capacity detecting means, and total operating capacity Second valve opening operation range setting means for calculating and setting the valve opening operation range of the expansion device according to the sum of the operating capacities calculated by the calculation means is provided.

【0010】[0010]

【作用】本発明に係る空気調和装置によれば、室内側熱
交換器の冷媒出側におけるガス冷媒の過熱度とこれに対
応する目標過熱度との偏差に基づいて絞り装置の弁開度
を制御する場合に、過冷却度検出手段が室外側熱交換器
の冷媒出側における液冷媒の過冷却度を検出する。そし
て、第1の目標過熱度設定手段は、例えば検出された過
冷却度が小さい場合には目標過熱度を大きな値に設定変
更する。これにより、絞り装置の弁開度を減少させる。
これに伴って、高圧側の冷媒圧力が上昇するので、十分
大きな過冷却度を安定して確保することができる。その
結果、絞り装置を通過する冷媒流量が極度に減少するこ
とを防止でき、安定した運転を行うことができる。
According to the air conditioner of the present invention, the valve opening degree of the expansion device is adjusted based on the deviation between the superheat degree of the gas refrigerant on the refrigerant outlet side of the indoor heat exchanger and the corresponding target superheat degree. When controlling, the subcooling degree detection means detects the subcooling degree of the liquid refrigerant on the refrigerant outlet side of the outdoor heat exchanger. Then, the first target superheat degree setting means sets and changes the target superheat degree to a large value when the detected supercooling degree is small, for example. As a result, the valve opening of the expansion device is reduced.
Along with this, the refrigerant pressure on the high pressure side rises, so that a sufficiently large degree of supercooling can be stably ensured. As a result, the flow rate of the refrigerant passing through the expansion device can be prevented from being extremely reduced, and stable operation can be performed.

【0011】また、室内側熱交換器の冷媒出側における
ガス冷媒の過熱度とこれに対応して予め設定された所定
の目標過熱度との偏差に基づいて絞り装置の弁開度を制
御する場合に、過冷却度検出手段が室外側熱交換器の冷
媒出側における液冷媒の過冷却度を検出する。そして、
第1の弁開度動作範囲設定手段は、例えば検出された過
冷却度が小さい場合には絞り装置の弁開度動作範囲の下
限値を下げて設定変更し弁開度をより減少させる。これ
によって、高圧側の冷媒圧力が上昇するので、十分大き
な過冷却度を安定して確保することができる。その結
果、絞り装置を通過する冷媒流量が極度に減少すること
を防止でき、安定した運転を行うことができる。
Further, the valve opening degree of the expansion device is controlled on the basis of the deviation between the superheat degree of the gas refrigerant on the refrigerant outlet side of the indoor heat exchanger and a predetermined target superheat degree set correspondingly thereto. In this case, the supercooling degree detecting means detects the supercooling degree of the liquid refrigerant on the refrigerant outlet side of the outdoor heat exchanger. And
For example, when the detected degree of supercooling is small, the first valve opening operation range setting means lowers the lower limit value of the valve opening operation range of the expansion device to change the setting and further reduce the valve opening. As a result, the pressure of the refrigerant on the high pressure side rises, so that a sufficiently large degree of supercooling can be stably ensured. As a result, the flow rate of the refrigerant passing through the expansion device can be prevented from being extremely reduced, and stable operation can be performed.

【0012】更に、複数の室内側熱交換器の冷媒出側に
おけるガス冷媒の過熱度とこれらに対応する目標過熱度
との偏差に基づいて絞り装置の弁開度を制御する場合
に、運転容量検出手段が運転中の室内機の運転容量をそ
れぞれ検出する。そして、総運転容量演算手段は、それ
ぞれ検出された運転容量の総和を演算する。そこで、第
2の目標過熱度設定手段は、例えば演算された運転容量
の総和が大きい場合には目標過熱度を大きな値に設定変
更する。これにより、絞り装置の弁開度を減少させる。
従って、高圧側の冷媒圧力が上昇するので、十分大きな
過冷却度を安定して確保することができる。その結果、
絞り装置を通過する冷媒流量が極度に減少することを防
止でき、安定した運転を行うことができる。
Further, when the valve opening of the expansion device is controlled based on the deviation between the degree of superheat of the gas refrigerant on the refrigerant outlet side of the plurality of indoor heat exchangers and the corresponding degree of target superheat, the operating capacity is increased. The detecting means detects the operating capacity of each indoor unit in operation. Then, the total operating capacity calculation means calculates the total sum of the detected operating capacities. Therefore, the second target superheat degree setting means sets and changes the target superheat degree to a large value, for example, when the total sum of the calculated operating capacities is large. As a result, the valve opening of the expansion device is reduced.
Therefore, the pressure of the refrigerant on the high pressure side rises, so that a sufficiently large degree of supercooling can be stably ensured. as a result,
The flow rate of the refrigerant passing through the expansion device can be prevented from being extremely reduced, and stable operation can be performed.

【0013】そして、複数の室内側熱交換器の冷媒出側
におけるガス冷媒の過熱度とこれらに対応して予め設定
された所定の目標過熱度との偏差に基づいて絞り装置の
弁開度を制御する場合に、運転容量検出手段が運転中の
室内機の運転容量をそれぞれ検出する。そして、総運転
容量演算手段は、それぞれ検出された運転容量の総和を
演算する。そこで、第2の弁開度動作範囲設定手段は、
例えば演算された運転容量の総和が大きい場合には絞り
装置の弁開度動作範囲の下限値を下げて設定変更し弁開
度をより減少させる。これにより、高圧側の冷媒圧力が
上昇するので、十分大きな過冷却度を安定して確保する
ことができる。その結果、絞り装置を通過する冷媒流量
が極度に減少することを防止でき、安定した運転を行う
ことができる。
Then, the valve opening degree of the expansion device is determined based on the deviation between the degree of superheat of the gas refrigerant on the refrigerant outlet side of the plurality of indoor heat exchangers and the predetermined target degree of superheat corresponding to these. When performing control, the operating capacity detecting means detects the operating capacity of each indoor unit in operation. Then, the total operating capacity calculation means calculates the total sum of the detected operating capacities. Therefore, the second valve opening operation range setting means is
For example, when the total sum of the calculated operating capacities is large, the lower limit value of the valve opening operation range of the expansion device is lowered and the setting is changed to further reduce the valve opening. As a result, the pressure of the refrigerant on the high pressure side rises, so that a sufficiently large degree of supercooling can be stably ensured. As a result, the flow rate of the refrigerant passing through the expansion device can be prevented from being extremely reduced, and stable operation can be performed.

【0014】[0014]

【実施例】【Example】

実施例1.この発明の第1の実施例を図1乃至図4に示
す。図1は実施例1の空気調和装置を示す全体構成図で
ある。図1において、Aは室外機である熱源機、Bは室
内機、1は圧縮機、2は四方切換弁、3は室外側熱交換
器、4はアキュムレータ、5は絞り装置、6は室内側熱
交換器、7は熱源機Aの高圧部分の冷媒圧力を検出する
第1の圧力検出手段、8は室外側熱交換器3の液冷媒側
の冷媒温度を検出する第1の温度検出手段、9は室内側
熱交換器6の絞り装置5側の一方の接続部に取り付けら
れた第2の温度検出手段、10は室内側熱交換器6の他
方の接続部に取り付けられた第3の温度検出手段、11
は第1の圧力検出手段7で検出された冷媒圧力と第1の
温度検出手段8で検出された冷媒温度とから液冷媒の過
冷却度を算出しその過冷却度から目標過熱度を設定し、
第2の温度検出手段9及び第3の温度検出手段10によ
ってそれぞれ検出された冷媒温度からガス冷媒の過熱度
を求め、その求められた過熱度と変更可能に設定された
目標過熱度とを比較し、その偏差に基づいて絞り装置5
の弁開度を制御する弁開度制御手段である。また、図1
において、実線矢印は冷房運転時の冷媒が流れる方向を
示している。
Example 1. A first embodiment of the present invention is shown in FIGS. FIG. 1 is an overall configuration diagram showing an air conditioner of the first embodiment. In FIG. 1, A is a heat source device which is an outdoor unit, B is an indoor unit, 1 is a compressor, 2 is a four-way switching valve, 3 is an outdoor heat exchanger, 4 is an accumulator, 5 is a throttle device, and 6 is an indoor side. A heat exchanger, 7 is first pressure detecting means for detecting the refrigerant pressure in the high pressure portion of the heat source unit A, 8 is first temperature detecting means for detecting the refrigerant temperature on the liquid refrigerant side of the outdoor heat exchanger 3, Reference numeral 9 is a second temperature detecting means attached to one connection portion of the indoor heat exchanger 6 on the expansion device 5 side, and 10 is a third temperature attached to the other connection portion of the indoor heat exchanger 6. Detecting means, 11
Calculates the degree of supercooling of the liquid refrigerant from the refrigerant pressure detected by the first pressure detecting means 7 and the refrigerant temperature detected by the first temperature detecting means 8, and sets the target degree of superheat from the degree of supercooling. ,
The superheat degree of the gas refrigerant is obtained from the refrigerant temperatures detected by the second temperature detecting means 9 and the third temperature detecting means 10, respectively, and the obtained superheat degree is compared with the target superheat degree set to be changeable. And the diaphragm device 5 based on the deviation
It is a valve opening control means for controlling the valve opening. Also, FIG.
In, the solid arrow indicates the direction in which the refrigerant flows during the cooling operation.

【0015】図1に示した空気調和装置において、圧縮
機1より吐出された高温高圧のガス冷媒は、四方切換弁
2を経て室外側熱交換器3に送られ室外空気と熱交換し
てここで液化された後、室内機Bへ送られ、絞り装置5
で減圧され室内側熱交換器6へ流入し室内空気と熱交換
しガス化して室内を冷房する。そして、ガス化した冷媒
は熱源機Aに戻り四方切換弁2、アキュムレータ4を経
て圧縮機1へ吸入される。このような冷房運転の場合、
弁開度制御手段11(第1の目標過熱度設定手段の一
例)は、第2の温度検出手段9で検出された冷媒温度T
2 及び第3の温度検出手段10で検出された冷媒温度T
3 からガス冷媒の過熱度SH(SH=T3 −T2 )を求
め、その過熱度SHと変更可能に設定された目標過熱度
SHmとを比較し、SH−SHm<0ならば絞り装置5
の弁開度Sjを減少させ、SH−SHm>0ならば弁開
度Sjを増加させて冷媒流量を制御する。
In the air conditioner shown in FIG. 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is sent to the outdoor heat exchanger 3 via the four-way switching valve 2 and exchanges heat with the outdoor air. After being liquefied in, it is sent to the indoor unit B and the expansion device 5
Is depressurized by and flows into the indoor heat exchanger 6 to exchange heat with the indoor air and gasify to cool the room. Then, the gasified refrigerant returns to the heat source unit A, and is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4. In the case of such cooling operation,
The valve opening control means 11 (an example of a first target superheat degree setting means) controls the refrigerant temperature T detected by the second temperature detection means 9.
Refrigerant temperature T detected by the second and third temperature detecting means 10.
3 obtains the gas refrigerant superheating degree SH (SH = T 3 -T 2 ) from a comparison between the changeable set the superheat degree SH is the target degree of superheat SHm, SH-SHm <0 if the throttle device 5
The valve opening degree Sj is decreased, and if SH-SHm> 0, the valve opening degree Sj is increased to control the refrigerant flow rate.

【0016】この時、弁開度制御手段11は、第1の圧
力検出手段7で検出される冷媒圧力P1 と第1の温度検
出手段8で検出される冷媒温度T1 とから液冷媒の過冷
却度SC{SC=TP1 (圧力P1 における冷媒飽和温
度)−T1 }を算出し、図2に示すように目標過熱度S
Hmを演算し設定する。図2は過冷却度SCと目標過熱
度SHmとの関係を示す図である。同図において、SC
mは所定過冷却度、SHm1 は第1の目標過熱度、SH
2 は第1の目標過熱度SHm1 よりも値の大きな第2
の目標過熱度である。この場合、所定過冷却度SCmは
絞り装置5に流入する液冷媒の過冷却度を十分大きな値
に確保できるように予め設定されており(例えば、SC
m=10)、また、SHm1 <SHm2 (例えば、SH
1 =2,SHm2 =7)という関係になっている。即
ち、第1の圧力検出手段7,第1の温度検出手段8,及
び弁開度制御手段11を備えてなる構成が、過冷却度検
出手段の一例である。図2によると、弁開度制御手段1
1は、算出した過冷却度SCがSC<SCmならば目標
過熱度SHmとして第2の目標過熱度SHm2 を設定
し、SC≧SCmならば目標過熱度SHmとして第1の
目標過熱度SHm1 を設定する。このように目標過熱度
SHmが設定されると、上記で説明したように、弁開度
制御手段11は、検出した温度T2 ,T3 から算出した
過熱度SHとの比較演算による結果に基づいて弁開度S
jの制御を行うのである。
At this time, the valve opening control means 11 determines the liquid refrigerant from the refrigerant pressure P 1 detected by the first pressure detection means 7 and the refrigerant temperature T 1 detected by the first temperature detection means 8. The degree of supercooling SC {SC = TP 1 (refrigerant saturation temperature at pressure P 1 ) −T 1 } is calculated, and as shown in FIG.
Calculate and set Hm. FIG. 2 is a diagram showing the relationship between the supercooling degree SC and the target superheat degree SHm. In the figure, SC
m is a predetermined supercooling degree, SHm 1 is a first target superheat degree, SH
m 2 is the second value which is larger than the first target superheat degree SHm 1 .
Is the target superheat degree. In this case, the predetermined supercooling degree SCm is set in advance so that the supercooling degree of the liquid refrigerant flowing into the expansion device 5 can be secured at a sufficiently large value (for example, SC
m = 10), and SHm 1 <SHm 2 (for example, SH
m 1 = 2, SHm 2 = 7). That is, a configuration including the first pressure detecting means 7, the first temperature detecting means 8, and the valve opening control means 11 is an example of the supercooling degree detecting means. According to FIG. 2, the valve opening control means 1
1 indicates that if the calculated supercooling degree SC is SC <SCm, the second target superheat degree SHm 2 is set as the target superheat degree SHm, and if SC ≧ SCm, the first target superheat degree SHm 1 is set as the target superheat degree SHm 1. To set. When the target superheat degree SHm is set in this way, as described above, the valve opening control means 11 is based on the result of the comparison calculation with the superheat degree SH calculated from the detected temperatures T 2 and T 3. Valve opening S
j is controlled.

【0017】図3は弁開度Sjと過熱度SH及び過冷却
度SCとの関係を示す図である。図3に示すように、例
えば算出された過熱度SHがSHm1 <SH<SHm2
の状態であるとすると、目標過熱度SHmが第1の目標
過熱度SHm1 に設定されている場合、弁開度Sjは増
加するように制御される。ここで、弁開度Sjが増加す
ると、過冷却度SCは減少していくため、冷媒配管の圧
力損失などの影響で絞り装置5に流入する冷媒の過冷却
度を十分大きく確保できなくなる。これに起因して冷媒
が気液二相状態となると、絞り装置5を通過する冷媒流
量が極度に減少することによる冷房能力の著しい低下、
及び低圧冷媒の引き込みによる圧縮機1の吐出温度上昇
を招き、圧縮機1を損傷させるおそれがある。
FIG. 3 is a diagram showing the relationship between the valve opening degree Sj and the superheat degree SH and the supercooling degree SC. As shown in FIG. 3, for example, the calculated superheat degree SH is SHm 1 <SH <SHm 2
If the target superheat degree SHm is set to the first target superheat degree SHm 1 , the valve opening degree Sj is controlled to increase. Here, since the degree of supercooling SC decreases as the valve opening degree Sj increases, it becomes impossible to secure a sufficiently large degree of supercooling of the refrigerant flowing into the expansion device 5 due to the influence of the pressure loss of the refrigerant pipe and the like. When the refrigerant becomes a gas-liquid two-phase state due to this, the refrigerant flow rate passing through the expansion device 5 is extremely reduced, and thus the cooling capacity is significantly reduced.
In addition, the discharge temperature of the compressor 1 rises due to the drawing of the low-pressure refrigerant, which may damage the compressor 1.

【0018】そこで、上記の図2で示したように、過冷
却度SCが低下し所定過冷却度SCmを下回って運転に
適正な過冷却度が確保できなくなると、目標過熱度SH
mを第2の目標過熱度SHm2 に変更設定することによ
り、弁開度Sjは減少するように制御される。弁開度S
jが減少すると、過冷却度SCは増加するため、十分な
過冷却度を確保できて絞り装置5を通過する冷媒流量が
安定し、十分な冷房能力を得ることができる。図3に示
す弁開度Sjと過熱度SH及び過冷却度SCとの関係
は、運転条件(例えば、室内空気条件,室外空気条件な
ど)の変化に伴って、安定した過冷却度を確保するため
の弁開度Sjも変化することを示している。そこで、以
上で説明した制御を行うことによって、このような運転
条件の変化にも適切に対応でき、常に安定した冷房能力
を確保した運転を行うことができる。
Therefore, as shown in FIG. 2 above, when the supercooling degree SC decreases and falls below a predetermined supercooling degree SCm, it becomes impossible to secure an appropriate subcooling degree for the operation.
By changing and setting m to the second target superheat degree SHm 2 , the valve opening degree Sj is controlled so as to decrease. Valve opening S
When j decreases, the supercooling degree SC increases, so that a sufficient supercooling degree can be secured, the flow rate of the refrigerant passing through the expansion device 5 becomes stable, and a sufficient cooling capacity can be obtained. The relationship between the valve opening degree Sj and the superheat degree SH and the supercool degree SC shown in FIG. 3 ensures a stable supercool degree in accordance with changes in operating conditions (for example, indoor air conditions, outdoor air conditions, etc.). It also indicates that the valve opening degree Sj for the change also changes. Therefore, by performing the control described above, it is possible to appropriately cope with such a change in the operating condition, and perform an operation in which a stable cooling capacity is always secured.

【0019】次に、図4に示すフローチャートによって
冷房運転時の弁開度の制御動作を説明する。ステップ2
0では、第1の圧力検出手段7で冷媒圧力P1 を検出
し、ステップ21へ進む。ステップ21では、第1の温
度検出手段8で冷媒温度T1 を検出し、ステップ22へ
進む。ステップ22では、検出された冷媒圧力P1 及び
冷媒温度T1 から冷媒の過冷却度SCを算出し、ステッ
プ23へ進む。ステップ23では、算出された冷媒の過
冷却度SCと予め設定されている所定過冷却度SCmと
を比較し、過冷却度SCの方が小さい場合には(Ye
s)、ステップ24へ進み、過冷却度SCの方が大きい
場合には(No)、ステップ25へ進む。ステップ24
では、目標過熱度SHmとして第2の目標過熱度SHm
2 を設定し、ステップ26へ進む。ステップ25では、
目標過熱度SHmとして第1の目標過熱度SHm1 を設
定し、ステップ26へ進む。ステップ26では、第2の
温度検出手段9で冷媒温度T2 を検出し、ステップ27
へ進む。ステップ27では、第3の温度検出手段10で
冷媒温度T3 を検出し、ステップ28へ進む。ステップ
28では、検出された冷媒温度T2 及びT3 から冷媒の
過熱度SHを算出し、ステップ29へ進む。ステップ2
9では、算出された過熱度SHとそのとき設定されてい
る目標過熱度SHmとを比較し、過熱度SHの方が小さ
い場合には(Yes)、ステップ30へ進み、過熱度S
Hの方が大きい場合には(No)、ステップ31へ進
む。ステップ30では、絞り装置5の弁開度Sjを減少
させ、ステップ20へ戻る。ステップ31では、算出さ
れた過熱度SHと設定された目標過熱度SHmとを比較
し、過熱度SHの方が大きい場合には(Yes)、ステ
ップ32へ進み、過熱度SHの方が小さい場合には(N
o)、ステップ33へ進む。ステップ32では、絞り装
置5の弁開度Sjを増加させて、ステップ20へ戻る。
ステップ33では、絞り装置5の弁開度Sjを現状のま
ま変化させないで、ステップ20へ戻る。以上のよう
に、弁開度制御手段11は、絞り装置の弁開度Sjの制
御を行うのである。
Next, the control operation of the valve opening during the cooling operation will be described with reference to the flow chart shown in FIG. Step two
At 0, the refrigerant pressure P 1 is detected by the first pressure detecting means 7, and the routine proceeds to step 21. In step 21, the first temperature detection means 8 detects the refrigerant temperature T 1, and the process proceeds to step 22. In step 22, the degree of supercooling SC of the refrigerant is calculated from the detected refrigerant pressure P 1 and refrigerant temperature T 1, and the process proceeds to step 23. In step 23, the calculated supercooling degree SC of the refrigerant is compared with a preset predetermined supercooling degree SCm, and when the supercooling degree SC is smaller (Ye
s), the process proceeds to step 24. If the supercooling degree SC is larger (No), the process proceeds to step 25. Step 24
Then, the second target superheat degree SHm is set as the target superheat degree SHm.
Set 2 and proceed to step 26. In step 25,
The first target superheat degree SHm 1 is set as the target superheat degree SHm, and the routine proceeds to step 26. In step 26, the refrigerant temperature T 2 is detected by the second temperature detecting means 9, and in step 27
Go to. In step 27, the refrigerant temperature T 3 is detected by the third temperature detecting means 10, and the process proceeds to step 28. In step 28, the superheat degree SH of the refrigerant is calculated from the detected refrigerant temperatures T 2 and T 3, and the process proceeds to step 29. Step two
In 9, the calculated superheat degree SH is compared with the target superheat degree SHm set at that time, and if the superheat degree SH is smaller (Yes), the process proceeds to step 30 to superheat degree S.
If H is larger (No), the process proceeds to step 31. In step 30, the valve opening degree Sj of the expansion device 5 is decreased, and the process returns to step 20. In step 31, the calculated superheat degree SH and the set target superheat degree SHm are compared, and when the superheat degree SH is larger (Yes), the process proceeds to step 32, and when the superheat degree SH is smaller. To (N
o), go to step 33. In step 32, the valve opening degree Sj of the expansion device 5 is increased, and the process returns to step 20.
In step 33, the valve opening degree Sj of the expansion device 5 is not changed as it is, and the process returns to step 20. As described above, the valve opening control means 11 controls the valve opening Sj of the expansion device.

【0020】実施例2.この発明による実施例2を図5
乃至図8に示す。図5は、実施例2の空気調和装置を示
す全体構成図であり、図1と同一部分は同一符号を付し
てその説明を省略する。また、図5において、実線矢印
は冷房運転時の冷媒が流れる方向を示している。
Example 2. Embodiment 2 according to the present invention is shown in FIG.
8 to 8. FIG. 5 is an overall configuration diagram showing the air conditioner of the second embodiment, and the same portions as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. Further, in FIG. 5, solid arrows indicate the direction in which the refrigerant flows during the cooling operation.

【0021】図5に示した空気調和装置において、圧縮
機1より吐出された高温高圧のガス冷媒は、四方切換弁
2を経て室外側熱交換器3に送られ室外空気と熱交換し
てここで液化された後、室内機Bへ送られ、絞り装置5
で減圧され室内側熱交換器6へ流入し室内空気と熱交換
しガス化して室内を冷房する。そして、ガス化した冷媒
は熱源機Aに戻り四方切換弁2、アキュムレータ4を経
て圧縮機1へ吸入される。このような冷房運転の場合、
弁開度制御手段11a(第1の弁開度動作範囲設定手段
の一例)は、第2の温度検出手段9で検出された冷媒温
度T2 及び第3の温度検出手段10で検出された冷媒温
度T3 からガス冷媒の過熱度SH(SH=T3 −T2
を求め、その過熱度SHと設定された目標過熱度SHm
とを比較し、SH−SHm<0ならば絞り装置5の弁開
度Sjを減少させ、SH−SHm>0ならば弁開度Sj
を増加させて冷媒流量を制御する。この時、目標過熱度
SHmは十分な冷房能力を確保できるような適正値とし
て予め所定に設定されている(例えば、SHm=7)。
In the air conditioner shown in FIG. 5, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is sent to the outdoor heat exchanger 3 via the four-way switching valve 2 and exchanges heat with the outdoor air. After being liquefied in, it is sent to the indoor unit B and the expansion device 5
Is depressurized by and flows into the indoor heat exchanger 6 to exchange heat with the indoor air and gasify to cool the room. Then, the gasified refrigerant returns to the heat source unit A, and is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4. In the case of such cooling operation,
The valve opening control means 11 a (an example of a first valve opening operation range setting means) is a refrigerant temperature T 2 detected by the second temperature detection means 9 and a refrigerant detected by the third temperature detection means 10. Superheat degree SH of gas refrigerant from temperature T 3 (SH = T 3 −T 2 ).
And the target superheat degree SHm
When SH-SHm <0, the valve opening degree Sj of the expansion device 5 is decreased, and when SH-SHm> 0, the valve opening degree Sj is decreased.
To control the refrigerant flow rate. At this time, the target superheat degree SHm is set in advance as an appropriate value that can ensure a sufficient cooling capacity (for example, SHm = 7).

【0022】この場合、弁開度Sjは設定された動作範
囲内で動作する。即ち、SH−SHm<0という状態で
弁開度Sjを減少させるよう動作していても、例えば室
内空気温度が低く冷房負荷が小さい場合には、熱交換能
力が低下し冷媒の過熱度SHが付きにくい。しかし、弁
開度Sjを減少させすぎると、冷媒流量が減少すること
による冷房能力の低下、及び低圧冷媒の引き込みによる
圧縮機1の吐出温度上昇を招き圧縮機1が損傷する事態
を招くおそれがある。
In this case, the valve opening Sj operates within the set operating range. That is, even if the valve opening degree Sj is operating in the state of SH-SHm <0, for example, when the indoor air temperature is low and the cooling load is small, the heat exchange capacity decreases and the superheat degree SH of the refrigerant is reduced. Difficult to attach. However, if the valve opening degree Sj is reduced too much, the cooling capacity may decrease due to the decrease in the flow rate of the refrigerant, and the discharge temperature of the compressor 1 may increase due to the drawing of the low-pressure refrigerant, resulting in damage to the compressor 1. is there.

【0023】そこで、弁開度Sjに最小弁開度Sjnを
設定することにより、そのような事態の発生を未然に防
止している。逆に、SH−SHm>0という状態で弁開
度Sjを増加させるよう動作していても、例えば室内空
気温度が高く冷房負荷が大きい場合には、熱交換能力が
増加し冷媒の過熱度SHが大きくなり易い。しかし、弁
開度Sjを増加させすぎると、高圧側の冷媒圧力が低下
して過冷却度が大きくなりにくく、結果として冷媒流量
が減少することによる冷房能力の低下、及び低圧冷媒の
引き込みによる圧縮機1の吐出温度上昇を招き圧縮機1
が損傷する事態を招くおそれがある。そのため、弁開度
Sjに最大弁開度Sjxを設定することにより、そのよ
うな事態発生を防止している。
Therefore, by setting the minimum valve opening degree Sjn as the valve opening degree Sj, such a situation is prevented from occurring. On the contrary, even if the valve opening degree Sj is increased in the state of SH-SHm> 0, for example, when the indoor air temperature is high and the cooling load is large, the heat exchange capacity is increased and the superheat degree SH of the refrigerant is increased. Tends to grow. However, if the valve opening degree Sj is increased too much, the refrigerant pressure on the high-pressure side is reduced and the degree of supercooling is less likely to increase. As a result, the refrigerant flow rate is decreased to reduce the cooling capacity, and the compression due to the drawing of the low-pressure refrigerant is performed. The discharge temperature of the compressor 1 rises and the compressor 1
May be damaged. Therefore, such a situation is prevented by setting the maximum valve opening degree Sjx to the valve opening degree Sj.

【0024】このとき、弁開度制御手段11aは、第1
の圧力検出手段7で検出される冷媒圧力P1 と第1の温
度検出手段8で検出される冷媒温度T1 から液冷媒の過
冷却度SC{SC=TP1 (圧力P1 における冷媒飽和
温度)−T1 }を算出し、図6に示すように弁開度Sj
の動作範囲を設定する。図6は過冷却度SCと最小弁開
度Sjnとの関係を示す図である。図6において、SC
mは所定過冷却度、Sjn1 は第1の最小弁開度、Sj
2 は第2の最小弁開度である。この場合、所定過冷却
度SCmは絞り装置5に流入する液冷媒の過冷却度を十
分確保できるように設定されており(例えば、SCm=
10)、また、Sjn1 <Sjn2 という関係になって
いる。図6によると、算出された過冷却度SCがSC<
SCmならば最小弁開度Sjnとして第2の最小弁開度
Sjn2 を設定し、SC≧SCmならば最小弁開度Sj
nとして第1の最小弁開度Sjn1 を設定する。以上よ
うに最小弁開度Sjnが設定される一方、最大弁開度S
jxは、最小弁開度Sjnとの差ΔSj(ΔSj=Sj
x−Sjn)が一定となるように設定される。即ち、第
1の圧力検出手段7,第1の温度検出手段8,及び弁開
度制御手段11を備えてなる構成が、過冷却温度検出手
段の一例である。
At this time, the valve opening control means 11a uses the first
From the refrigerant pressure P 1 detected by the pressure detecting means 7 and the refrigerant temperature T 1 detected by the first temperature detecting means 8 to the supercooling degree SC {SC = TP 1 (refrigerant saturation temperature at pressure P 1 ) -T 1 } is calculated, and as shown in FIG.
Set the operating range of. FIG. 6 is a diagram showing a relationship between the degree of supercooling SC and the minimum valve opening degree Sjn. In FIG. 6, SC
m is a predetermined supercooling degree, Sjn 1 is a first minimum valve opening degree, Sjn
n 2 is the second minimum valve opening degree. In this case, the predetermined supercooling degree SCm is set so that the supercooling degree of the liquid refrigerant flowing into the expansion device 5 can be sufficiently secured (for example, SCm =
10) and Sjn 1 <Sjn 2 . According to FIG. 6, the calculated supercooling degree SC is SC <
If SCm, the second minimum valve opening Sjn 2 is set as the minimum valve opening Sjn, and if SC ≧ SCm, the minimum valve opening Sjn is set.
The first minimum valve opening Sjn 1 is set as n. While the minimum valve opening Sjn is set as described above, the maximum valve opening S
jx is the difference ΔSj (ΔSj = Sj from the minimum valve opening Sjn).
x-Sjn) is set to be constant. That is, a configuration including the first pressure detecting means 7, the first temperature detecting means 8, and the valve opening control means 11 is an example of the supercooling temperature detecting means.

【0025】図7は弁開度Sjと過熱度SH及び過冷却
度SCとの関係を示す図である。図7によると、例えば
算出した過熱度SHがSH<SHm、弁開度SjがSj
>Sjn2 の状態であったとすると、最小弁開度Sjn
が第2の最小弁開度Sjn2に設定されている場合、弁
開度Sjは上記で説明したように小さくなるように制度
される。しかしながら、最小弁開度Sjnが第2の最小
弁開度Sjn2 に設定されているので、弁開度Sjは第
2の最小弁開度Sjn2 までしか減少できず、この弁開
度では過冷却度SCが小さすぎて所定過冷却度SCmを
下回り運転に適正な過冷却度を確保できない。
FIG. 7 is a diagram showing the relationship between the valve opening degree Sj and the superheat degree SH and the supercooling degree SC. According to FIG. 7, for example, the calculated superheat degree SH is SH <SHm, and the valve opening degree Sj is Sj.
> Sjn 2 , the minimum valve opening Sjn
Is set to the second minimum valve opening degree Sjn 2 , the valve opening degree Sj is regulated to be small as described above. However, the minimum valve opening Sjn is set to the minimum valve opening Sjn 2 second valve opening signal Sj can not be reduced only to the minimum valve opening Sjn 2 of the second, in the valve opening degree is excessive The degree of cooling SC is too small to fall below the predetermined degree of supercooling SCm, and a proper degree of supercooling cannot be secured for operation.

【0026】そこで、上記の図6で説明したように、最
小弁開度を第1の最小弁開度Sjn1 に設定することに
より、弁開度Sjはさらに減少して十分な過冷却度SC
の確保が可能となる。図7に示した弁開度Sjと過熱度
SH及び過冷却度SCとの関係は、運転条件(例えば、
室内空気条件,室外空気条件など)の変化に伴って、安
定した過冷却度を確保するための弁開度Sjも変化する
ことを示している。以上で説明した制御を行うことによ
って、このような運転条件の変化にも適切に対応でき、
常に安定した冷房能力を確保した運転を行うことができ
る。
Therefore, as described above with reference to FIG. 6, by setting the minimum valve opening degree to the first minimum valve opening degree Sjn 1 , the valve opening degree Sj is further reduced and the sufficient supercooling degree SC is achieved.
Can be secured. The relationship between the valve opening degree Sj and the superheat degree SH and the supercooling degree SC shown in FIG.
It is shown that the valve opening degree Sj for ensuring a stable degree of supercooling also changes with changes in the indoor air condition, the outdoor air condition, etc.). By performing the control described above, it is possible to appropriately respond to such changes in operating conditions,
It is possible to perform an operation in which a stable cooling capacity is always secured.

【0027】次に、図8に示すフローチャートによって
冷房運転時の弁開度の制御動作を説明する。ステップ3
4では、第1の圧力検出手段7で冷媒圧力P1 を検出
し、ステップ35へ進む。ステップ35では、第1の温
度検出手段8で冷媒温度T1 を検出し、ステップ36へ
進む。ステップ36では、検出された冷媒圧力P1 及び
冷媒温度T1 から冷媒の過冷却度SCを算出し、ステッ
プ37へ進む。ステップ37では、算出された冷媒の過
冷却度SCと予め設定されている所定過冷却度SCmと
を比較し、過冷却度SCの方が小さい場合には(Ye
s)、ステップ38へ進み、過冷却度SCの方が大きい
場合には(No)、ステップ39へ進む。ステップ38
では、最小弁開度Sjnとして第1の最小弁開度Sjn
1 を設定し、ステップ40へ進む。ステップ39では、
目標過熱度Sjnとして第2の目標過熱度Sjn2 を設
定し、ステップ40へ進む。ステップ40では、第2の
温度検出手段9で冷媒温度T2 を検出し、ステップ41
へ進む。ステップ41では、第3の温度検出手段10で
冷媒温度T3 を検出し、ステップ42へ進む。ステップ
42では、検出された冷媒温度T2 及びT3 から冷媒の
過熱度SHを算出し、ステップ43へ進む。ステップ4
3では、算出された過熱度SHと予め設定されている所
定の目標過熱度SHmとを比較し、過熱度SHの方が小
さい場合には(Yes)、ステップ44へ進み、過熱度
SHの方が大きい場合には(No)、ステップ45へ進
む。ステップ44では、絞り装置5の弁開度Sjを減少
させ、ステップ34へ戻る。ステップ45では、算出さ
れた過熱度SHと予め設定されている目標過熱度SHm
とを比較し、過熱度SHの方が大きい場合には(Ye
s)、ステップ46へ進み、過熱度SHの方が小さい場
合には(No)、ステップ47へ進む。ステップ46で
は、絞り装置5の弁開度Sjを増加させて、ステップ3
4へ戻る。ステップ47では、絞り装置5の弁開度Sj
を現状のまま変化させないで、ステップ34へ戻る。以
上のように、弁開度制御手段11aは、絞り装置の弁開
度Sjの制御を行うようになっている。
Next, the control operation of the valve opening during the cooling operation will be described with reference to the flow chart shown in FIG. Step 3
In 4, the first pressure detecting means 7 detects the refrigerant pressure P 1 and the process proceeds to step 35. In step 35, the first temperature detecting means 8 detects the refrigerant temperature T 1, and the process proceeds to step 36. In step 36, the degree of supercooling SC of the refrigerant is calculated from the detected refrigerant pressure P 1 and refrigerant temperature T 1, and the process proceeds to step 37. In step 37, the calculated supercooling degree SC of the refrigerant is compared with a preset predetermined supercooling degree SCm, and when the supercooling degree SC is smaller (Ye
s), the process proceeds to step 38, and if the supercooling degree SC is larger (No), the process proceeds to step 39. Step 38
Then, as the minimum valve opening degree Sjn, the first minimum valve opening degree Sjn is set.
Set 1 and proceed to step 40. In step 39,
The second target superheat degree Sjn 2 is set as the target superheat degree Sjn, and the routine proceeds to step 40. In step 40, the second temperature detecting means 9 detects the refrigerant temperature T 2 , and in step 41
Go to. In step 41, the refrigerant temperature T 3 is detected by the third temperature detecting means 10, and the process proceeds to step 42. At step 42, the superheat degree SH of the refrigerant is calculated from the detected refrigerant temperatures T 2 and T 3, and the routine proceeds to step 43. Step 4
In 3, the calculated superheat degree SH is compared with a predetermined target superheat degree SHm set in advance. If the superheat degree SH is smaller (Yes), the process proceeds to step 44, and the superheat degree SH is determined. If is larger (No), the process proceeds to step 45. In step 44, the valve opening degree Sj of the expansion device 5 is decreased, and the process returns to step 34. In step 45, the calculated superheat degree SH and the preset target superheat degree SHm are set.
If the superheat degree SH is larger than (Ye
s), the process proceeds to step 46, and when the superheat degree SH is smaller (No), the process proceeds to step 47. In step 46, the valve opening degree Sj of the expansion device 5 is increased, and step 3
Return to 4. In step 47, the valve opening Sj of the expansion device 5
Is not changed and the process returns to step 34. As described above, the valve opening control means 11a controls the valve opening Sj of the expansion device.

【0028】実施例3.この発明による実施例3を図9
乃至図13に示す。図9は、実施例3の空気調和装置を
示す全体構成図であり、図1と同一部分は同一符号を付
してその説明を省略する。図9において、B1 は第1の
室内機、B2 は第2の室内機である。ここでは、2台の
室内機のみを示しているが、室内機が3台以上の場合で
も同様である。また、図9において、実線矢印は冷房運
転時の冷媒が流れる方向を示している。
Example 3. FIG. 9 shows a third embodiment according to the present invention.
Through FIG. FIG. 9 is an overall configuration diagram showing the air conditioner of the third embodiment, and the same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. In FIG. 9, B 1 is a first indoor unit and B 2 is a second indoor unit. Although only two indoor units are shown here, the same applies to the case where there are three or more indoor units. Further, in FIG. 9, solid arrows indicate the direction in which the refrigerant flows during the cooling operation.

【0029】図9に示した空気調和装置において、圧縮
機1より吐出された高温高圧のガス冷媒は、四方切換弁
2を経て室外側熱交換器3に送られ室外空気と熱交換し
てここで液化された後、それぞれの室内機B1 ,B2
送られ、それぞれの絞り装置5で減圧され室内側熱交換
器6へ流入し室内空気と熱交換しガス化してそれぞれの
室内を冷房する。そして、ガス化した冷媒は熱源機Aに
戻り四方切換弁2、アキュムレータ4を経て圧縮機1へ
吸入される。このような冷房運転の場合、弁開度制御手
段11b(第2の目標過熱度設定手段の一例、図10参
照)は、それぞれ、第2の温度検出手段9で検出された
冷媒温度T2 及び第3の温度検出手段10で検出された
冷媒温度T3 からガス冷媒の過熱度SH(SH=T3
2 )を求め、それらの過熱度SHと、変更可能に設定
された目標過熱度SHmとを比較し、SH−SHm<0
ならば絞り装置5の弁開度Sjを減少させ、SH−SH
m>0ならば弁開度Sjを増加させて冷媒流量を制御す
る。この時、目標過熱度SHmは十分な冷房能力を確保
できるような適正値とするように可変に設定されている
(例えば、SHm=7)。
In the air conditioner shown in FIG. 9, the high-temperature high-pressure gas refrigerant discharged from the compressor 1 is sent to the outdoor heat exchanger 3 via the four-way switching valve 2 and exchanges heat with the outdoor air. After being liquefied by, it is sent to the respective indoor units B 1 and B 2 , decompressed by the respective expansion devices 5, flows into the indoor heat exchanger 6, exchanges heat with the indoor air, is gasified, and cools each indoor. To do. Then, the gasified refrigerant returns to the heat source unit A, and is sucked into the compressor 1 via the four-way switching valve 2 and the accumulator 4. In the case of such a cooling operation, the valve opening control means 11b (an example of the second target superheat degree setting means, see FIG. 10) has the refrigerant temperature T 2 and the refrigerant temperature T 2 detected by the second temperature detection means 9, respectively. From the refrigerant temperature T 3 detected by the third temperature detecting means 10, the superheat degree SH of the gas refrigerant (SH = T 3
T 2 ) is calculated, and those superheat degrees SH are compared with the target superheat degree SHm that is set to be changeable, and SH-SHm <0.
If so, the valve opening degree Sj of the expansion device 5 is decreased, and SH-SH
If m> 0, the valve opening Sj is increased to control the refrigerant flow rate. At this time, the target superheat degree SHm is variably set so as to be an appropriate value that can secure a sufficient cooling capacity (for example, SHm = 7).

【0030】また、図10はそれぞれの室内機B1 ,B
2 の絞り装置5の弁開度の制御機構を示すブロック図で
ある。同図において、12は運転中の室内機を特定する
運転信号を出力する運転信号送信手段、13は運転中の
室内機の容量信号を出力する容量信号送信手段、14は
それぞれの室内機B1 ,B2 からの運転信号や容量信号
を受けて冷凍サイクル全体の運転容量の総和を演算する
総運転容量演算手段である。尚、運転信号送信手段12
及び容量信号送信手段13を備えてなる構成が、運転容
量検出手段の一例である。
Further, FIG. 10 shows the indoor units B 1 and B
2 is a block diagram showing a valve opening control mechanism of the expansion device 5 of FIG. In the figure, 12 is a driving signal transmitting means for outputting a driving signal for specifying the indoor unit in operation, 13 is a capacity signal transmitting means for outputting a capacity signal of the indoor unit in operation, and 14 is each indoor unit B 1 , B 2 to receive the operation signal and the capacity signal, and calculate the total operation capacity of the entire refrigeration cycle. The operation signal transmitting means 12
The configuration including the capacity signal transmitting means 13 is an example of the operating capacity detecting means.

【0031】この時、弁開度制御手段11bは、総運転
容量演算手段14から得た運転中の室内機に係る運転容
量の総和の情報に基づいて、図11に示すように目標過
熱度SHmを演算し変更可能に設定する。図11は運転
容量Qjと目標過熱度SHmとの関係を示している。同
図において、Qjmは所定運転容量(例えば、室外機容
量に対して100%の容量)、SHm1 は第1の目標過
熱度、SHm2 は第2の目標過熱度であり、この場合、
SHm1 <SHm2 (例えば、SHm1 =2,SHm2
=7)という関係になっている。図11によると、運転
容量の総和QjがQj<Qjmならば目標過熱度SHm
として第1の目標過熱度SHm1 を設定し、Qj≧Qj
mならば目標過熱度SHmとして第2の目標過熱度SH
2 を設定する。このように目標過熱度SHmが設定さ
れると、上記で説明したように、検出された冷媒温度T
2 及びT3 から算出された過熱度SHとの比較演算によ
る結果に基づいて、絞り装置5の弁開度Sjが制御され
る。
At this time, the valve opening control means 11b, based on the information on the sum of the operating capacities of the operating indoor units obtained from the total operating capacity calculating means 14, as shown in FIG. 11, the target superheat degree SHm. Is calculated and set to be changeable. FIG. 11 shows the relationship between the operating capacity Qj and the target superheat degree SHm. In the figure, Qjm is a predetermined operating capacity (for example, a capacity of 100% of the outdoor unit capacity), SHm 1 is a first target superheat degree, SHm 2 is a second target superheat degree, and in this case,
SHm 1 <SHm 2 (for example, SHm 1 = 2, SHm 2
= 7). According to FIG. 11, if the sum Qj of operating capacities is Qj <Qjm, the target superheat degree SHm
The first target superheat degree SHm 1 is set as
If m, the target superheat degree SHm is set as the second target superheat degree SH.
Set m 2 . When the target superheat degree SHm is set in this way, as described above, the detected refrigerant temperature T
The valve opening degree Sj of the expansion device 5 is controlled based on the result of the comparison calculation with the superheat degree SH calculated from 2 and T 3 .

【0032】図12は、運転容量の総和Qjと過冷却度
SCとの関係を示している。同図によると、運転容量の
総和Qjが大きくなるほど冷凍サイクル全体としての絞
り度合(即ち、それぞれの絞り装置5の弁開度Sjの総
和)が大きくなりすぎて、高圧側の冷媒圧力が低下する
ため十分な過冷却度を確保しにくい状態になることを示
している。ここで、SCmは絞り装置5に流入する液冷
媒の過冷却度が十分確保できるように予め設定されてい
る所定過冷却度である(例えば、SCm=10)。ま
た、例えば算出した運転容量の総和QjがQj>Qjm
(所定運転容量)の状態であるとすると、目標過熱度S
Hmが第1の目標過熱度SHm1 に設定されている場
合、過冷却度SCは十分な冷房能力を確保し得る過冷却
度SCmに達していない。即ち、それぞれの室内機B
1 ,B2 までの冷媒配管における圧力損失等により、そ
れぞれの絞り装置5に流入する冷媒が気液二相状態とな
り、絞り装置5を通過する冷媒流量が極度に減少するこ
とによる冷房能力の著しい低下、あるいは低圧冷媒の引
き込みによる圧縮機1の吐出温度上昇による圧縮機1の
損傷を招くおそれがある。
FIG. 12 shows the relationship between the total operating capacity Qj and the degree of supercooling SC. According to the figure, as the total sum Qj of the operating capacities becomes larger, the degree of throttling of the entire refrigeration cycle (that is, the sum of the valve opening degrees Sj of the respective throttling devices 5) becomes too large, and the refrigerant pressure on the high pressure side decreases. Therefore, it is difficult to secure a sufficient degree of supercooling. Here, SCm is a predetermined degree of supercooling that is preset so as to ensure a sufficient degree of supercooling of the liquid refrigerant flowing into the expansion device 5 (for example, SCm = 10). Further, for example, the total sum Qj of the calculated operating capacities is Qj> Qjm.
If it is in the state of (predetermined operating capacity), the target superheat S
When Hm is set to the first target superheat degree SHm 1 , the supercool degree SC does not reach the supercool degree SCm that can secure a sufficient cooling capacity. That is, each indoor unit B
Due to pressure loss and the like in the refrigerant pipes up to 1 and B 2 , the refrigerant flowing into each expansion device 5 is in a gas-liquid two-phase state, and the refrigerant flow rate passing through the expansion device 5 is extremely reduced, resulting in a significant cooling capacity. There is a possibility that the compressor 1 may be damaged due to a decrease in temperature or an increase in the discharge temperature of the compressor 1 due to the drawing of the low-pressure refrigerant.

【0033】そこで、上記の図11で示したように、運
転容量の総和Qjが増加して所定運転容量Qjmを上回
り適正な過冷却度を確保できなくなったとき、目標過熱
度SHmを第1の目標過熱度SHm1 から第2の目標過
熱度SHm2 に設定変更することにより、各室内機B
1 ,B2 の弁開度Sjは減少するように制御される。弁
開度Sjが減少すると、過冷却度SCが増加するため、
絞り装置5に流入する液冷媒の過冷却度を十分確保で
き、安定した冷房能力を得ることができる。
Therefore, as shown in FIG. 11 above, when the total operating capacity Qj increases and exceeds the predetermined operating capacity Qjm and an appropriate degree of supercooling cannot be secured, the target degree of superheat SHm is set to the first value. By changing the setting from the target superheat degree SHm 1 to the second target superheat degree SHm 2 , each indoor unit B
The valve openings Sj of 1 and B 2 are controlled so as to decrease. When the valve opening degree Sj decreases, the supercooling degree SC increases,
A sufficient degree of subcooling of the liquid refrigerant flowing into the expansion device 5 can be secured, and stable cooling capacity can be obtained.

【0034】次に、図13に示すフローチャートによっ
て冷房運転時の弁開度の制御動作を説明する。ステップ
48では、各室内機B1 ,B2 からの運転信号及び容量
信号を受けて運転容量の総和Qjを算出し、ステップ4
9へ進む。ステップ49では、算出された運転容量の総
和Qjと予め設定されている所定運転容量Qjmとを比
較し、運転容量の総和Qjの方が小さい場合には(Ye
s)、ステップ50へ進み、運転容量の総和Qjの方が
大きい場合には(No)、ステップ51へ進む。ステッ
プ50では、目標過熱度SHmとして第1の目標過熱度
SHm1 を設定し、ステップ52へ進む。ステップ51
では、目標過熱度SHmとして第2の目標過熱度SHm
2 を設定し、ステップ52へ進む。ステップ52では、
第2の温度検出手段9で冷媒温度T2 を検出し、ステッ
プ53へ進む。ステップ53では、第3の温度検出手段
10で冷媒温度T3 を検出し、ステップ54へ進む。ス
テップ54では、検出された冷媒温度T2 及びT3 から
冷媒の過熱度SHを算出し、ステップ55へ進む。ステ
ップ55では、算出された過熱度SHとそのとき設定さ
れている目標過熱度SHmとを比較し、過熱度SHの方
が小さい場合には(Yes)、ステップ56へ進み、過
熱度SHの方が大きい場合には(No)、ステップ57
へ進む。ステップ56では、絞り装置5の弁開度Sjを
減少させ、ステップ48へ戻る。ステップ57では、算
出された過熱度SHと設定された目標過熱度SHmとを
比較し、過熱度SHの方が大きい場合には(Yes)、
ステップ58へ進み、過熱度SHの方が小さい場合には
(No)、ステップ59へ進む。ステップ58では、各
絞り装置5の弁開度Sjを増加させて、ステップ48へ
戻る。ステップ59では、絞り装置5の弁開度Sjを現
状のまま変化させないで、ステップ48へ戻る。以上の
ように、弁開度制御手段11bは、絞り装置5の弁開度
Sjの制御を行うのである。
Next, the control operation of the valve opening during the cooling operation will be described with reference to the flow chart shown in FIG. In step 48, the sum total Qj of the operating capacities is calculated by receiving the operating signals and the capacity signals from the indoor units B 1 and B 2 , and step 4
Proceed to 9. In step 49, the calculated total sum Qj of the operating capacities is compared with a preset predetermined operating capacity Qjm, and if the total sum Qj of the operating capacities is smaller (Ye
s), the process proceeds to step 50, and when the total operating capacity Qj is larger (No), the process proceeds to step 51. At step 50, the first target superheat degree SHm 1 is set as the target superheat degree SHm, and the routine proceeds to step 52. Step 51
Then, the second target superheat degree SHm is set as the target superheat degree SHm.
Set 2 and proceed to step 52. In step 52,
The refrigerant temperature T 2 is detected by the second temperature detecting means 9, and the routine proceeds to step 53. In step 53, the third temperature detecting means 10 detects the refrigerant temperature T 3, and the process proceeds to step 54. At step 54, the superheat degree SH of the refrigerant is calculated from the detected refrigerant temperatures T 2 and T 3, and the routine proceeds to step 55. In step 55, the calculated superheat degree SH and the target superheat degree SHm set at that time are compared. If the superheat degree SH is smaller (Yes), the process proceeds to step 56, and the superheat degree SH is determined. Is larger (No), step 57
Go to. In step 56, the valve opening degree Sj of the expansion device 5 is decreased, and the process returns to step 48. In step 57, the calculated superheat degree SH is compared with the set target superheat degree SHm, and if the superheat degree SH is larger (Yes),
When the degree of superheat SH is smaller (No), the process proceeds to step 59. In step 58, the valve opening degree Sj of each expansion device 5 is increased, and the process returns to step 48. In step 59, the valve opening degree Sj of the expansion device 5 is not changed as it is, and the process returns to step 48. As described above, the valve opening control means 11b controls the valve opening Sj of the expansion device 5.

【0035】実施例4.この発明による実施例4を図1
4乃至図18に示す。図14は、実施例4の空気調和装
置を示す全体構成図であり、図1と同一部分は同一符号
を付してその説明を省略する。図14において、B1
第1の室内機、B2 は第2の室内機である。ここでは、
2台の室内機のみを示しているが室内機が3台以上の場
合でも同様である。また、図14において、実線矢印は
冷房運転時の冷媒が流れる方向を示している。
Example 4. FIG. 1 shows a fourth embodiment according to the present invention.
4 to FIG. FIG. 14 is an overall configuration diagram showing an air conditioner of a fourth embodiment, and the same parts as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. In FIG. 14, B 1 is a first indoor unit and B 2 is a second indoor unit. here,
Although only two indoor units are shown, the same applies when the number of indoor units is three or more. Further, in FIG. 14, solid line arrows indicate the direction in which the refrigerant flows during the cooling operation.

【0036】図14に示した空気調和装置において、圧
縮機1より吐出された高温高圧のガス冷媒は、四方切換
弁2を経て室外側熱交換器3に送られ室外空気と熱交換
してここで液化された後、それぞれの室内機B1 ,B2
へ送られ、それぞれの絞り装置5で減圧され室内側熱交
換器6へ流入し室内空気と熱交換しガス化してそれぞれ
の室内を冷房する。そして、ガス化した冷媒は熱源機A
に戻り四方切換弁2,アキュムレータ4を経て圧縮機1
へ吸入される。このような冷房運転の場合、弁開度制御
手段11c(第2の弁開度動作範囲設定手段の一例、図
15参照)は、第2の温度検出手段9で検出された冷媒
温度T2 及び第3の温度検出手段10で検出された冷媒
温度T3 からガス冷媒の過熱度SH(SH=T3 −T
2 )を求め、その過熱度SH1と予め設定された所定の
目標過熱度SHmとを比較し、SH−SHm<0ならば
絞り装置5の弁開度Sjを減少させ、SH−SHm>0
ならば弁開度Sjを増加させて冷媒流量を制御する。こ
の時、目標過熱度SHmは十分な冷房能力を確保できる
ような適正値として予め所定に設定されている(例え
ば、SHm=7)。
In the air conditioner shown in FIG. 14, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is sent to the outdoor heat exchanger 3 via the four-way switching valve 2 and exchanges heat with the outdoor air. After being liquefied in, each indoor unit B 1 , B 2
Is sent to the indoor heat exchanger 6 to be heat-exchanged with the indoor air and gasified to cool each room. The gasified refrigerant is the heat source unit A.
Back to the four-way switching valve 2, accumulator 4 and compressor 1
Inhaled into. In such a cooling operation, the valve opening control means 11c (an example of the second valve opening operation range setting means, see FIG. 15) causes the refrigerant temperature T 2 detected by the second temperature detection means 9 and From the refrigerant temperature T 3 detected by the third temperature detecting means 10, the superheat degree SH of the gas refrigerant (SH = T 3 −T)
2 ) is obtained, the superheat degree SH1 is compared with a predetermined target superheat degree SHm set in advance, and if SH-SHm <0, the valve opening degree Sj of the expansion device 5 is decreased, and SH-SHm> 0.
If so, the valve opening Sj is increased to control the refrigerant flow rate. At this time, the target superheat degree SHm is set in advance as an appropriate value that can ensure a sufficient cooling capacity (for example, SHm = 7).

【0037】この場合、弁開度Sjは設定された動作範
囲内で動作する。即ち、SH−SHm<0という状態で
弁開度Sjを減少させるように動作していても、例えば
室内空気温度が低く冷房負荷が小さい場合には、熱交換
能力が低下して冷媒の過熱度SHが付きにくい。しかし
ながら、弁開度Sjを減少させすぎると、冷媒流量が減
少することによる冷房能力の低下、及び低圧冷媒の引き
込みによる圧縮機1の吐出温度上昇を招き圧縮機1が損
傷するという不具合を生じるおそれがある。
In this case, the valve opening Sj operates within the set operating range. That is, even if the valve opening degree Sj is reduced in the state of SH-SHm <0, for example, when the indoor air temperature is low and the cooling load is small, the heat exchange capacity decreases and the degree of superheat of the refrigerant decreases. SH is hard to attach. However, if the valve opening degree Sj is excessively reduced, there is a possibility that the cooling capacity is reduced due to the reduction of the refrigerant flow rate, and the discharge temperature of the compressor 1 is increased due to the drawing of the low-pressure refrigerant, resulting in damage to the compressor 1. There is.

【0038】そこで、弁開度Sjに最小弁開度Sjnを
設定することにより、そのような不具合を防止してい
る。逆に、SH−SHm>0という状態で弁開度Sjを
増加させるよう動作していても、例えば室内空気温度が
高く冷房負荷が大きい場合には、熱交換能力が増加して
冷媒の過熱度SHを大きくし易い。しかしながら、弁開
度Sjを増加させすぎると、高圧側の冷媒圧力が低下し
て過冷却度が大きくなりにくく、結果として冷媒流量が
減少することによる冷房能力の低下、及び低圧冷媒の引
き込みによる圧縮機1の吐出温度上昇を招き圧縮機1を
損傷させる場合を生じる。そこで、弁開度Sjに最大弁
開度Sjxを設定することによって、上記した不具合を
防止している。また、図15はそれぞれの室内機B1
2 の絞り装置5の弁開度の制御機構を示すブロック図
である。ここで、12は運転信号送信手段、13は容量
信号送信手段、14は運転中のそれぞれの室内機B1
2 からの運転信号や容量信号を受けて冷凍サイクル全
体の運転容量の総和を演算する総運転容量演算手段であ
る。また、運転信号送信手段12及び容量信号送信手段
13を備えてなる構成が、運転容量検出手段の一例であ
る。
Therefore, such a problem is prevented by setting the minimum valve opening degree Sjn to the valve opening degree Sj. On the contrary, even if the valve opening Sj is operated to increase in the state of SH-SHm> 0, for example, when the indoor air temperature is high and the cooling load is large, the heat exchange capacity increases and the degree of superheat of the refrigerant increases. It is easy to increase SH. However, if the valve opening degree Sj is increased too much, the refrigerant pressure on the high-pressure side is reduced and the degree of supercooling is less likely to increase. As a result, the refrigerant flow rate is decreased to reduce the cooling capacity and the compression due to the drawing of the low-pressure refrigerant is performed. In some cases, the discharge temperature of the machine 1 rises and the compressor 1 is damaged. Therefore, the above-mentioned inconvenience is prevented by setting the maximum valve opening Sjx to the valve opening Sj. Further, FIG. 15 shows that each indoor unit B 1 ,
Is a block diagram showing the control mechanism of the valve opening degree of the throttle device 5 B 2. Here, 12 is an operation signal transmission means, 13 is a capacity signal transmission means, 14 is each indoor unit B 1 in operation ,
It is a total operating capacity calculation means for receiving the operating signal and the capacity signal from B 2 and calculating the total operating capacity of the entire refrigeration cycle. Further, the configuration including the operation signal transmission means 12 and the capacity signal transmission means 13 is an example of the operation capacity detection means.

【0039】このとき、弁開度制御手段11cは、運転
容量算出手段14からの運転容量の総和Qjの情報に基
づいて、図16に示すように弁開度Sjの動作範囲を演
算し設定する。図16は運転容量の総和Qjと最小弁開
度Sjnの関係を示す図である。同図において、Qjm
は所定運転容量(例えば、室外機容量に対して100%
の容量)、Sjn1 は第1の最小弁開度、Sjn2 は第
2の最小弁開度であり、Sjn1 <Sjn2 という関係
になっている。図16によると、運転容量の総和Qjが
Qj<Qjmならば最小弁開度Sjnとして第2の最小
弁開度Sjn2 を設定し、Qj≧Qjmならば最小弁開
度Sjnとして第1の最小弁開度Sjn1 を設定する。
このように最小弁開度Sjnが設定される一方、最大弁
開度Sjxは、最小弁開度Sjnとの差ΔSj(ΔSj
=Sjx−Sjn)が一定となるように設定される。
At this time, the valve opening control means 11c calculates and sets the operating range of the valve opening Sj as shown in FIG. 16 based on the information of the total operating capacity Qj from the operating capacity calculating means 14. . FIG. 16 is a diagram showing the relationship between the total operating capacity Qj and the minimum valve opening degree Sjn. In the figure, Qjm
Is the specified operating capacity (for example, 100% of the outdoor unit capacity)
Capacity), Sjn 1 is the first minimum valve opening degree, Sjn 2 is the second minimum valve opening degree, and Sjn 1 <Sjn 2 is satisfied. According to FIG. 16, if the sum Qj of operating capacities is Qj <Qjm, the second minimum valve opening Sjn 2 is set as the minimum valve opening Sjn, and if Qj ≧ Qjm, the minimum minimum valve opening Sjn is set as the first minimum. Set the valve opening Sjn 1 .
In this way, the minimum valve opening Sjn is set, while the maximum valve opening Sjx is different from the minimum valve opening Sjn by a difference ΔSj (ΔSj
= Sjx-Sjn) is set to be constant.

【0040】図17は、運転容量の総和Qjと過冷却度
SCとの関係を示しており、運転容量の総和Qjが大き
くなるほど冷凍サイクル全体としての絞り度合(即ち、
各絞り装置5の弁開度Sjの総和)が大きくなり、高圧
側の冷媒圧力が低下して過冷却度SCが確保しにくい状
態になることを示している。ここで、SCmは各絞り装
置5に流入する液冷媒の過冷却度を十分確保できるよう
に予め設定されている所定過冷却度である(例えば、S
Cm=10)。また、例えば算出した運転容量の総和Q
jがQj>Qjmの状態であるとすると、最小弁開度S
jnが第2の最小弁開度Sjn2 に設定されている場
合、過冷却度SCは十分な冷房能力が確保できる過冷却
度SCmに達していない。即ち、各室内機B1 ,B2
での冷媒配管の圧力損失等により、各絞り装置5に流入
する冷媒が気液二相状態となり各絞り装置5を通過する
冷媒流量が極度に減少することによる冷房能力の著しい
低下、あるいは低圧冷媒の引き込みにより圧縮機1の吐
出温度が上昇して圧縮機1の損傷する場合が起こり得
る。
FIG. 17 shows the relationship between the total operating capacity Qj and the degree of supercooling SC. As the total operating capacity Qj increases, the degree of throttling of the entire refrigeration cycle (ie,
This indicates that the sum of the valve opening Sj of each expansion device 5) becomes large, the refrigerant pressure on the high pressure side decreases, and it becomes difficult to secure the supercooling degree SC. Here, SCm is a predetermined degree of supercooling that is set in advance so as to ensure a sufficient degree of supercooling of the liquid refrigerant flowing into each expansion device 5 (for example, S
Cm = 10). Further, for example, the total sum Q of the calculated operating capacities
If j is Qj> Qjm, the minimum valve opening S
When jn is set to the second minimum valve opening degree Sjn 2 , the subcooling degree SC has not reached the subcooling degree SCm at which sufficient cooling capacity can be secured. That is, due to the pressure loss of the refrigerant pipes to the indoor units B 1 and B 2 , the refrigerant flowing into each expansion device 5 is in a gas-liquid two-phase state, and the flow rate of the refrigerant passing through each expansion device 5 is extremely reduced. There is a possibility that the cooling capacity is significantly reduced by the above, or the discharge temperature of the compressor 1 rises due to the drawing of the low-pressure refrigerant and the compressor 1 is damaged.

【0041】そこで、上記の図16で示したように、運
転容量の総和Qjが増加して所定運転容量Qjmを上回
り適正な過冷却度を確保できなくなると、最小弁開度S
jnを第1の最小弁開度Sjn1 に設定することによ
り、各室内機B1 ,B2 の弁開度Sjは減少するように
制御される。このように弁開度Sjが減少すると、過冷
却度SCは増加するため、各絞り装置5に流入する液冷
媒の過冷却度を十分確保でき、安定した冷房能力を得る
ことができる。
Therefore, as shown in FIG. 16, when the total operating capacity Qj increases and exceeds the predetermined operating capacity Qjm and an appropriate degree of subcooling cannot be ensured, the minimum valve opening S
By setting jn to the first minimum valve opening degree Sjn 1 , the valve opening degree Sj of each indoor unit B 1 , B 2 is controlled to decrease. As the valve opening degree Sj decreases in this way, the supercooling degree SC increases, so that the subcooling degree of the liquid refrigerant flowing into each expansion device 5 can be sufficiently secured, and a stable cooling capacity can be obtained.

【0042】次に、図18に示すフローチャートによっ
て冷房運転時の弁開度の制御動作を説明する。ステップ
60では、各室内機B1 ,B2 からの運転信号及び容量
信号の情報に基づいて運転容量の総和Qjを算出し、ス
テップ61へ進む。ステップ61では、算出された運転
容量の総和Qjと予め設定されている所定運転容量Qj
mとを比較し、運転容量の総和Qjの方が小さい場合に
は(Yes)、ステップ62へ進み、運転容量の総和Q
jの方が大きい場合には(No)、ステップ63へ進
む。ステップ62では、最小弁開度Sjnとして第1の
最小弁開度Sjn1 を設定し、ステップ64へ進む。ス
テップ63では、最小弁開度Sjnとして第2の最小弁
開度Sjn2 を設定し、ステップ64へ進む。ステップ
64では、第2の温度検出手段9で冷媒温度T2 を検出
し、ステップ65へ進む。ステップ65では、第3の温
度検出手段10で冷媒温度T3 を検出し、ステップ66
へ進む。ステップ66では、検出された冷媒温度T2
びT3 から冷媒の過熱度SHを算出し、ステップ67へ
進む。ステップ67では、算出された過熱度SHと予め
設定された目標過熱度SHmとを比較し、過熱度SHの
方が小さい場合には(Yes)、ステップ68へ進み、
過熱度SHの方が大きい場合には(No)、ステップ6
9へ進む。ステップ68では、各絞り装置5の弁開度S
jを減少させ、ステップ60へ戻る。ステップ69で
は、算出された過熱度SHと予め設定された目標過熱度
SHmとを比較し、過熱度SHの方が大きい場合には
(Yes)、ステップ70へ進み、過熱度SHの方が小
さい場合には(No)、ステップ71へ進む。ステップ
70では、各絞り装置5の弁開度Sjを増加させて、ス
テップ60へ戻る。ステップ71では、各絞り装置5の
弁開度Sjを現状のまま変化させないで、ステップ60
へ戻る。以上のように、弁開度制御手段11cは、各絞
り装置5の弁開度Sjの制御を行うのである。
Next, the control operation of the valve opening during the cooling operation will be described with reference to the flow chart shown in FIG. In step 60, the sum Qj of the operating capacities is calculated based on the information of the operating signals and the capacity signals from the indoor units B 1 and B 2, and the process proceeds to step 61. In step 61, the total sum Qj of the calculated operating capacities and the predetermined operating capacity Qj set in advance.
If the total sum Qj of the operating capacities is smaller (Yes), the process proceeds to step 62, where the total sum Q of the operating capacities is compared.
If j is larger (No), the process proceeds to step 63. At step 62, the first minimum valve opening Sjn 1 is set as the minimum valve opening Sjn, and the routine proceeds to step 64. At step 63, the second minimum valve opening Sjn 2 is set as the minimum valve opening Sjn, and the routine proceeds to step 64. In step 64, the coolant temperature T 2 is detected by the second temperature detecting means 9, and the process proceeds to step 65. In step 65, the refrigerant temperature T 3 is detected by the third temperature detecting means 10, and in step 66
Go to. At step 66, the superheat degree SH of the refrigerant is calculated from the detected refrigerant temperatures T 2 and T 3, and the routine proceeds to step 67. In step 67, the calculated superheat degree SH is compared with a preset target superheat degree SHm. If the superheat degree SH is smaller (Yes), the process proceeds to step 68.
If the superheat degree SH is larger (No), step 6
Proceed to 9. In step 68, the valve opening S of each expansion device 5
Decrease j and return to step 60. In step 69, the calculated superheat degree SH and the preset target superheat degree SHm are compared. If the superheat degree SH is larger (Yes), the process proceeds to step 70, and the superheat degree SH is smaller. If (No), the process proceeds to step 71. In step 70, the valve opening degree Sj of each expansion device 5 is increased, and the process returns to step 60. In step 71, the valve opening degree Sj of each expansion device 5 is not changed as it is, and step 60
Return to. As described above, the valve opening control means 11c controls the valve opening Sj of each throttle device 5.

【0043】[0043]

【発明の効果】本発明に係る空気調和装置によれば、室
内側熱交換器の冷媒出側にて検出された冷媒の過熱度と
その目標過熱度との偏差に基づいて絞り装置の弁開度を
制御する場合において、室外側熱交換器出側の冷媒の過
冷却度に応じて目標過熱度を設定変更するようにしたの
で、例え空気条件などの変化によって冷凍サイクルの運
転条件が変化した場合でも、絞り装置に流入する液冷媒
の過冷却度を十分確保し得るため冷房能力の低下を防止
することができる。又、低圧のガス冷媒引き込みに起因
した吐出温度の上昇による圧縮機の損傷を未然に防ぐこ
とができる。
According to the air conditioner of the present invention, the valve opening of the expansion device is opened based on the deviation between the degree of superheat of the refrigerant detected on the refrigerant outlet side of the indoor heat exchanger and its target degree of superheat. When controlling the temperature, the target superheat degree is changed according to the degree of supercooling of the refrigerant on the outlet side of the outdoor heat exchanger, so the operating conditions of the refrigeration cycle have changed due to changes in air conditions, etc. Even in such a case, since the degree of supercooling of the liquid refrigerant flowing into the expansion device can be sufficiently secured, it is possible to prevent the cooling capacity from being lowered. Further, it is possible to prevent damage to the compressor due to a rise in discharge temperature caused by drawing in the low-pressure gas refrigerant.

【0044】また、室内側熱交換器の冷媒出側にて検出
された冷媒の過熱度と予め設定されている目標過熱度と
の偏差に基づいて絞り装置の弁開度を制御する場合にお
いて、室外側熱交換器出側での冷媒の過冷却度に応じて
弁開度の動作範囲を設定変更するようにしたので、例え
空気条件などの変化によって冷凍サイクルの運転条件が
変化した場合でも、絞り装置に流入する液冷媒の過冷却
度を十分確保し得るため冷房能力の低下を防止すること
ができる。また、低圧のガス冷媒引き込みに起因した吐
出温度の上昇による圧縮機の損傷を未然に防ぐこともで
きる。
In the case of controlling the valve opening of the expansion device based on the deviation between the degree of superheat of the refrigerant detected on the refrigerant outlet side of the indoor heat exchanger and the preset target degree of superheat, Since the operating range of the valve opening is set and changed according to the degree of supercooling of the refrigerant on the outlet side of the outdoor heat exchanger, even if the operating conditions of the refrigeration cycle change due to changes in air conditions, etc. Since the degree of supercooling of the liquid refrigerant flowing into the expansion device can be sufficiently ensured, it is possible to prevent the cooling capacity from decreasing. Further, it is possible to prevent damage to the compressor due to the rise in the discharge temperature due to the low-pressure drawing of the gas refrigerant.

【0045】更に、室内側熱交換器及び絞り装置をそれ
ぞれ配してなる複数の室内機を有しそれぞれの室内側熱
交換器の冷媒出側にて検出された冷媒の過熱度とこれら
に対応する目標過熱度との偏差に基づいて絞り装置の弁
開度を制御する場合において、運転中の室内機に係る運
転容量の総和に応じて目標過熱度を設定変更するように
したので、例え空気条件などの変化によって冷凍サイク
ルの運転条件が変化した場合でも、各絞り装置に流入す
る液冷媒の過冷却度を十分確保し得るため冷房能力の低
下を防止することができる。また、低圧のガス冷媒引き
込みに起因した吐出温度の上昇による圧縮機の損傷を未
然に防ぐこともできる。
Further, it has a plurality of indoor units each having an indoor heat exchanger and a throttle device, and the degree of superheat of the refrigerant detected at the refrigerant outlet side of each indoor heat exchanger and the corresponding degree. In the case of controlling the valve opening of the expansion device based on the deviation from the target superheat degree, the target superheat degree is set and changed according to the total operating capacity of the operating indoor units. Even if the operating conditions of the refrigeration cycle change due to changes in conditions, etc., it is possible to sufficiently secure the degree of subcooling of the liquid refrigerant flowing into each expansion device, and therefore it is possible to prevent the cooling capacity from decreasing. Further, it is possible to prevent damage to the compressor due to the rise in the discharge temperature due to the low-pressure drawing of the gas refrigerant.

【0046】そして、室内側熱交換器及び絞り装置をそ
れぞれ配してなる複数の室内機を有しそれぞれの室内側
熱交換器の冷媒出側にて検出された冷媒の過熱度と予め
設定された目標過熱度との偏差に基づいて絞り装置の弁
開度を制御する場合において、運転中の室内機に係る運
転容量の総和に応じて弁開度の動作範囲を設定変更する
ようにしたので、例え空気条件などの変化によって冷凍
サイクルの運転条件が変化した場合でも、各絞り装置に
流入する液冷媒の過冷却度を十分確保し得るため冷房能
力の低下を防止することができる。また、低圧のガス冷
媒引き込みに起因した吐出温度の上昇による圧縮機の損
傷を未然に防ぐこともできる。
The indoor heat exchanger and the expansion device are provided in a plurality of indoor units, and the degree of superheat of the refrigerant detected at the refrigerant outlet side of each indoor heat exchanger is preset. When controlling the valve opening of the expansion device based on the deviation from the target superheat degree, the operating range of the valve opening is set and changed according to the total operating capacity of the indoor units in operation. Even when the operating conditions of the refrigeration cycle change due to changes in the air conditions, for example, the degree of subcooling of the liquid refrigerant flowing into each expansion device can be sufficiently ensured, so that the cooling capacity can be prevented from decreasing. Further, it is possible to prevent damage to the compressor due to the rise in the discharge temperature due to the low-pressure drawing of the gas refrigerant.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による空気調和装置の全体
構成図である。
FIG. 1 is an overall configuration diagram of an air conditioner according to a first embodiment of the present invention.

【図2】この発明の実施例1による空気調和装置の過冷
却度と目標過熱度との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a supercooling degree and a target superheat degree of the air conditioner according to the first embodiment of the present invention.

【図3】この発明の実施例1による空気調和装置の弁開
度と過熱度及び過冷却度との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a valve opening degree and a superheat degree and a supercool degree in the air conditioner according to the first embodiment of the present invention.

【図4】この発明の実施例1による空気調和装置の弁開
度の制御を示すフローチャートである。
FIG. 4 is a flowchart showing the control of the valve opening degree of the air conditioner according to the first embodiment of the present invention.

【図5】この発明の実施例2による空気調和装置の全体
構成図である。
FIG. 5 is an overall configuration diagram of an air conditioner according to a second embodiment of the present invention.

【図6】この発明の実施例2による空気調和装置の過冷
却度と最小弁開度との関係を示す図である。
FIG. 6 is a diagram showing a relationship between a degree of supercooling and a minimum valve opening degree of an air conditioner according to a second embodiment of the present invention.

【図7】この発明の実施例2による空気調和装置の弁開
度と過熱度及び過冷却度との関係を示す図である。
FIG. 7 is a diagram showing a relationship between a valve opening degree and a superheat degree and a supercool degree in an air conditioner according to a second embodiment of the present invention.

【図8】この発明の実施例2による空気調和装置の弁開
度の制御を示すフローチャートである。
FIG. 8 is a flowchart showing control of a valve opening degree of the air conditioner according to the second embodiment of the present invention.

【図9】この発明の実施例3による空気調和装置の全体
構成図である。
FIG. 9 is an overall configuration diagram of an air conditioner according to a third embodiment of the present invention.

【図10】この発明の実施例3での空気調和装置の制御
機構を示すブロック図である。
FIG. 10 is a block diagram showing a control mechanism of an air conditioner according to a third embodiment of the present invention.

【図11】この発明の実施例3による空気調和装置の運
転容量と目標過熱度との関係を示す図である。
FIG. 11 is a diagram showing the relationship between the operating capacity and the target degree of superheat of the air conditioner according to the third embodiment of the present invention.

【図12】この発明の実施例3による空気調和装置の運
転容量と過冷却度との関係を示す図である。
FIG. 12 is a diagram showing the relationship between the operating capacity and the degree of supercooling of the air conditioner according to the third embodiment of the present invention.

【図13】この発明の実施例3による空気調和装置の弁
開度の制御を示すフローチャートである。
FIG. 13 is a flowchart showing control of a valve opening degree of an air conditioner according to a third embodiment of the present invention.

【図14】この発明の実施例4による空気調和装置の全
体構成図である。
FIG. 14 is an overall configuration diagram of an air conditioner according to a fourth embodiment of the present invention.

【図15】この発明の実施例4での空気調和装置の制御
機構を示すブロック図である。
FIG. 15 is a block diagram showing a control mechanism of the air-conditioning apparatus according to Embodiment 4 of the present invention.

【図16】この発明の実施例4による空気調和装置の運
転容量と最小弁開度との関係を示す図である。
FIG. 16 is a diagram showing the relationship between the operating capacity and the minimum valve opening of the air-conditioning apparatus according to Embodiment 4 of the present invention.

【図17】この発明の実施例4による空気調和装置の運
転容量と過冷却度との関係を示す図である。
FIG. 17 is a diagram showing the relationship between the operating capacity and the degree of supercooling of the air-conditioning apparatus according to Embodiment 4 of the present invention.

【図18】この発明の実施例4による空気調和装置の弁
開度の制御を示すフローチャートである。
FIG. 18 is a flowchart showing control of the valve opening of the air-conditioning apparatus according to Embodiment 4 of the present invention.

【図19】この発明の従来技術による空気調和装置の全
体構成図である。
FIG. 19 is an overall configuration diagram of an air conditioner according to a conventional technique of the present invention.

【符号の説明】[Explanation of symbols]

A 熱源機(室外機) B 室内機 B1 室内機 B2 室内機 1 圧縮機 2 四方切換弁 3 室外側熱交換器 5 絞り装置 6 室内側熱交換器 7 第1の圧力検出手段 8 第1の温度検出手段 9 第2の温度検出手段 10 第3の温度検出手段 11 弁開度制御手段 11a 弁開度制御手段 11b 弁開度制御手段 11c 弁開度制御手段 12 運転信号送信手段 13 容量信号送信手段 14 総運転容量演算手段A heat source unit (outdoor unit) B indoor unit B 1 indoor unit B 2 indoor unit 1 compressor 2 four-way switching valve 3 outdoor heat exchanger 5 throttling device 6 indoor heat exchanger 7 first pressure detection means 8 first Temperature detection means 9 second temperature detection means 10 third temperature detection means 11 valve opening control means 11a valve opening control means 11b valve opening control means 11c valve opening control means 12 operation signal transmission means 13 capacity signal Transmission means 14 Total operating capacity calculation means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、室外側熱交換器、絞り装置、室
内側熱交換器を冷媒配管を介して順次接続してなる冷凍
サイクルを備え、前記室内側熱交換器の冷媒出側におけ
る冷媒の過熱度とこれに対応する目標過熱度との偏差に
基づいて前記絞り装置の弁開度を制御するようにした空
気調和装置において、前記室外側熱交換器の冷媒出側に
おける冷媒の過冷却度を検出する過冷却度検出手段と、
前記過冷却度検出手段により検出された過冷却度に応じ
て前記目標過熱度を演算し設定する第1の目標過熱度設
定手段とを設けたことを特徴とする空気調和装置。
1. A refrigeration cycle comprising a compressor, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger, which are sequentially connected via a refrigerant pipe, and a refrigerant at a refrigerant outlet side of the indoor heat exchanger. In the air conditioner configured to control the valve opening degree of the expansion device based on the deviation between the superheat degree and the target superheat degree corresponding thereto, supercooling of the refrigerant on the refrigerant outlet side of the outdoor heat exchanger. Supercooling degree detecting means for detecting the degree,
An air conditioner comprising: first target superheat degree setting means for calculating and setting the target superheat degree according to the supercool degree detected by the supercool degree detecting means.
【請求項2】 圧縮機、室外側熱交換器、絞り装置、室
内側熱交換器を冷媒配管を介して順次接続してなる冷凍
サイクルを備え、前記室内側熱交換器の冷媒出側におけ
る冷媒の過熱度とこれに対応して予め設定された目標過
熱度との偏差に基づいて前記絞り装置の弁開度を制御す
るようにした空気調和装置において、前記室外側熱交換
器の冷媒出側における冷媒の過冷却度を検出する過冷却
度検出手段と、前記過冷却度検出手段により検出された
過冷却度に応じて前記絞り装置の弁開度動作範囲を演算
し設定する第1の弁開度動作範囲設定手段とを設けたこ
とを特徴とする空気調和装置。
2. A refrigeration cycle comprising a compressor, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger, which are sequentially connected via a refrigerant pipe, and a refrigerant at a refrigerant outlet side of the indoor heat exchanger. In the air conditioner configured to control the valve opening of the expansion device based on the deviation between the degree of superheat and the target degree of superheat set in advance corresponding thereto, in the refrigerant outlet side of the outdoor heat exchanger. And a first valve for calculating and setting the valve opening operation range of the expansion device according to the degree of supercooling detected by the degree of supercooling detected by the degree of supercooling detection means. An air conditioner characterized by being provided with opening degree operation range setting means.
【請求項3】 圧縮機、室外側熱交換器、複数の室内機
にそれぞれ配備された絞り装置及び室内側熱交換器を冷
媒配管を介して順次接続してなる冷凍サイクルを備え、
前記それぞれの室内側熱交換器の冷媒出側における冷媒
の過熱度とこれらに対応する目標過熱度との偏差に基づ
いて前記絞り装置の弁開度をそれぞれ制御するようにし
た空気調和装置において、前記複数の室内側の内、運転
中の室内機に係る運転容量を検出する運転容量検出手段
と、前記運転容量検出手段により検出された運転容量の
総和を演算する総運転容量演算手段と、前記総運転容量
演算手段により演算された運転容量の総和に応じて前記
目標過熱度を演算し設定する第2の目標過熱度設定手段
とを設けたことを特徴とする空気調和装置。
3. A refrigeration cycle in which a compressor, an outdoor heat exchanger, a throttle device provided in each of a plurality of indoor units, and an indoor heat exchanger are sequentially connected via a refrigerant pipe,
In the air conditioner configured to control the valve opening of the throttle device based on the deviation between the superheat degree of the refrigerant on the refrigerant outlet side of each of the indoor heat exchangers and the target superheat degree corresponding to these, An operating capacity detecting means for detecting an operating capacity of an operating indoor unit among the plurality of indoor sides; a total operating capacity calculating means for calculating a sum of the operating capacities detected by the operating capacity detecting means; An air conditioner comprising: second target superheat degree setting means for calculating and setting the target superheat degree according to the total sum of the operating capacities calculated by the total operating capacity calculator.
【請求項4】 圧縮機、室外側熱交換器、複数の室内機
にそれぞれ配備された絞り装置及び室内側熱交換器を冷
媒配管を介して順次接続してなる冷凍サイクルを備え、
前記それぞれの室内側熱交換器の冷媒出側における冷媒
の過熱度とこれらに対応して予め設定された目標過熱度
との偏差に基づいて前記絞り装置の弁開度をそれぞれ制
御するようにした空気調和装置において、前記複数の室
内機の内、運転中の室内側に係る運転容量を検出する運
転容量検出手段と、前記運転容量検出手段により検出さ
れた運転容量の総和を演算する総運転容量演算手段と、
前記総運転容量演算手段により演算された運転容量の総
和に応じて前記絞り装置の弁開度動作範囲を演算し設定
する第2の弁開度動作範囲設定手段とを設けたことを特
徴とする空気調和装置。
4. A refrigeration cycle in which a compressor, an outdoor heat exchanger, a throttle device provided in each of a plurality of indoor units, and an indoor heat exchanger are sequentially connected via a refrigerant pipe,
The degree of valve opening of the expansion device is controlled based on the deviation between the degree of superheat of the refrigerant on the refrigerant outlet side of each of the indoor heat exchangers and the target degree of superheat set in advance corresponding thereto. In the air conditioner, among the plurality of indoor units, an operating capacity detecting unit that detects an operating capacity related to the indoor side in operation, and a total operating capacity that calculates the sum of the operating capacities detected by the operating capacity detecting unit. Computing means,
Second valve opening operation range setting means for calculating and setting the valve opening operation range of the expansion device according to the sum of the operating capacities calculated by the total operating capacity calculation means is provided. Air conditioner.
JP6004743A 1994-01-20 1994-01-20 Air conditioner Pending JPH07208813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6004743A JPH07208813A (en) 1994-01-20 1994-01-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6004743A JPH07208813A (en) 1994-01-20 1994-01-20 Air conditioner

Publications (1)

Publication Number Publication Date
JPH07208813A true JPH07208813A (en) 1995-08-11

Family

ID=11592402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6004743A Pending JPH07208813A (en) 1994-01-20 1994-01-20 Air conditioner

Country Status (1)

Country Link
JP (1) JPH07208813A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071211A (en) * 2004-09-03 2006-03-16 Advanced Kucho Kaihatsu Center Kk Air conditioner and its control method
JP2007205612A (en) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp Refrigerating cycle device
CN112146315A (en) * 2020-10-22 2020-12-29 珠海格力电器股份有限公司 Throttling device, refrigerating device and regulating and controlling method of throttling device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257875A (en) * 1988-08-19 1990-02-27 Daikin Ind Ltd Operation controller for air conditioner
JPH0384352A (en) * 1989-08-28 1991-04-09 Mitsubishi Electric Corp Multi-room air conditioner
JPH03186155A (en) * 1989-12-14 1991-08-14 Daikin Ind Ltd Moisture control device for air conditioner
JPH0464850A (en) * 1990-07-05 1992-02-28 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner
JPH04103946A (en) * 1990-08-20 1992-04-06 Matsushita Electric Ind Co Ltd Multi-room air conditioner
JPH04155138A (en) * 1990-10-19 1992-05-28 Matsushita Electric Ind Co Ltd Controller of air conditioner
JPH04187953A (en) * 1990-11-22 1992-07-06 Matsushita Refrig Co Ltd Air conditioner
JPH04190057A (en) * 1990-11-26 1992-07-08 Matsushita Refrig Co Ltd Multi-chamber type air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257875A (en) * 1988-08-19 1990-02-27 Daikin Ind Ltd Operation controller for air conditioner
JPH0384352A (en) * 1989-08-28 1991-04-09 Mitsubishi Electric Corp Multi-room air conditioner
JPH03186155A (en) * 1989-12-14 1991-08-14 Daikin Ind Ltd Moisture control device for air conditioner
JPH0464850A (en) * 1990-07-05 1992-02-28 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner
JPH04103946A (en) * 1990-08-20 1992-04-06 Matsushita Electric Ind Co Ltd Multi-room air conditioner
JPH04155138A (en) * 1990-10-19 1992-05-28 Matsushita Electric Ind Co Ltd Controller of air conditioner
JPH04187953A (en) * 1990-11-22 1992-07-06 Matsushita Refrig Co Ltd Air conditioner
JPH04190057A (en) * 1990-11-26 1992-07-08 Matsushita Refrig Co Ltd Multi-chamber type air conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071211A (en) * 2004-09-03 2006-03-16 Advanced Kucho Kaihatsu Center Kk Air conditioner and its control method
JP2007205612A (en) * 2006-01-31 2007-08-16 Mitsubishi Electric Corp Refrigerating cycle device
CN112146315A (en) * 2020-10-22 2020-12-29 珠海格力电器股份有限公司 Throttling device, refrigerating device and regulating and controlling method of throttling device
CN112146315B (en) * 2020-10-22 2023-08-29 珠海格力电器股份有限公司 Throttling device, refrigerating device and regulating and controlling method of throttling device

Similar Documents

Publication Publication Date Title
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
JP6479162B2 (en) Air conditioner
US9103557B2 (en) Air conditioner and method for controlling the same based on a calculated value of a malfunctioning sensor
WO2017203606A1 (en) Air conditioner
US20060117770A1 (en) Multi-air condition system and method for controlling the same
KR101479240B1 (en) Air conditioner and method of controlling the same
WO1999034156A1 (en) Refrigerating cycle
JP6727452B2 (en) Air conditioner
JP6628911B1 (en) Refrigeration cycle device
JPWO2015097787A1 (en) Air conditioner
JP2000146322A (en) Refrigerating cycle
US20220178603A1 (en) Refrigeration cycle apparatus
JP2018204898A (en) Control device of multiple air conditioner, multiple air conditioner, control method of multiple air conditioner, and control program of multiple air conditioner
US20220082313A1 (en) Refrigeration cycle apparatus
JPH07208813A (en) Air conditioner
JP3458293B2 (en) Operation control device for multi-room air conditioner
US20220128275A1 (en) Refrigeration apparatus
KR101485848B1 (en) Control method of multi system air conditioner
CN114151935A (en) Air conditioning system
JP2010007997A (en) Refrigerant amount determining method of air conditioning device, and air conditioning device
KR20080084482A (en) Controlling method for air conditioner
EP4310416A1 (en) Hybrid multi-air conditioning system
JP2522371B2 (en) Air conditioner
JP7150198B2 (en) refrigeration equipment
JPS63286664A (en) Heat pump type air conditioner