JP2502831B2 - Multi-room air conditioner - Google Patents

Multi-room air conditioner

Info

Publication number
JP2502831B2
JP2502831B2 JP3062807A JP6280791A JP2502831B2 JP 2502831 B2 JP2502831 B2 JP 2502831B2 JP 3062807 A JP3062807 A JP 3062807A JP 6280791 A JP6280791 A JP 6280791A JP 2502831 B2 JP2502831 B2 JP 2502831B2
Authority
JP
Japan
Prior art keywords
superheat
room temperature
compressor
pressure
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3062807A
Other languages
Japanese (ja)
Other versions
JPH04297759A (en
Inventor
晃司 戎
正三 船倉
正高 尾関
雄二 吉田
完爾 羽根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3062807A priority Critical patent/JP2502831B2/en
Priority to US07/745,352 priority patent/US5247806A/en
Publication of JPH04297759A publication Critical patent/JPH04297759A/en
Application granted granted Critical
Publication of JP2502831B2 publication Critical patent/JP2502831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多室形空気調和機にお
ける各室内膨張弁開度、及び圧縮機回転数の制御に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to control of opening degree of each indoor expansion valve and compressor rotation speed in a multi-room air conditioner.

【0002】[0002]

【従来の技術】図7は、従来の多室形空気調和機のシス
テム構成図であり、1は圧縮機、2は冷暖房サイクルを
切替える四方弁、3は室外熱交換器、4はレシーバ、5
はアキュムレータであり、室外機6に備えられている。
室内機7A、7B、7C各々は、室内熱交換器8A、8
B、8C、室内膨張弁9A、9B、9C、室温検知器1
0A、10B、10Cを備え、各部屋11A、11B、
11Cに設置され、室外機6、及び各室内機7A、7
B、7Cの各ガス側、及び液側を各々ガス側管路12、
及び液側管路13で接続して閉回路となし、ガス側管路
12には圧力検知器14を備え、閉回路の内部に冷媒を
封入してなる周知のヒートポンプサイクルである。
2. Description of the Related Art FIG. 7 is a system configuration diagram of a conventional multi-room air conditioner, in which 1 is a compressor, 2 is a four-way valve for switching heating / cooling cycles, 3 is an outdoor heat exchanger, 4 is a receiver, and 5 is a receiver.
Is an accumulator and is provided in the outdoor unit 6.
Each of the indoor units 7A, 7B, 7C has an indoor heat exchanger 8A, 8A.
B, 8C, indoor expansion valves 9A, 9B, 9C, room temperature detector 1
0A, 10B, 10C, each room 11A, 11B,
11C, the outdoor unit 6 and the indoor units 7A, 7
The gas side of B and 7C and the liquid side are respectively connected to the gas side pipeline 12,
And a liquid side conduit 13 to form a closed circuit, the gas side conduit 12 is provided with a pressure detector 14, and a refrigerant is sealed inside the closed circuit, which is a known heat pump cycle.

【0003】かかる構成における多室形空気調和機の作
用様態を以下に説明する。暖房運転時は、図7の実線に
示す如く、冷媒は、圧縮機1において圧縮され高温高圧
の蒸気となって四方弁2を通ってガス側管路12に吐出
され、各室内機7A、7B、7C内の各室内熱交換器8
A、8B、8Cに至る。かかるとき各室内熱交換器8
A、8B、8Cは凝縮器として働き、各部屋11A、1
1B、11Cの空気に熱を与えることにより各部屋11
A、11B、11Cを暖房し、冷媒は凝縮液化する。液
化した冷媒は各室内膨張弁9A、9B、9C、及び液側
管路13及びレシーバ4を通って室外熱交換器3に至
る。かかるとき室外熱交換器3は蒸発器として働き、外
気よりの熱を受けて蒸発し、低圧蒸気となって四方弁
2、及びアキュムレータ5を通って圧縮機1に吸入され
る。
The mode of operation of the multi-room air conditioner having such a configuration will be described below. During the heating operation, as shown by the solid line in FIG. 7, the refrigerant is compressed in the compressor 1 to become high-temperature and high-pressure vapor, which is discharged through the four-way valve 2 to the gas side conduit 12 and the indoor units 7A and 7B. , Indoor heat exchanger 8 in 7C
A, 8B, 8C. At this time, each indoor heat exchanger 8
A, 8B and 8C act as condensers, and each room 11A, 1A
Each room 11 by applying heat to the air of 1B, 11C
Heating A, 11B, and 11C, the refrigerant is condensed and liquefied. The liquefied refrigerant reaches the outdoor heat exchanger 3 through the indoor expansion valves 9A, 9B, 9C, the liquid side conduit 13 and the receiver 4. At this time, the outdoor heat exchanger 3 functions as an evaporator, receives heat from the outside air to evaporate, becomes low-pressure vapor, and is sucked into the compressor 1 through the four-way valve 2 and the accumulator 5.

【0004】冷房運転時は図7の破線に示す如く、四方
弁2の切替えにより室外熱交換器3は凝縮器、各室内熱
交換器8A、8B、8Cは蒸発器として働き、各部屋1
1A、11B、11Cの空気から吸熱することにより、
各部屋11A、11B、11Cを冷房する。
During the cooling operation, as shown by the broken line in FIG. 7, by switching the four-way valve 2, the outdoor heat exchanger 3 functions as a condenser, and the indoor heat exchangers 8A, 8B, 8C function as evaporators, and each room 1
By absorbing heat from the air of 1A, 11B, 11C,
Each room 11A, 11B, 11C is cooled.

【0005】次に、各室内膨張弁9A、9B、9Cの作
用様態を以下に説明する。各室内膨張弁9A、9B、9
Cの開度を増加すると、冷媒の流量が増加し、暖房運転
時では各部屋11A、11B、11Cの室温が上昇し、
冷房運転時では逆に低下し、その温度は各室温検知器1
0A、10B、10Cにより検知される。
Next, the mode of operation of each indoor expansion valve 9A, 9B, 9C will be described below. Each indoor expansion valve 9A, 9B, 9
When the opening degree of C is increased, the flow rate of the refrigerant is increased, and the room temperature of each room 11A, 11B, 11C is increased during the heating operation,
Conversely, during cooling operation, the temperature decreases, and the temperature of each room temperature detector 1
It is detected by 0A, 10B, and 10C.

【0006】また、圧縮機1の作用様態を以下に説明す
る。圧縮機1の回転数を増加すると、冷媒の流量が増加
し、暖房運転時では高圧ガス管路となるガス側管路12
での冷媒圧力が上昇し、冷房運転時では低圧ガス管路と
なるガス側管路12での冷媒圧力が低下し、その圧力は
圧力検知器14により検知される。
The mode of operation of the compressor 1 will be described below. When the number of rotations of the compressor 1 is increased, the flow rate of the refrigerant is increased, and the gas side pipeline 12 becomes a high pressure gas pipeline during the heating operation.
The refrigerant pressure rises, and the refrigerant pressure in the gas side pipeline 12, which is the low-pressure gas pipeline during the cooling operation, decreases, and the pressure is detected by the pressure detector 14.

【0007】このような多室形空気調和機では、各部屋
11A、11B、11Cの負荷に応じた室温の制御と、
負荷の合計を反映したサイクルの状態量である圧力の制
御が必要となる。
In such a multi-room air conditioner, the room temperature is controlled according to the load of each room 11A, 11B, 11C,
It is necessary to control the pressure, which is the state quantity of the cycle that reflects the total load.

【0008】図8は従来の多室形空気調和機の各室内膨
張弁、及び圧縮機の制御ブロック構成図であり、各室温
制御器15A、15B,15C及び圧力制御器16は、
各部屋11A、11B、11Cの各室温の目標値を設定
する各室温設定器17A、17B、17C及び圧力の目
標値を設定する圧力設定器18と各室温検知器10A、
10B、10C及び圧力検知器14との各出力の差を出
力する各減算器19A、19B、19C、19D、各減
算器19A、19B、19C、19Dの各出力を積分す
る各積分器20A、20B、20C、20D、各減算器
19A、19B、19C、19Dの各出力を微分する各
微分器21A、21B、21C、21D、22A、22
B、22C、22Dは各比例係数設定器、23A、23
B、23C、23Dは各積分係数設定器、24A、24
B、24C、24Dは各微分係数設定器、25A、25
B、25C、25Dは各減算器19A、19B、19
C、19Dの各出力と各比例係数設定器22A、22
B、22C、22Dの各出力との積を出力する各第一掛
算器、26A、26B、26C、26Dは各積分器20
A、20B、20C、20Dの各出力と各積分係数設定
器23A、23B、23C、23Dの各出力との積を出
力する各第二掛算器、27A、27B、27C、27D
は各微分器21A、21B、21C、21Dの各出力と
各微分係数設定器24A、24B、24C、24Dの各
出力との積を出力する各第三掛算器、各第一掛算器25
A、25B、25C、25D、各第二掛算器26A、2
6B、26C、26D、及び各第三掛算器27A、27
B、27C、27Dの和を出力する各加算器28A、2
8B、28C、28Dを備え、各加算器28A、28
B、28C、28Dの各出力によって各室内膨張弁9
A、9B、9Cの開度、及び圧縮機1の回転数を制御す
る、いわゆるPID制御器である。
FIG. 8 is a control block configuration diagram of each indoor expansion valve and compressor of the conventional multi-room air conditioner. Each room temperature controller 15A, 15B, 15C and pressure controller 16 are
Room temperature setters 17A, 17B, 17C for setting the target values of the room temperatures of the rooms 11A, 11B, 11C, and a pressure setter 18 for setting the target value of the pressure and the room temperature detectors 10A,
10B, 10C and subtractors 19A, 19B, 19C, 19D for outputting the difference between the outputs from the pressure detector 14 and integrators 20A, 20B for integrating the respective outputs from the subtracters 19A, 19B, 19C, 19D. , 20C, 20D and differentiators 21A, 21B, 21C, 21D, 22A, 22 for differentiating the respective outputs of the subtracters 19A, 19B, 19C, 19D.
B, 22C and 22D are proportional coefficient setting devices, 23A and 23
B, 23C and 23D are the respective integral coefficient setting units, 24A and 24
B, 24C and 24D are differential coefficient setting units, 25A and 25
B, 25C and 25D are subtractors 19A, 19B and 19
C, 19D and each proportional coefficient setting device 22A, 22
The first multipliers 26A, 26B, 26C, and 26D that output the products of the outputs of B, 22C, and 22D are the integrators 20.
Each second multiplier 27A, 27B, 27C, 27D that outputs the product of each output of A, 20B, 20C, 20D and each output of each integration coefficient setter 23A, 23B, 23C, 23D.
Is a third multiplier and a first multiplier 25 that output the products of the outputs of the differentiators 21A, 21B, 21C, 21D and the outputs of the differential coefficient setters 24A, 24B, 24C, 24D.
A, 25B, 25C, 25D, each second multiplier 26A, 2
6B, 26C, 26D, and each third multiplier 27A, 27
B, 27C, 27D, each adder 28A,
8B, 28C, 28D, and adders 28A, 28
B, 28C, 28D outputs are used to expand each indoor expansion valve 9
This is a so-called PID controller that controls the opening degrees of A, 9B, and 9C and the rotation speed of the compressor 1.

【0009】かかる構成における室温制御器、及び圧力
制御器の動作様態を以下に説明する。冷房運転時に各部
屋11A、11B、11Cの負荷が増加すると室温が上
昇し各室温検知器10A、10B、10Cで検知され、
各室温設定器17A、17B、17Cで設定された室温
に一致するように、各室温制御器15A、15B,15
Cにおいて各室内膨張弁9A、9B、9Cの開度を増加
する。これにより各室内膨張弁9A、9B、9C前後の
圧力差が減少して冷媒圧力が上昇し、圧力検知器14で
検知され、圧力設定器18で設定された圧力に一致する
ように、圧力制御器16において圧縮機1の回転数を増
加する。つまり、圧縮機1の回転数は各部屋11A、1
1B、11Cの負荷の合計値に見合った分だけ変化する
ことになる。ここで各室温制御器15A、15B,15
C、及び圧力制御器16の各比例係数設定器22A、2
2B、22C、22D、各積分係数設定器23A、23
B、23C、23D、及び各微分係数設定器24A、2
4B、24C、24Dの各係数を、各室内膨張弁9A、
9B、9Cの開度変化に対する各室温検知器10A、1
0B、10Cの出力変化、及び圧縮機1の回転数変化に
対する圧力検知器14の出力変化の特性に応じて適切に
設定すると、適切な応答のもとに各室温検知器10A、
10B、10C、及び圧力検知器14の各出力が各室温
設定器17A、17B、17C、及び圧力設定器18の
各出力に一致する。
The operation modes of the room temperature controller and the pressure controller in such a configuration will be described below. When the load of each room 11A, 11B, 11C increases during cooling operation, the room temperature rises and is detected by each room temperature detector 10A, 10B, 10C,
Each of the room temperature controllers 15A, 15B, 15 is adjusted to match the room temperature set by each of the room temperature setting devices 17A, 17B, 17C.
At C, the opening degree of each indoor expansion valve 9A, 9B, 9C is increased. As a result, the pressure difference around each of the indoor expansion valves 9A, 9B, 9C decreases, the refrigerant pressure rises, and the pressure control is performed so that the pressure is detected by the pressure detector 14 and coincides with the pressure set by the pressure setter 18. The rotation speed of the compressor 1 is increased in the container 16. That is, the number of rotations of the compressor 1 is 1
It will change by an amount commensurate with the total value of the loads of 1B and 11C. Here, each room temperature controller 15A, 15B, 15
C, and each proportional coefficient setting unit 22A, 2
2B, 22C, 22D, respective integration coefficient setters 23A, 23
B, 23C, 23D, and each differential coefficient setting device 24A, 2
4B, 24C, and 24D are set to the indoor expansion valve 9A,
Room temperature detectors 10A, 1 for changes in opening of 9B, 9C
0B, 10C output changes, and when appropriately set according to the characteristics of the output change of the pressure detector 14 with respect to the rotational speed change of the compressor 1, each room temperature detector 10A, with appropriate response.
The outputs of 10B, 10C, and the pressure detector 14 match the outputs of the room temperature setters 17A, 17B, 17C, and the pressure setter 18, respectively.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、このよ
うな多室形空気調和機では、圧縮機1の吸入部の過熱度
と無関係に各室温検知器10A、10B、10Cの出力
によってのみ各室内膨張弁9A、9B、9Cの開度を操
作するため、室温設定値の変更時等においては各室内膨
張弁9A、9B、9Cの開度が変化し、過熱度が過小あ
るいは過大となり、各室温検知器10A、10B、10
Cの出力が室温設定値に一致した状態、即ち平衡時にお
いても各部屋11A、11B、11Cの負荷との関係に
よって過熱度が過大あるいは過小となり、また各室温検
知器10A、10B、10Cの出力と無関係に圧力検知
器14の出力によってのみ圧縮機1の回転数を操作する
ため、各部屋11A、11B、11Cの負荷に対して圧
縮機1の回転数が過小あるいは過大となり、各室温検知
器10A、10B、10Cの出力が室温設定値に一致し
ない問題や、圧縮機1の消費電力が過大となる問題、さ
らには冷媒が液状態で圧縮機1に吸入される液バック現
象により圧縮機1が破損する問題があった。
However, in such a multi-chamber air conditioner, each indoor expansion is performed only by the output of each of the room temperature detectors 10A, 10B and 10C irrespective of the degree of superheat of the suction portion of the compressor 1. Since the opening degree of the valves 9A, 9B, 9C is operated, when the room temperature set value is changed, the opening degree of each indoor expansion valve 9A, 9B, 9C changes, and the degree of superheat becomes too small or too large, and each room temperature is detected. Vessels 10A, 10B, 10
Even if the output of C matches the room temperature set value, that is, even at the time of equilibrium, the degree of superheat becomes too large or too small depending on the relationship with the load of each room 11A, 11B, 11C, and the output of each room temperature detector 10A, 10B, 10C. Since the rotation speed of the compressor 1 is operated only by the output of the pressure detector 14 regardless of the above, the rotation speed of the compressor 1 becomes too small or too large with respect to the load of each room 11A, 11B, 11C, and each room temperature detector. The compressors 1A, 10B, 10C do not match the room temperature set values, the power consumption of the compressor 1 becomes excessive, and the liquid back phenomenon in which the refrigerant is sucked into the compressor 1 in the liquid state causes the compressor 1 There was a problem of being damaged.

【0011】[0011]

【課題を解決するための手段】本発明は、圧縮機の吸入
部の過熱度が過大あるいは過小になる問題に対処するた
め、過熱度を入力とした過熱度ファジィ演算で決定した
メンバシップ値に応じて過熱度制御器による操作量と各
室温制御器による各操作量とを混合し各膨張弁の開度を
決定する各膨張弁操作量決定器を設けたことを特徴とす
る。
According to the present invention, in order to deal with the problem that the superheat degree of the suction portion of the compressor becomes excessive or excessive, the membership value determined by the superheat degree fuzzy calculation using the superheat degree as an input is used. Accordingly, each expansion valve operation amount determiner for mixing the operation amount by the superheat degree controller and each operation amount by each room temperature controller to determine the opening degree of each expansion valve is provided.

【0012】また、各部屋の負荷に対して圧縮機の回転
数が過小あるいは過大となる問題に対しては、各室温と
各室温設定値との差である各室温偏差と各室内機の定格
能力値の積値の合計値を0に一致させるための圧縮機の
回転数を決定する全体能力制御器による操作量と圧力制
御器による操作量とを混合し、圧縮機の回転数を決定し
圧力を適正範囲内に保ちつつ、圧縮機の回転数を適正化
するものである。
To solve the problem that the number of revolutions of the compressor is too small or too large for the load of each room, each room temperature deviation which is the difference between each room temperature and each room temperature set value and the rating of each room unit Determine the number of revolutions of the compressor for making the sum of the product values of the capability values equal to 0. Mix the amount of operation by the overall capacity controller and the amount of operation by the pressure controller to determine the number of revolutions of the compressor. The number of revolutions of the compressor is optimized while keeping the pressure within the proper range.

【0013】[0013]

【作用】本発明では上記のような多室形空気調和機とす
ることにより、過熱度を過熱度設定値に一致させるため
の各膨張弁の開度の操作量を決定する過熱度制御器と、
過熱度に応じて過熱度制御器による操作量と各室温制御
器による各操作量とを混合しる各膨張弁操作量決定器に
よって、過熱度が適正範囲内に保たれる。
According to the present invention, a multi-room air conditioner as described above provides a superheat controller which determines the operation amount of the opening degree of each expansion valve to make the superheat match the superheat set value. ,
The degree of superheat is kept within an appropriate range by each expansion valve operation amount determiner that mixes the amount of operation by the superheat degree controller and the amount of operation by each room temperature controller according to the degree of superheat.

【0014】また各室温偏差と各室内機の定格能力値の
積値の合計値を0に一致させるための圧縮機の回転数を
決定する全体能力制御器と、圧力に応じて圧力制御器に
よる操作量と全体能力制御器による操作量とを混合し、
圧縮機の回転数を決定する圧縮機回転数決定器によっ
て、圧力が適正範囲内に保たれつつ、圧縮機の回転数が
適正化され、各室温検知器の出力が室温設定値に一致
し、圧縮機の消費電力を最小にすることができ、さらに
は冷媒の液バックによる圧縮機の破損を防止することが
できる。
Further, an overall capacity controller for determining the number of revolutions of the compressor for making the total value of the product values of the room temperature deviations and the rated capacity values of the indoor units equal to 0, and a pressure controller according to the pressure. Mix the manipulated variable and the manipulated variable by the total capacity controller,
By the compressor rotation speed determiner that determines the rotation speed of the compressor, while maintaining the pressure within the appropriate range, the rotation speed of the compressor is optimized, the output of each room temperature detector matches the room temperature set value, The power consumption of the compressor can be minimized, and further damage to the compressor due to liquid back of the refrigerant can be prevented.

【0015】[0015]

【実施例】以下、本発明による多室形空気調和機の一実
施例を図に基づいて説明する。図4は本発明になる多室
形空気調和機のシステム構成図であり、図7と同様動作
のヒートポンプサイクルを構成し、さらには圧縮機1の
吸入部に過熱度検知器29を取り付けた構成となってお
り、図7と同じ要素については同一番号で記している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a multi-room air conditioner according to the present invention will be described below with reference to the drawings. FIG. 4 is a system configuration diagram of a multi-room air conditioner according to the present invention, which constitutes a heat pump cycle having the same operation as in FIG. 7, and further has a superheat detector 29 attached to the suction portion of the compressor 1. The same elements as in FIG. 7 are denoted by the same numbers.

【0016】かかる構成における多室形空気調和機の作
用様態を以下に説明する。各設定室温値の変更時等にお
いては各室内膨張弁9A、9B、9Cの開度が変化し、
過熱度が過小あるいは過大となり、また各室温検知器1
0A、10B、10Cの出力が室温設定値に一致した状
態、即ち平衡時においても各部屋11A、11B、11
Cの負荷との関係によって過熱度が過小あるいは過大と
なり、その過熱度は過熱度検知器29により検知され
る。
The mode of operation of the multi-room air conditioner having such a configuration will be described below. At the time of changing each set room temperature value or the like, the opening degree of each indoor expansion valve 9A, 9B, 9C changes,
The degree of superheat becomes too small or too large, and each room temperature detector 1
Even when the outputs of 0A, 10B, and 10C match the room temperature set value, that is, at equilibrium, each room 11A, 11B, and 11
Depending on the relationship with the load of C, the degree of superheat becomes excessively small or excessive, and the degree of superheat is detected by the superheat detector 29.

【0017】図1は本発明になる多室形空気調和機の室
内膨張弁及び圧縮機の制御器のブロック構成図であり、
各室温設定器17A、17B、17Cと各室温検知器1
0A、10B、10Cとの各出力の差を出力する各減算
器19A、19B、19Cの各出力を入力とする各室温
制御器15A、15B、15Cと、過熱度検知器29と
過熱度の目標値を設定する過熱度設定器30との各出力
の差を出力する減算器19Eの出力を入力とする過熱度
制御器31と、過熱度検知器29の出力を入力とした過
熱度ファジィ演算で決定したメンバシップ値に応じて各
室温制御器15A、15B、15Cによる操作量と過熱
度制御器31による操作量とを混合し各室内膨張弁9
A、9B、9Cの開度を決定する各室内膨張弁操作量決
定器32A、32B、32Cと、各室内機7A、7B、
7Cの各定格能力値を設定する各室内機定格能力値設定
器33A、33B、33Cと、各室温の目標値を設定す
る各室温設定器17A、17B、17Cと各室温検知器
10A、10B、10Cとの各出力の差を出力する各減
算器19A、19B、19Cの各出力と各室内機定格能
力値設定器33A、33B、33Cの各出力との各積を
出力する各室内機能力掛算器34A、34B、34C
と、各室内機能力掛算器34A、34B、34Cの各出
力の和を出力する全体能力加算器35と、全体能力加算
器35の出力を入力とする全体能力制御器36と、圧力
設定器18と圧力検知器14との各出力の差を出力する
減算器19Dの出力を入力とする圧力制御器16と、圧
力検知器14の出力を入力とした圧力ファジィ演算で決
定したメンバシップ値に応じて全体能力制御器36によ
る操作量と圧力制御器16による操作量とを混合し圧縮
機1の回転数を決定する圧縮機操作量決定器37とを備
え、この圧縮機操作量決定器37で決定した操作量で圧
縮機1の回転数を操作するものである。
FIG. 1 is a block diagram of a controller of an indoor expansion valve and a compressor of a multi-room air conditioner according to the present invention,
Each room temperature setting device 17A, 17B, 17C and each room temperature detector 1
Each of the room temperature controllers 15A, 15B, 15C which receives the output of each subtractor 19A, 19B, 19C which outputs the difference of each output from 0A, 10B, 10C, the superheat degree detector 29, and the target of the superheat degree The superheat degree controller 31 receives the output of the subtractor 19E that outputs the difference between each output from the superheat degree setter 30 that sets the value, and the superheat degree fuzzy operation that receives the output of the superheat degree detector 29 as an input. In accordance with the determined membership value, the operation amount of each room temperature controller 15A, 15B, 15C and the operation amount of the superheat degree controller 31 are mixed, and each indoor expansion valve 9 is mixed.
A, 9B, 9C, each indoor expansion valve operation amount determiner 32A, 32B, 32C for determining the opening degree, and each indoor unit 7A, 7B,
Each of the indoor unit rated capacity value setting devices 33A, 33B, 33C for setting each rated capacity value of 7C, each room temperature setting device 17A, 17B, 17C for setting the target value of each room temperature, and each room temperature detector 10A, 10B, Each indoor functional force multiplication which outputs each product of each output of each subtractor 19A, 19B, 19C which outputs the difference of each output with 10C and each output of each indoor unit rated capacity value setting device 33A, 33B, 33C. Vessels 34A, 34B, 34C
A total capacity adder 35 that outputs the sum of the outputs of the indoor functional power multipliers 34A, 34B, and 34C; a total capacity controller 36 that receives the output of the total capacity adder 35 as an input; A pressure controller 16 that receives an output of a subtractor 19D that outputs a difference between outputs of the pressure detector 14 and the pressure detector 14, and a membership value determined by a pressure fuzzy operation that receives an output of the pressure detector 14 as an input. A compressor operation amount determiner 37 for determining the number of revolutions of the compressor 1 by mixing the operation amount of the overall capacity controller 36 and the operation amount of the pressure controller 16 with the compressor operation amount determiner 37. The number of rotations of the compressor 1 is operated with the determined operation amount.

【0018】図2は本発明による室内膨張弁操作量決定
器の動作を示すフローチャートであり、過熱度検知器2
9の出力と第一過熱度閾値との比較を行い(ステップ1
01)、過熱度検知器29の出力が第一過熱度閾値より
も大きい場合には過熱度メンバシップ値を0とし(ステ
ップ102)、過熱度検知器29の出力が第一過熱度閾
値よりも小さい場合には過熱度検知器29の出力と第一
過熱度閾値より小なる第二過熱度閾値との比較を行い
(ステップ103)、過熱度検知器29の出力が第二過
熱度閾値よりも大きい場合には過熱度検知器29の出力
に応じて0から1までの範囲で単調で連続した変化をす
る過熱度メンバシップ値を設定し(ステップ104)、
過熱度検知器29の出力が第二過熱度閾値よりも小さい
場合には過熱度検知器29の出力と第二過熱度閾値より
小なる第三過熱度閾値との比較を行い(ステップ10
5)、過熱度検知器29の出力が第三過熱度閾値よりも
大きい場合には過熱度メンバシップ値を1とし(ステッ
プ106)、過熱度検知器29の出力が第三過熱度閾値
よりも小さい場合には過熱度検知器29の出力と第三過
熱度閾値より小なる第四過熱度閾値との比較を行い(ス
テップ107)、過熱度検知器29の出力が第四過熱度
閾値よりも大きい場合には過熱度検知器29の出力に応
じて1から0までの範囲で単調で連続した変化をする過
熱度メンバシップ値を設定し(ステップ108)、過熱
度検知器29の出力が第四過熱度閾値よりも小さい場合
には過熱度メンバシップ値を0とし(ステップ10
2)、その後各室温制御器15A、15B、15Cによ
る操作量と過熱度メンバシップ値との積量と、過熱度制
御器32による操作量と1から過熱度メンバシップ値を
減じた値との積量の和として各室内膨張弁9A、9B、
9Cの開度を決定する(ステップ109)。これはすな
わち過熱度検知器29の出力を入力とする過熱度ファジ
ィ演算器である。
FIG. 2 is a flow chart showing the operation of the indoor expansion valve manipulated variable determiner according to the present invention.
9 is compared with the first superheat threshold (step 1).
01), if the output of the superheat detector 29 is larger than the first superheat threshold value, the superheat membership value is set to 0 (step 102), and the output of the superheat detector 29 is lower than the first superheat threshold value. If it is smaller, the output of the superheat detector 29 is compared with the second superheat threshold smaller than the first superheat threshold (step 103), and the output of the superheat detector 29 is lower than the second superheat threshold. If it is larger, a superheat degree membership value that monotonously and continuously changes in the range of 0 to 1 is set in accordance with the output of the superheat degree detector 29 (step 104),
If the output of the superheat detector 29 is smaller than the second superheat threshold, the output of the superheat detector 29 is compared with a third superheat threshold smaller than the second superheat threshold (step 10).
5) If the output of the superheat detector 29 is larger than the third superheat threshold, the superheat membership value is set to 1 (step 106), and the output of the superheat detector 29 is higher than the third superheat threshold. If it is smaller, the output of the superheat detector 29 is compared with a fourth superheat threshold smaller than the third superheat threshold (step 107), and the output of the superheat detector 29 is smaller than the fourth superheat threshold. If it is larger, a superheat degree membership value that changes monotonously and continuously in the range from 1 to 0 according to the output of the superheat degree detector 29 is set (step 108), and the output of the superheat degree detector 29 If it is smaller than the four superheat threshold, the superheat membership value is set to 0 (step 10).
2) After that, the product amount of the operation amount by each room temperature controller 15A, 15B, 15C and the superheat degree membership value, the operation amount by the superheat degree controller 32, and the value obtained by subtracting the superheat degree membership value from 1 Each indoor expansion valve 9A, 9B, as the sum of products
The opening of 9C is determined (step 109). That is, this is a superheat degree fuzzy calculator which receives the output of the superheat degree detector 29 as an input.

【0019】さらに、室内機7A、7B、7Cの運転状
態によって(ステップ110)、停止の場合には各室内
膨張弁9A、9B、9Cの開度を前回膨張弁開度から微
小開度減じた開度とし(ステップ111)、次に室内機
7A、7B、7C、及び圧縮機1の運転状態の変化の発
生を判断し(ステップ112)、変化が発生した場合に
は各室内膨張弁9A、9B、9Cの開度を運転状態変化
に応じた初期開度とする(ステップ113)もので、一
定時間間隔で実行される。
Further, depending on the operating state of the indoor units 7A, 7B, 7C (step 110), when the indoor units are stopped, the opening of each indoor expansion valve 9A, 9B, 9C is reduced by a small amount from the previous opening of the expansion valve. The degree of opening is set (step 111), then it is judged whether or not the operating states of the indoor units 7A, 7B, 7C and the compressor 1 have changed (step 112), and if there is a change, each indoor expansion valve 9A, The opening degree of 9B and 9C is set as the initial opening degree according to the change of the operating state (step 113), and is executed at fixed time intervals.

【0020】図3は本発明による圧縮機操作量決定器の
動作を示すフローチャートであり、圧力検知器14の出
力と第一圧力閾値との比較を行い(ステップ201)、
圧力検知器14の出力が第一圧力閾値よりも大きい場合
には圧力メンバシップ値を0とし(ステップ202)、
圧力検知器14の出力が第一圧力閾値よりも小さい場合
には圧力検知器14の出力と第一圧力閾値より小なる第
二圧力閾値との比較を行い(ステップ203)、圧力検
知器14の出力が第二圧力閾値よりも大きい場合には圧
力検知器14の出力に応じて0から1までの範囲で単調
で連続した変化をする圧力メンバシップ値を設定し(ス
テップ204)、圧力検知器14の出力が第二圧力閾値
よりも小さい場合には圧力検知器14の出力と第二圧力
閾値より小なる第三圧力閾値との比較を行い(ステップ
205)、圧力検知器14の出力が第三圧力閾値よりも
大きい場合には圧力メンバシップ値を1とし(ステップ
206)、圧力検知器14の出力が第三圧力閾値よりも
小さい場合には圧力検知器14の出力と第三圧力閾値よ
り小なる第四圧力閾値との比較を行い(ステップ20
7)、圧力検知器14の出力が第四圧力閾値よりも大き
い場合には圧力検知器14の出力に応じて1から0まで
の範囲で単調で連続した変化をする圧力メンバシップ値
を設定し(ステップ208)、圧力検知器14の出力が
第四圧力閾値よりも小さい場合には圧力メンバシップ値
を0とし(ステップ202)、その後全体能力制御器3
6による操作量と圧力メンバシップ値との積量と、圧力
制御器16による操作量と1から圧力メンバシップ値を
減じた値との積量の和として圧縮機1の回転数を決定す
る(ステップ209)もので一定時間間隔で実行され
る。
FIG. 3 is a flow chart showing the operation of the compressor manipulated variable determiner according to the present invention. The output of the pressure detector 14 is compared with the first pressure threshold value (step 201).
If the output of the pressure detector 14 is larger than the first pressure threshold, the pressure membership value is set to 0 (step 202),
If the output of the pressure detector 14 is smaller than the first pressure threshold, the output of the pressure detector 14 is compared with a second pressure threshold smaller than the first pressure threshold (step 203). If the output is larger than the second pressure threshold, a pressure membership value that changes monotonously and continuously from 0 to 1 according to the output of the pressure detector 14 is set (step 204), If the output of the pressure detector 14 is smaller than the second pressure threshold, the output of the pressure detector 14 is compared with a third pressure threshold smaller than the second pressure threshold (step 205). If it is greater than the third pressure threshold, the pressure membership value is set to 1 (step 206), and if the output of the pressure detector 14 is smaller than the third pressure threshold, the pressure membership value is calculated from the output of the pressure detector 14 and the third pressure threshold. Small fourth pressure Compares the value (Step 20
7) If the output of the pressure detector 14 is larger than the fourth pressure threshold value, set a pressure membership value that changes monotonously and continuously in the range of 1 to 0 according to the output of the pressure detector 14. (Step 208) If the output of the pressure detector 14 is smaller than the fourth pressure threshold, the pressure membership value is set to 0 (Step 202), and then the overall capacity controller 3
The rotation speed of the compressor 1 is determined as the sum of the product of the manipulated variable by 6 and the pressure membership value and the product of the manipulated variable by the pressure controller 16 and the value obtained by subtracting the pressure membership value from 1. Step 209) is executed at regular time intervals.

【0021】これはすなわち圧力検知器14の出力を入
力とする圧力ファジィ演算器である。
That is, this is a pressure fuzzy calculator which receives the output of the pressure detector 14.

【0022】かかる構成における多室形空気調和機の室
内膨張弁及び圧縮機の制御器の動作様態を以下に説明す
る。冷房時において、各室温検知器10A、10B、1
0Cで検知された各室温が、各室温設定器17A、17
B、17Cの出力よりも高い場合、各室温制御器15
A、15B、15Cによって各室内膨張弁9A、9B、
9Cの弁開度を開方向に操作し、また全体能力制御器3
6によって圧縮機1の回転数を増加方向に操作し、この
結果各室内熱交換器8A、8B、8Cを流れる冷媒量が
増し、冷房能力が増大して各室温が低下し、各室温設定
器17A、17B、17Cの出力に一致する。この時、
必要とされる冷房能力が各室内熱交換器8A、8B、8
Cの能力よりも大きい、即ち過負荷の場合、過熱度検知
器29で検出される過熱度が小さくなり、第四過熱度閾
値よりも小さな場合、各室内膨張弁操作量決定器32
A、32B、32Cにおいて過熱度制御器31による操
作量が選択され過熱度検知器29で検出される過熱度が
過熱度設定器30の出力に一致するように各室内膨張弁
9A、9B、9Cの開度を閉方向に操作することにより
各室内熱交換器8A、8B、8Cの冷房能力の適正上限
能力内に抑えられる。
The operation modes of the indoor expansion valve of the multi-room air conditioner and the controller of the compressor having such a configuration will be described below. At the time of cooling, each room temperature detector 10A, 10B, 1
Each room temperature detected at 0C is the room temperature setting device 17A, 17
If the output is higher than B and 17C, each room temperature controller 15
The indoor expansion valves 9A, 9B,
The valve opening of 9C is operated in the opening direction, and the overall capacity controller 3
6, the number of revolutions of the compressor 1 is operated in an increasing direction, and as a result, the amount of refrigerant flowing through each indoor heat exchanger 8A, 8B, 8C increases, the cooling capacity increases, each room temperature decreases, and each room temperature setting device It matches the output of 17A, 17B, 17C. This time,
The required cooling capacity depends on each indoor heat exchanger 8A, 8B, 8
C, that is, in the case of overload, the degree of superheat detected by the superheat degree detector 29 becomes small, and in the case of being smaller than the fourth superheat degree threshold, each indoor expansion valve operation amount determiner 32
In A, 32B, and 32C, the operation amounts of the superheat controller 31 are selected, and the indoor expansion valves 9A, 9B, and 9C are controlled so that the superheat detected by the superheat detector 29 matches the output of the superheat setter 30. By operating the opening degree in the closing direction, the cooling capacity of each of the indoor heat exchangers 8A, 8B, 8C can be suppressed within the appropriate upper limit capacity.

【0023】各室温がある程度下降して必要とされる冷
房能力が各室内熱交換器8A、8B、8Cの適正上限能
力近傍の場合、過熱度検知器29で検出される過熱度が
徐々に大きくなり、第四過熱度閾値よりも大きく第三過
熱度閾値よりも小さな場合、各室内膨張弁操作量決定器
32A、32B、32Cにおいて過熱度制御器31によ
る操作量と各室温制御器15A、15B、15Cによる
操作量とを混合した操作量が選択され各室内膨張弁9
A、9B、9Cの開度を操作することにより各室内熱交
換器8A、8B、8Cは各室内熱交換器8A、8B、8
Cの適正上限能力近傍を維持する。
When each room temperature is lowered to some extent and the required cooling capacity is near the proper upper limit capacity of each indoor heat exchanger 8A, 8B, 8C, the superheat degree detected by the superheat detector 29 gradually increases. When it is larger than the fourth superheat threshold value and smaller than the third superheat threshold value, the operation amount by the superheat controller 31 and each room temperature controller 15A, 15B in each indoor expansion valve operation amount determiner 32A, 32B, 32C. , 15C are mixed with the manipulated variables for the indoor expansion valves 9
The indoor heat exchangers 8A, 8B and 8C are operated by operating the opening degrees of A, 9B and 9C.
Maintain C near the appropriate upper limit capacity.

【0024】各室温がさらに下降して必要とされる冷房
能力が各室内熱交換器8A、8B、8Cの適正上限能力
以下の場合、過熱度検知器29で検出される過熱度が大
きくなり、第三過熱度閾値より大きな場合、各室内膨張
弁操作量決定器32A、32B、32Cにおいて各室温
制御器15A、15B、15Cによる操作量が選択され
各室内膨張弁9A、9B、9Cの開度を操作することに
より各室温が制御され、各室温設定器15A、15B、
15Cの出力に一致する。
When the room temperature is further lowered and the required cooling capacity is less than the appropriate upper limit capacity of each indoor heat exchanger 8A, 8B, 8C, the superheat degree detected by the superheat detector 29 becomes large, When it is larger than the third superheat threshold, the operation amount by each room temperature controller 15A, 15B, 15C is selected in each indoor expansion valve operation amount determiner 32A, 32B, 32C, and the opening degree of each indoor expansion valve 9A, 9B, 9C. Each room temperature is controlled by operating the room temperature setting devices 15A, 15B,
It matches the output of 15C.

【0025】各室温がさらに下降して必要とされる冷房
能力が各室内熱交換器8A、8B、8Cの適正下限能力
以下の場合、過熱度検知器29で検出される過熱度がさ
らに大きくなり、第二過熱度閾値より大きな場合、各室
内膨張弁操作量決定器32A、32B、32Cにおいて
過熱度制御器31による操作量と各室温制御器15A、
15B、15Cによる操作量とを混合した操作量が選択
され各室内膨張弁9A、9B、9Cの開度を操作するこ
とにより各室内熱交換器8A、8B、8Cは各室内熱交
換器8A、8B、8Cの適正下限能力近傍を維持する。
この結果、各室温は各室温設定器17A、17B、17
Cの出力よりも低くなり、全体能力制御器36によって
圧縮機1の回転数を減少方向に操作し、各室内熱交換器
8A、8B、8Cを流れる冷媒量が減り、冷房能力が減
少して各室温が上昇し、各室温検知器10A、10B、
10Cの出力は、各室温設定器17A、17B、17C
の出力に一致する。
When the room temperature is further lowered and the required cooling capacity is less than the proper lower limit capacity of the indoor heat exchangers 8A, 8B, 8C, the superheat degree detected by the superheat detector 29 is further increased. , If it is larger than the second superheat threshold, the operation amount by the superheat controller 31 in each indoor expansion valve operation amount determiner 32A, 32B, 32C and each room temperature controller 15A,
The operation amount mixed with the operation amount by 15B, 15C is selected and each indoor heat exchanger 8A, 8B, 8C is operated by operating the opening degree of each indoor expansion valve 9A, 9B, 9C. Maintain near the proper lower limit capacity of 8B and 8C.
As a result, each room temperature is set to each room temperature setting device 17A, 17B, 17
C, the rotation speed of the compressor 1 is operated in a decreasing direction by the overall capacity controller 36, the amount of refrigerant flowing through each of the indoor heat exchangers 8A, 8B, 8C decreases, and the cooling capacity decreases. Each room temperature rises, and each room temperature detector 10A, 10B,
The output of 10C is each room temperature setting unit 17A, 17B, 17C
Matches the output of.

【0026】また、圧力検知器14で検出される圧力に
よって圧縮機操作量決定器37において圧力制御器16
による操作量と全体能力制御器36による操作量が適宜
混合しられ圧力は第一圧力閾値と第四圧力閾値の範囲に
抑えられる。
Further, the pressure detected by the pressure detector 14 causes the pressure controller 16 in the compressor operation amount determiner 37.
And the operation amount by the overall capacity controller 36 are appropriately mixed, and the pressure is suppressed to a range between the first pressure threshold value and the fourth pressure threshold value.

【0027】暖房時においても同様に、適正な過熱度、
及び圧力の基での室温制御が実現できる。
Similarly, at the time of heating, an appropriate degree of superheat,
And room temperature control under pressure.

【0028】さらに、各室内機7A、7B、7Cの内の
何れかが運転を停止した場合に、停止した室内機に対応
した室内膨張弁9A、9B、9Cが徐々に閉じることに
より、圧力や過熱度が急変することがなく、安定な運転
が実現できる。
Furthermore, when the operation of any of the indoor units 7A, 7B, 7C is stopped, the indoor expansion valves 9A, 9B, 9C corresponding to the stopped indoor units are gradually closed to reduce the pressure and Stable operation can be realized without sudden changes in superheat.

【0029】また、室内機7A、7B、7C、及び圧縮
機1の運転状態の変化が発生した場合に、各室内膨張弁
9A、9B、9Cの開度を運転状態変化に応じた初期開
度とすることにより、各室内熱交換器8A、8B、8C
の能力を適正能力近傍とすることができ、運転状態変化
が各部屋11A、11B、11Cの室温に与える影響を
小さくすることができる。
Further, when the operating states of the indoor units 7A, 7B, 7C and the compressor 1 change, the opening degree of each indoor expansion valve 9A, 9B, 9C is set to the initial opening degree according to the operating state change. As a result, each indoor heat exchanger 8A, 8B, 8C
Can be made to be close to the proper capacity, and the influence of a change in the operating state on the room temperature of each room 11A, 11B, 11C can be reduced.

【0030】図5は本発明になる他の実施例における多
室形空気調和機のシステム構成図であり、図4と同様動
作のヒートポンプサイクルを構成し、さらには圧縮機1
の吸入部に吸入飽和温検知器38、及び室外機6を設置
した外気温を検知する外気温検知器39を取り付けた構
成となっており、図4と同じ要素については同一番号で
記している。
FIG. 5 is a system configuration diagram of a multi-room air conditioner according to another embodiment of the present invention, which constitutes a heat pump cycle having the same operation as that of FIG.
The intake saturation temperature detector 38 and the outdoor air temperature detector 39 for detecting the outdoor air temperature in which the outdoor unit 6 is installed are attached to the inhalation part of the device, and the same elements as those in FIG. 4 are denoted by the same numbers. .

【0031】かかる構成における多室形空気調和機の作
用様態を以下に説明する。各室内膨張弁9A、9B、9
Cの開度や圧縮機1の回転数、外気温等に応じて吸入飽
和温が変化し、その吸入飽和温は吸入飽和温検知器38
により、また外気温は外気温検知器39により検知され
る。
The mode of operation of the multi-room air conditioner having such a configuration will be described below. Each indoor expansion valve 9A, 9B, 9
The intake saturation temperature changes according to the opening degree of C, the rotation speed of the compressor 1, the outside air temperature, and the like, and the intake saturation temperature is the intake saturation temperature detector 38.
Further, the outside air temperature is detected by the outside air temperature detector 39.

【0032】図6は本発明になる他の実施例における多
室形空気調和機の室内膨張弁及び圧縮機の制御器のブロ
ック構成図であり、図1と同様動作の制御ブロックを構
成し、さらには吸入飽和温度検知器38の出力と外気温
検知器39の出力と各室温検知器10A、10B、10
Cの各出力に応じて過熱度設定値及び過熱度ファジィ演
算のメンバシップ関数を決定する過熱度目標設定器40
を取り付けた構成となっており、図1と同じ要素につい
ては同一番号で記している。
FIG. 6 is a block diagram of a controller of an indoor expansion valve and a compressor of a multi-room air conditioner according to another embodiment of the present invention, which constitutes a control block having the same operation as in FIG. Further, the output of the intake saturation temperature detector 38, the output of the outside air temperature detector 39, the room temperature detectors 10A, 10B, 10
A superheat target setter 40 that determines a superheat set value and a membership function of a superheat fuzzy operation according to each output of C
1 is attached, and the same elements as those in FIG. 1 are denoted by the same numbers.

【0033】かかる構成における多室形空気調和機の室
内膨張弁及び圧縮機の制御器の動作様態を以下に説明す
る。冷房運転時においては吸入飽和温度検知器38の出
力と各室温検知器10A、10B、10Cの各出力の内
の最小出力との差を最大過熱度とし、過熱度設定値及び
過熱度ファジィ演算のメンバシップ関数、すなわち図2
における各過熱度閾値が、最大過熱度以下となるように
過熱度目標設定器40で決定され、暖房運転時において
は吸入飽和温度検知器38の出力と外気温検知器39の
出力との差を最大過熱度とし、過熱度設定値及び過熱度
ファジィ演算のメンバシップ関数、すなわち図2におけ
る各過熱度閾値が、最大過熱度以下となるように過熱度
目標設定器40で決定される。
The operation modes of the indoor expansion valve of the multi-room air conditioner and the controller of the compressor having such a configuration will be described below. During the cooling operation, the difference between the output of the suction saturation temperature detector 38 and the minimum output of the outputs of the room temperature detectors 10A, 10B, and 10C is set as the maximum superheat degree, and the superheat degree set value and the superheat degree fuzzy calculation are performed. Membership function, ie Figure 2
Each superheat threshold value in is determined by the superheat degree target setting device 40 so as to be equal to or less than the maximum superheat degree, and the difference between the output of the intake saturation temperature detector 38 and the output of the outside air temperature detector 39 during the heating operation is determined. The maximum superheat degree is set, and the superheat degree set value and the membership function of the superheat degree fuzzy calculation, that is, each superheat degree threshold value in FIG. 2, are determined by the superheat degree target setter 40 so as to be equal to or less than the maximum superheat degree.

【0034】これによって適正な過熱度制御の目標値が
与えられ、過熱度制御の目標値が過大な場合に発生する
圧縮機1の吐出温度の過上昇を抑えることができる。ま
た、最大過熱度の決定に用いた、各室温検知器10A、
10B、10Cの各出力の代わりに、各室温設定器17
A、17B、17Cの各出力を用いることも可能であ
る。さらに過熱度制御の目標値を、圧縮機1の回転数が
大きい場合に縮小補正することにより、圧縮機1の吐出
温度の過上昇を確実に抑えることができる。また、吸入
飽和温度及び外気温、各室温あるいは各室温設定値に応
じて過熱度設定値及び過熱度ファジィ演算のメンバシッ
プ関数を決定することによって適正な過熱度制御の目標
値が与えられ、過熱度制御の目標値が過大な場合に発生
する圧縮機の吐出温度の過上昇を抑えることができ、過
熱度制御の目標値を、圧縮機の回転数に応じて補正する
ことにより、圧縮機の吐出温度の過上昇の防止をより確
実なものとすることができる。
As a result, a proper target value for superheat control is given, and it is possible to suppress an excessive rise in the discharge temperature of the compressor 1 that occurs when the target value for superheat control is excessive. Further, each room temperature detector 10A used for determining the maximum degree of superheat,
Instead of each output of 10B and 10C, each room temperature setting device 17
It is also possible to use the outputs of A, 17B, and 17C. Further, the target value of the superheat degree control is reduced and corrected when the number of revolutions of the compressor 1 is large, so that it is possible to reliably suppress the excessive rise of the discharge temperature of the compressor 1. Further, by determining the superheat degree set value and the membership function of the superheat degree fuzzy calculation according to the intake saturation temperature and the outside air temperature, each room temperature or each room temperature set value, an appropriate target value for the superheat degree control is given, Of the compressor, the discharge temperature of the compressor can be prevented from rising excessively when the target value of the superheat control is excessive.By correcting the target value of the superheat control according to the number of revolutions of the compressor, It is possible to more reliably prevent the discharge temperature from rising excessively.

【0035】[0035]

【発明の効果】以上のように本発明による多室形空気調
和機では、過熱度に応じて過熱度制御器による操作量と
各室温制御器による各操作量とを混合し、これによって
常に適正な過熱度と圧力の基での室温制御を実現し、圧
縮機の消費電力を最小にすることができ、さらには冷媒
の液バックによる圧縮機の破損を防止することができる
ものである。
As described above, in the multi-room air conditioner according to the present invention, the operation amount by the superheat degree controller and each operation amount by each room temperature controller are mixed according to the superheat degree, and thereby, the proper operation is always performed. Room temperature control based on a high degree of superheat and pressure can be realized, power consumption of the compressor can be minimized, and damage to the compressor due to liquid back of the refrigerant can be prevented.

【0036】また、各室内機の内の何れかが運転を停止
した場合に、停止した室内機に対応した室内膨張弁が徐
々に閉じることにより、圧力や過熱度が急変することが
なく、さらには室内機及び圧縮機の運転状態の変化が発
生した場合に、各室内膨張弁の開度を運転状態変化に応
じた初期開度とすることにより、各室内熱交換器の能力
を適正能力近傍とすることができ、運転状態変化が各部
屋の室温に与える影響を小さくすることができ、安定な
運転を実現するものである。
When any one of the indoor units stops operating, the indoor expansion valve corresponding to the stopped indoor unit is gradually closed, so that the pressure and the degree of superheat do not suddenly change. When the operating state of the indoor unit and compressor changes, the opening of each indoor expansion valve is set to the initial opening according to the operating state change, so that the capacity of each indoor heat exchanger is close to the appropriate capacity. Therefore, it is possible to reduce the influence of the change in the operating state on the room temperature of each room, and to realize stable operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の多室形空気調和機の室内膨
張弁及び圧縮機の制御ブロック構成図
FIG. 1 is a control block configuration diagram of an indoor expansion valve and a compressor of a multi-room air conditioner according to an embodiment of the present invention.

【図2】同空気調和機における室内膨張弁操作量決定器
の動作を示すフローチャート
FIG. 2 is a flowchart showing an operation of an indoor expansion valve operation amount determiner in the air conditioner.

【図3】同空気調和機における圧縮機操作量決定器の動
作を示すフローチャート
FIG. 3 is a flowchart showing the operation of a compressor manipulated variable determiner in the air conditioner.

【図4】同空気調和機のシステム構成図FIG. 4 is a system configuration diagram of the air conditioner.

【図5】本発明による他の実施例の多室形空気調和機の
システム構成図
FIG. 5 is a system configuration diagram of a multi-room air conditioner according to another embodiment of the present invention.

【図6】同多室形空気調和機の室内膨張弁及び圧縮機の
制御ブロック構成図
FIG. 6 is a control block configuration diagram of an indoor expansion valve and a compressor of the multi-room air conditioner.

【図7】従来例の多室形空気調和機のシステム構成図FIG. 7 is a system configuration diagram of a conventional multi-room air conditioner.

【図8】同多室形空気調和機の室内膨張弁及び圧縮機の
制御ブロック構成図
FIG. 8 is a control block configuration diagram of an indoor expansion valve and a compressor of the multi-room air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 レシーバ 5 アキュムレータ 6 室外機 7A、7B、7C 室内機 8A、8B、8C 室内熱交換器 9A、9B、9C 室内膨張弁 10A、10B、10C 室温検知器 11A、11B、11C 部屋 12 ガス側管路 13 液側管路 14 圧力検知器 15A、15B,15C 室温制御器 16 圧力制御器 17A、17B、17C 室温設定器 18 圧力設定器 19A、19B、19C、19D、19E 減算器 20A、20B、20C、20D、20E 積分器 21A、21B、21C、21D、21E 微分器 22A、22B、22C、22D、22E 比例係数設
定器 23A、23B、23C、23D、23E 積分係数設
定器 24A、24B、24C、24D、24E 微分係数設
定器 25A、25B、25C、25D、25E 第一掛算器 26A、26B、26C、26D、26E 第二掛算器 27A、27B、27C、27D、27E 第三掛算器 28A、28B、28C、28D、28E 加算器 29 過熱度検知器 30 過熱度設定器 31 過熱度制御器 32A、32B、32C 室内膨張弁操作量決定器 33A、33B、33C 室内機定格能力値設定器 34A、34B、34C 室内機能力掛算器 35 全体能力加算器 36 全体能力制御器 37 圧縮機操作量決定器 38 吸入飽和温検知器 39 外気温検知器 40 過熱度目標設定器
1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Receiver 5 Accumulator 6 Outdoor unit 7A, 7B, 7C Indoor unit 8A, 8B, 8C Indoor heat exchanger 9A, 9B, 9C Indoor expansion valve 10A, 10B, 10C Room temperature detector 11A, 11B, 11C Room 12 Gas side pipeline 13 Liquid side pipeline 14 Pressure detector 15A, 15B, 15C Room temperature controller 16 Pressure controller 17A, 17B, 17C Room temperature setter 18 Pressure setter 19A, 19B, 19C, 19D, 19E Subtractor 20A, 20B, 20C, 20D, 20E Integrator 21A, 21B, 21C, 21D, 21E Differentiator 22A, 22B, 22C, 22D, 22E Proportional coefficient setter 23A, 23B, 23C, 23D, 23E Integration Coefficient setting device 24A, 24B, 24C, 24D, 24E Differential coefficient setting device 25A, 25B, 5C, 25D, 25E 1st multiplier 26A, 26B, 26C, 26D, 26E 2nd multiplier 27A, 27B, 27C, 27D, 27E 3rd multiplier 28A, 28B, 28C, 28D, 28E Adder 29 Overheat detection Unit 30 Superheat degree setter 31 Superheat degree controller 32A, 32B, 32C Indoor expansion valve operation amount determiner 33A, 33B, 33C Indoor unit rated capacity value setter 34A, 34B, 34C Indoor functional force multiplier 35 Overall capacity adder 36 Overall Capacity Controller 37 Compressor Operating Quantity Determiner 38 Intake Saturation Temperature Detector 39 Outside Air Temperature Detector 40 Superheat Target Setter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 雄二 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 羽根田 完爾 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yuji Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Kanji Haneda, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. In the company

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】圧縮機、室外熱交換器、四方弁等から成る
1台の室外機と、室内熱交換器と、膨張弁等を具備する
複数台の室内機を並列的に接続し、前記各室内機を設置
した各室温を検知する各室温検知器と、前記圧縮機吸入
部での過熱度を検知する過熱度検知器と、前記各室温を
各室温設定値に一致させるための前記各膨張弁の開度の
操作量を決定する各室温制御器と、前記過熱度を過熱度
設定値に一致させるための前記各膨張弁の開度の操作量
を決定する過熱度制御器と、前記過熱度を入力とした過
熱度ファジィ演算で決定したメンバシップ値に応じて前
記過熱度制御器による操作量と前記各室温制御器による
各操作量とを混合し前記各膨張弁の開度を決定する各膨
張弁操作量決定器と、前記各室温と前記各室温設定値と
の差である各室温偏差と前記各室内機の定格能力値の積
値の合計値を0に一致させるための前記圧縮機の回転数
を決定する全体能力制御器と、前記室内熱交換器の圧力
を検知する圧力検知器と、前記圧力を設定値に一致させ
るための前記圧縮機の回転数の操作量を決定する圧力制
御器と、前記圧力を入力とした圧力ファジィ演算で決定
したメンバシップ値に応じて前記圧力制御器による操作
量と前記全体能力制御器による操作量とを混合し、前記
圧縮機の回転数を決定する圧縮機回転数決定器を備えた
ことを特徴とする多室形空気調和機。
1. An outdoor unit comprising a compressor, an outdoor heat exchanger, a four-way valve, etc., an indoor heat exchanger, and a plurality of indoor units equipped with an expansion valve etc. are connected in parallel, Each room temperature detector that detects each room temperature in which each indoor unit is installed, a superheat detector that detects the degree of superheat in the compressor suction part, and each of the above-mentioned each room temperature to match each room temperature set value Each room temperature controller that determines the manipulated variable of the opening degree of the expansion valve, and a superheat degree controller that determines the manipulated variable of the opening degree of each of the expansion valves to match the superheat degree with a superheat degree set value, and According to the membership value determined by the superheat degree fuzzy calculation with the superheat degree as an input, the operation amount by the superheat degree controller and each operation amount by the room temperature controllers are mixed to determine the opening degree of each expansion valve. Expansion valve manipulated variable determiner and each room temperature that is the difference between each room temperature and each room temperature set value A total capacity controller that determines the number of revolutions of the compressor for making the sum of the product of the difference and the rated capacity of each indoor unit equal to 0, and a pressure detector that detects the pressure of the indoor heat exchanger. And a pressure controller for determining the manipulated variable of the rotational speed of the compressor for causing the pressure to match a set value, and the pressure according to the membership value determined by a pressure fuzzy operation using the pressure as an input. A multi-room air conditioner comprising a compressor rotation speed determiner for determining the rotation speed of the compressor by mixing the operation quantity by a controller and the operation quantity by the overall capacity controller.
【請求項2】 各膨張弁操作量決定器が、運転停止の室
内機の膨張弁の開度を徐々に閉方向に操作する停止時膨
張弁操作機能を含んでなることを特徴とする請求項1記
載の多室形空気調和機。
2. The expansion valve operation amount determiner includes a stop-time expansion valve operation function for gradually operating a degree of opening of an expansion valve of an indoor unit that is not in operation. 1. The multi-room air conditioner described in 1.
【請求項3】 各膨張弁操作量決定器が、各室内機及び
圧縮機の運転、停止の状態変化時に応じて各膨張弁の開
度を決定する運転状態変化時膨張弁開度決定機能を含ん
でなることを特徴とする請求項1記載の多室形空気調和
機。
3. The expansion valve manipulated variable determiner has a function to determine the opening degree of the expansion valve when the operating state changes, which determines the opening degree of each expansion valve according to the change of the operating or stopped state of each indoor unit and compressor. The multi-room air conditioner according to claim 1, characterized in that it comprises.
【請求項4】 圧縮機吸入部での飽和温度を検知する吸
入飽和温度検知器と、室外機を設置した外気温を検知す
る外気温検知器と、前記吸入飽和温度と各室温及び前記
外気温に応じて過熱度設定値及び過熱度ファジィ演算の
メンバシップ関数を決定する過熱度目標設定器を備えた
ことを特徴とする請求項1記載の多室形空気調和機。
4. A suction saturation temperature detector for detecting a saturation temperature in a compressor suction portion, an outside air temperature detector for detecting an outside air temperature in which an outdoor unit is installed, the suction saturation temperature, each room temperature and the outside air temperature. 2. The multi-room air conditioner according to claim 1, further comprising a superheat target setter that determines a superheat set value and a membership function of the superheat fuzzy calculation according to the above.
【請求項5】 吸入飽和温度と各室温設定値及び前記外
気温に応じて過熱度設定値及び過熱度ファジィ演算のメ
ンバシップ関数を決定する過熱度目標設定器を備えたこ
とを特徴とする請求項4記載の多室形空気調和機。
5. A superheat degree target setting device for determining a superheat degree set value and a membership function of a superheat degree fuzzy operation according to the intake saturation temperature, each room temperature set value, and the outside air temperature. Item 4. The multi-room air conditioner according to Item 4.
【請求項6】 過熱度目標設定器が、圧縮機の回転数に
応じて過熱度設定値及び過熱度ファジィ演算のメンバシ
ップ関数を補正する過熱度補正機能を含んでなることを
特徴とする請求項4記載の多室形空気調和機。
6. The superheat target setting device includes a superheat correction function for correcting a superheat set value and a membership function of the superheat fuzzy calculation according to the number of revolutions of the compressor. Item 4. The multi-room air conditioner according to Item 4.
JP3062807A 1990-08-20 1991-03-27 Multi-room air conditioner Expired - Fee Related JP2502831B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3062807A JP2502831B2 (en) 1991-03-27 1991-03-27 Multi-room air conditioner
US07/745,352 US5247806A (en) 1990-08-20 1991-08-15 Multi-system air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3062807A JP2502831B2 (en) 1991-03-27 1991-03-27 Multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH04297759A JPH04297759A (en) 1992-10-21
JP2502831B2 true JP2502831B2 (en) 1996-05-29

Family

ID=13210980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3062807A Expired - Fee Related JP2502831B2 (en) 1990-08-20 1991-03-27 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP2502831B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5261247A (en) * 1993-02-09 1993-11-16 Whirlpool Corporation Fuzzy logic apparatus control
JP4758367B2 (en) * 2007-02-13 2011-08-24 シャープ株式会社 Air conditioner
CN109855252B (en) * 2019-02-14 2022-02-22 青岛海尔空调电子有限公司 Refrigerant control method of multi-split air conditioning system
JP2023147840A (en) * 2022-03-30 2023-10-13 株式会社富士通ゼネラル air conditioner

Also Published As

Publication number Publication date
JPH04297759A (en) 1992-10-21

Similar Documents

Publication Publication Date Title
CN110094857B (en) Control method and device of air conditioner electronic expansion valve, computer product and air conditioner
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
US11486617B2 (en) Refrigeration cycle apparatus
US5086624A (en) Cooling and heating concurrent operation type of multiple refrigeration cycle
JP2502831B2 (en) Multi-room air conditioner
JP2754933B2 (en) Multi-room air conditioner
JPH10238880A (en) Multiple heat pump type air conditioner
JP2947255B1 (en) Control method of refrigerant heater outlet temperature
JP2624041B2 (en) Multi-room air conditioner
JP2502832B2 (en) Multi-room air conditioner
JPH04283361A (en) Multichamber type air conditioner
JP2568747B2 (en) Multi-room air conditioner
JPH06137691A (en) Controlling equipment for refrigerant circuit
JPH04254161A (en) Multi-room type air conditioner
JP2699657B2 (en) Multi-room air conditioner
JP3834905B2 (en) Multi-room air conditioner
JPH06307723A (en) Multi-room type air conditioner
JP3434094B2 (en) High pressure protection device and condensing pressure control device in refrigeration system
JP2002061979A (en) Cooling and heating system
JPH04131650A (en) Multi-room air conditioner
JP3285395B2 (en) Refrigeration cycle
JPH10205903A (en) Multiroom type air conditioner
KR100535676B1 (en) Control method of cooling cycling apparatus
JPH01305272A (en) Air conditioner
JPH0464851A (en) Control device for multi-chamber type air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees