JP2947255B1 - Control method of refrigerant heater outlet temperature - Google Patents

Control method of refrigerant heater outlet temperature

Info

Publication number
JP2947255B1
JP2947255B1 JP10044957A JP4495798A JP2947255B1 JP 2947255 B1 JP2947255 B1 JP 2947255B1 JP 10044957 A JP10044957 A JP 10044957A JP 4495798 A JP4495798 A JP 4495798A JP 2947255 B1 JP2947255 B1 JP 2947255B1
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
compressor
heater
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10044957A
Other languages
Japanese (ja)
Other versions
JPH11248265A (en
Inventor
孝彦 青
義和 西原
宜正 石川
邦泰 内山
Original Assignee
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP10044957A priority Critical patent/JP2947255B1/en
Application granted granted Critical
Publication of JP2947255B1 publication Critical patent/JP2947255B1/en
Publication of JPH11248265A publication Critical patent/JPH11248265A/en
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT-PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

【要約】 【課題】 加熱量と冷媒循環量を適切にバランスさせ冷
媒加熱器出口温度の異常上昇を防止する。 【解決手段】 冷媒加熱器出口圧の飽和温度を演算する
飽和温度演算手段74と、冷媒加熱器の出口温度を検出
する加熱器出口温度検出手段76と現行の圧縮機運転周
波数を検出する圧縮機運転周波数検出手段73を設け、
加熱器出口温度検出手段76の出力と飽和温度演算手段
74と圧縮機運転周波数検出手段73の出力に基づいて
冷媒加熱器出口の過熱度を過熱度演算手段78により演
算し、この演算により得られた過熱度が所定値となるよ
うに圧縮機周波数を変更する圧縮機周波数変更手段82
を設ける。
An object of the present invention is to appropriately balance a heating amount and a refrigerant circulation amount to prevent an abnormal rise in a refrigerant heater outlet temperature. SOLUTION: A saturation temperature calculating means 74 for calculating a saturation temperature of a refrigerant heater outlet pressure, a heater outlet temperature detecting means 76 for detecting an outlet temperature of the refrigerant heater, and a compressor for detecting a current compressor operating frequency. Operating frequency detecting means 73 is provided,
The superheat degree at the outlet of the refrigerant heater is calculated by the superheat degree calculating means 78 based on the output of the heater outlet temperature detecting means 76, the output of the saturation temperature calculating means 74, and the output of the compressor operating frequency detecting means 73. Compressor frequency changing means 82 for changing the compressor frequency so that the superheat degree becomes a predetermined value.
Is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は1台の室外機に少な
くとも1台の室内機を接続した空気調和機に関し、更に
詳しくは、暖房運転時冷媒を加熱する冷媒加熱器の出口
温度を制御して加熱量と冷媒循環量とのバランスを図る
ようにした冷媒加熱器出口温度の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner in which at least one indoor unit is connected to one outdoor unit, and more particularly, it controls an outlet temperature of a refrigerant heater for heating a refrigerant during a heating operation. The present invention relates to a method for controlling the temperature of the outlet of a refrigerant heater, which balances the amount of heating and the amount of circulation of refrigerant.
【0002】[0002]
【従来の技術】空気調和機には、低温側からくみ上げた
熱を高温側で利用するヒートポンプ式空気調和機や冷媒
加熱器を備えた冷媒加熱式空気調和機がある。
2. Description of the Related Art As air conditioners, there are a heat pump type air conditioner which utilizes heat drawn from a low temperature side on a high temperature side and a refrigerant heating type air conditioner provided with a refrigerant heater.
【0003】冷媒加熱式空気調和機においては、暖房時
における加熱量と冷媒循環量のバランスを図ることが重
要で、長配管多冷媒運転、運転台数変化、室内風量変化
等により冷媒循環量が大きく変動すると、加熱量や冷媒
循環量のバランスが崩れやすい。このバランスが崩れ、
加熱量が冷媒循環量より大きくなると冷媒加熱器の出口
温度の上昇により、圧縮機温度異常、潤滑油劣化、排ガ
ス異常温度等の問題を起こす恐れがあり、逆に、加熱量
に比べて冷媒循環量が大きいと圧縮機への液バック現象
が発生し、圧縮機の信頼性が低下したり入力上昇という
問題が発生する。この様な問題に対処するため、特開昭
58−19663号公報や特開昭58−22851号公
報に開示の空気調和機では、圧縮機から冷媒加熱器に至
るバイパス回路を設けるとともに、このバイパス回路に
バイパス弁を取り付け、暖房時において負荷変動が生じ
た場合、バイパス弁を開放して圧縮機の冷媒出口より冷
媒加熱器の冷媒入り口に冷媒を還流させることにより冷
媒循環量を制御して負荷調整を行っていくる。
In a refrigerant heating type air conditioner, it is important to balance the amount of heating and the amount of circulating refrigerant during heating. If it fluctuates, the balance between the heating amount and the refrigerant circulation amount is likely to be lost. This balance is broken,
If the heating amount is larger than the refrigerant circulation amount, the outlet temperature of the refrigerant heater rises, which may cause problems such as abnormal compressor temperature, lubricating oil deterioration, and abnormal exhaust gas temperature. If the amount is large, a liquid back phenomenon to the compressor occurs, which causes a problem that the reliability of the compressor is reduced or the input is increased. In order to cope with such a problem, the air conditioners disclosed in JP-A-58-19663 and JP-A-58-22851 are provided with a bypass circuit from the compressor to the refrigerant heater, A bypass valve is attached to the circuit, and when a load fluctuation occurs during heating, the bypass valve is opened and the refrigerant is recirculated from the refrigerant outlet of the compressor to the refrigerant inlet of the refrigerant heater, thereby controlling the amount of circulating refrigerant and controlling the load. We will make adjustments.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、バイパ
ス弁を開放して圧縮機の冷媒出口より冷媒加熱器の冷媒
入り口に冷媒を還流させると、本来室内機に送るべき加
熱冷媒が冷媒加熱器に流れることにより約3%の能力ロ
スを起こし、暖房能力を100%室内で利用できない。
また、バイパス回路やバイパス弁を取り付けることによ
り構造が複雑化すると共に、製造コストが増加するとい
う問題が発生する。
However, when the bypass valve is opened and the refrigerant is recirculated from the refrigerant outlet of the compressor to the refrigerant inlet of the refrigerant heater, the heated refrigerant to be sent to the indoor unit flows to the refrigerant heater. As a result, about 3% of the capacity is lost, and 100% of the heating capacity cannot be used indoors.
In addition, the installation of the bypass circuit and the bypass valve complicates the structure and causes a problem that the manufacturing cost increases.
【0005】本発明は、従来技術の有するこの様な問題
点に対策されたものであり、冷媒加熱器の出口温度を予
測制御することにより、簡素な構成で加熱量と冷媒循環
量を適切にバランスさせ冷媒加熱器出口温度の異常上昇
を防止することができ、室内からの要求負荷に応じた効
率の良い燃焼量及び冷媒循環量の制御が可能な冷媒加熱
器出口温度の制御方法を提供することを目的としてい
る。
The present invention has been made in response to such problems of the prior art. By predicting and controlling the outlet temperature of the refrigerant heater, the heating amount and the refrigerant circulation amount can be appropriately adjusted with a simple configuration. Provided is a method of controlling the temperature of a refrigerant heater outlet, which can be balanced to prevent an abnormal rise in the temperature of the refrigerant heater outlet, and can efficiently control the amount of combustion and the amount of refrigerant circulated in accordance with a required load from a room. It is intended to be.
【0006】[0006]
【課題を解決するための手段】請求項1に記載の発明
は、容量可変形圧縮機と四方弁と室外熱交換器と冷媒加
熱器とを有する1台の室外機と、室内熱交換器を有する
少なくとも1台の室内機とを、冷媒配管を介して接続し
た空気調和機において、上記冷媒加熱器出口圧の飽和温
度を演算し、上記冷媒加熱器出口温度を検出し、演算し
た飽和温度と検出した冷媒加熱器の出口温度と上記圧縮
機の運転周波数とに基づいて上記冷媒加熱器出口の過熱
度を演算し、上記演算より得られた過熱度が所定値とな
るように圧縮機周波数を変更するようにしたことを特徴
とする。
According to a first aspect of the present invention, there is provided an outdoor unit having a variable displacement compressor, a four-way valve, an outdoor heat exchanger and a refrigerant heater, and an indoor heat exchanger. At least one indoor unit having, in an air conditioner connected via a refrigerant pipe, calculates the saturation temperature of the refrigerant heater outlet pressure, detects the refrigerant heater outlet temperature, and calculates the calculated saturation temperature. The superheat degree of the refrigerant heater outlet is calculated based on the detected refrigerant outlet temperature and the operating frequency of the compressor, and the compressor frequency is set so that the superheat degree obtained from the calculation becomes a predetermined value. It is characterized in that it is changed.
【0007】また、請求項2に記載の発明は、上記冷媒
加熱器出口温度の飽和温度の演算において、上記圧縮機
から吐出される冷媒の温度を検出し、検出された温度を
所定の計算式に代入して上記冷媒加熱器出口圧の飽和温
度の予測計算を行うようにした。
Further, in the invention according to claim 2, in the calculation of the saturation temperature of the refrigerant heater outlet temperature, the temperature of the refrigerant discharged from the compressor is detected, and the detected temperature is calculated by a predetermined formula. To calculate the saturation temperature of the refrigerant heater outlet pressure.
【0008】また、請求項3に記載の発明は、上記冷媒
加熱器出口温度の飽和温度の演算において、上記圧縮機
から吐出される冷媒の圧力を検出し、検出された圧力を
所定の計算式に代入して上記冷媒加熱器出口圧の飽和温
度の予測計算を行うようにした。
According to a third aspect of the present invention, in the calculation of the saturation temperature of the refrigerant heater outlet temperature, the pressure of the refrigerant discharged from the compressor is detected, and the detected pressure is calculated by a predetermined formula. To calculate the saturation temperature of the refrigerant heater outlet pressure.
【0009】[0009]
【発明の実施の形態】この加熱器出口温度予測制御は、
上述した多室形空気調和機のみならず室内機が1台のシ
ングル冷媒加熱式空気調和機にも適用することができる
が、図1の多室形空気調和機を例にとり、以下説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The heater outlet temperature prediction control is as follows.
The present invention can be applied not only to the above-described multi-room air conditioner but also to a single refrigerant heating type air conditioner having one indoor unit. The multi-room air conditioner shown in FIG. 1 will be described below as an example.
【0010】(実施の形態1)図2は冷媒加熱器28の
出口温度予測制御を示すフローチャートである。
(Embodiment 1) FIG. 2 is a flowchart showing control for predicting the outlet temperature of the refrigerant heater 28.
【0011】図3は、圧縮機周波数、燃焼量及び電動膨
張弁開度の制御の流れを示すブロック図である。
FIG. 3 is a block diagram showing a flow of control of the compressor frequency, the amount of combustion, and the degree of opening of the electric expansion valve.
【0012】この予測制御では、まず初期設定を行った
ステップS1後、圧縮機6から吐出された冷媒の温度を
吐出温度センサ23により感知し、感知した信号を吐出
温度検出回路72に入力して、吐出温度検出回路72に
より吐出温度t1として検出する。そして、初期設定に
より設定された圧縮機運転周波数を、圧縮機運転周波数
検出回路73より現行周波数Hz1として検出する。吐
出温度検出回路7により検出された温度t1と圧縮機運
転周波数検出回路73により検出された現行周波数Hz
1は、飽和温度演算回路74に入力され、飽和温度演算
回路74は冷媒加熱器28出口圧の飽和温度Tsatを
下記に示す計算式を使用して算出する。
In this predictive control, first, after step S1 in which initialization is performed, the temperature of the refrigerant discharged from the compressor 6 is sensed by the discharge temperature sensor 23, and the sensed signal is input to the discharge temperature detection circuit 72. The discharge temperature detection circuit 72 detects the discharge temperature t1. Then, the compressor operating frequency set by the initial setting is detected by the compressor operating frequency detecting circuit 73 as the current frequency Hz1. The temperature t1 detected by the discharge temperature detection circuit 7 and the current frequency Hz detected by the compressor operation frequency detection circuit 73
1 is input to the saturation temperature calculation circuit 74, and the saturation temperature calculation circuit 74 calculates the saturation temperature Tsat of the outlet pressure of the refrigerant heater 28 using the following calculation formula.
【0013】Tsat=a×t1+b×Hz1+c ここで、a,b,cは実験値であり、これまでの実施に
よれば、a=0.54b=−0.13、c=19.4程
度に設定すると、上記計算式より求められたTsatは
冷媒加熱器28出口圧の飽和温度と略一致することが確
認されている。
Tsat = a × t1 + b × Hz1 + c Here, a, b, and c are experimental values, and according to the implementations so far, a = 0.54b = −0.13 and c = 19.4. When set, it has been confirmed that Tsat obtained from the above equation substantially matches the saturation temperature of the outlet pressure of the refrigerant heater 28.
【0014】詳述すれば、冷媒加熱の冷凍サイクルは、
基本的には高圧がわかれば加熱器出口圧は配管の圧損に
より決まるが、しかし同じ高圧であっても圧縮機の運転
周波数によっては圧損がことなる。これは、圧縮機周波
数が高いと循環量が多く流速が上昇するため配管圧損が
大きくなる。よって、同じ高圧であっても圧縮機周波数
によってはと圧損がことなり加熱器出口圧もことなる。
More specifically, a refrigeration cycle for heating a refrigerant is as follows.
Basically, if the high pressure is known, the outlet pressure of the heater is determined by the pressure loss of the piping. However, even at the same high pressure, the pressure loss varies depending on the operating frequency of the compressor. This is because when the compressor frequency is high, the circulation amount is large and the flow velocity increases, so that the pipe pressure loss increases. Therefore, even at the same high pressure, the pressure loss differs depending on the compressor frequency, and the heater outlet pressure also differs.
【0015】よって、加熱器出口圧の飽和温度の計算式
に圧縮機周波数の要因を加味することにより、高圧から
加熱器出口圧の圧損が決まり、上記計算式より加熱器出
口温度を導くことが出来る。この吐出温度から導き出さ
れた加熱器出口温度と実際の加熱器出口温度を比較し、
その差を制御することにより加熱器出口温度の制御が可
能となる。
Therefore, by taking into account the factor of the compressor frequency in the formula for calculating the saturation temperature of the heater outlet pressure, the pressure loss of the heater outlet pressure is determined from the high pressure, and the heater outlet temperature can be derived from the above formula. I can do it. Compare the heater outlet temperature derived from this discharge temperature with the actual heater outlet temperature,
By controlling the difference, the heater outlet temperature can be controlled.
【0016】したがって、実際の加熱器出口温度を検出
する必要があるが、冷媒加熱器28の出口温度は加熱器
出口温度センサ33により検出され、その感知信号を加
熱器出口温度検出回路76に入力して、加熱器出口温度
検出回路76により加熱器出口温度Toutとして検出
する。この加熱器出口温度Toutは、飽和温度演算回
路74で算出された飽和温度Tsatとともに加熱度演
算回路78に入力され、加熱度演算回路78は下記に示
す計算式を使用して△SHを算出する。
Therefore, it is necessary to detect the actual heater outlet temperature, but the outlet temperature of the refrigerant heater 28 is detected by the heater outlet temperature sensor 33, and a detection signal is input to the heater outlet temperature detection circuit 76. Then, the temperature is detected as the heater outlet temperature Tout by the heater outlet temperature detection circuit 76. The heater outlet temperature Tout is input to the heating degree calculation circuit 78 together with the saturation temperature Tsat calculated by the saturation temperature calculation circuit 74, and the heating degree calculation circuit 78 calculates △ SH using the following formula. .
【0017】△SH=Tout−Tsat−d ここで、bは加熱器出口温度SH(過熱度)値と圧縮機
周波数運転時の吐出SH値を確保するための補正値であ
り、ステップS4において設定される値である。
△ SH = Tout-Tsat-d Here, b is a correction value for securing the heater outlet temperature SH (degree of superheat) and the discharge SH value during compressor frequency operation, and is set in step S4. Value.
【0018】この補正値dは圧縮機周波数に依存し、圧
縮機周波数が25Hz以上であれば例えばd=8に設定
され、25Hz未満であれば例えばd=10に設定され
る。
The correction value d depends on the compressor frequency. If the compressor frequency is 25 Hz or more, for example, d is set to 8, and if it is less than 25 Hz, for example, d is set to 10.
【0019】次に、△SHの値をステップS6において
判定し、0≦△SH<2であればステップS2に戻り、
0≦△SH<2でなければステップS7において2≦△
SHかどうかを判定する。ステップS7の判定がYES
(2≦△SH)の場合はステップS8に移行する一方、
NO(△SH<0)の場合にはステップS10に移行す
る。
Next, the value of △ SH is determined in step S6, and if 0 ≦ △ SH <2, the flow returns to step S2.
If 0 ≦ △ SH <2, 2 ≦ △ in step S7.
It is determined whether it is SH. YES in step S7
If (2 ≦ △ SH), the process proceeds to step S8,
If NO (△ SH <0), the process moves to step S10.
【0020】ステップS8では、圧縮機周波数COMP
Hzを判定し、MAX(Hz)より小さければ(MAX
(Hz)>COMPHz)、圧縮機周波数を増加するよ
うに制御する一方(ステップS9)、MAX(Hz)に
等しければステップS2に戻る。
In step S8, the compressor frequency COMP
Hz is determined, and if it is smaller than MAX (Hz), (MAX
(Hz)> COMPHz), while controlling to increase the compressor frequency (step S9), if it is equal to MAX (Hz), the process returns to step S2.
【0021】一方、(ステップS9)でも圧縮機周波数
COMPHzを判定し、MIN(Hz)より大きければ
(MIN(Hz)<COMPHz)、圧縮機周波数を減
少するように制御する一方(ステップS11)、MIN
(Hz)に等しければステップS2に戻る。
On the other hand, the compressor frequency COMPHz is also determined in step S9, and if it is higher than MIN (Hz) (MIN (Hz) <COMPHz), control is performed to decrease the compressor frequency (step S11). MIN
(Hz), the process returns to step S2.
【0022】図4はステップS9及びステップS11に
おいて圧縮機周波数を増減する場合の△SHと圧縮機周
波数との関係を示すグラフであり、表1はこの関係をテ
ーブル化したものである。従って、ステップS9及びス
テップS11では、過熱度演算回路78で算出した△S
Hを示す信号と表1に示される過熱度テーブル80に基
ずいて圧縮機周波数変更回路82により増減すべき圧縮
機周波数を算出し、周波数変更信号として圧縮機駆動回
路(図示せず)に送出することにより圧縮機周波数の制
御を行う。
FIG. 4 is a graph showing the relationship between .DELTA.SH and the compressor frequency when the compressor frequency is increased or decreased in steps S9 and S11. Table 1 shows this relationship in a table. Therefore, in steps S9 and S11, the ΔS calculated by the superheat degree calculation circuit 78
The compressor frequency change circuit 82 calculates the compressor frequency to be increased or decreased based on the signal indicating H and the superheat degree table 80 shown in Table 1, and sends it to the compressor drive circuit (not shown) as a frequency change signal. Thus, the compressor frequency is controlled.
【0023】[0023]
【表1】 [Table 1]
【0024】換言すれば、図2のフローチャートは、△
SHが0近傍の値をとるように、すなわち、加熱器出口
圧の冷媒ガスの過熱度が上記補正値dの値をとるように
制御している。
In other words, the flowchart of FIG.
Control is performed so that SH takes a value near 0, that is, the degree of superheating of the refrigerant gas at the heater outlet pressure takes the value of the correction value d.
【0025】ここで、図4のグラフ(表5のテーブル)
において、過熱度演算回路78で演算した過熱度が設定
値より大きい場合は、過熱度が大きくなるほど圧縮機周
波数をステップ状に増加させる一方、過熱度が設定値よ
り小さい場合は、過熱度が小さいほど圧縮機周波数をス
テップ状に減少させ、圧縮機周波数減少の平均勾配増加
の平均勾配より小さく設定している。
Here, the graph of FIG. 4 (the table of Table 5)
In the case where the degree of superheat calculated by the superheat degree calculation circuit 78 is larger than the set value, the compressor frequency is increased stepwise as the degree of superheat is increased, while if the degree of superheat is smaller than the set value, the degree of superheat is small. As the compressor frequency decreases, the compressor frequency decreases in a stepwise manner, and is set to be smaller than the average gradient of the average gradient increase of the compressor frequency decrease.
【0026】このように制御することにより、加熱器出
口の過熱度が時に大きい場合は、大きく圧縮機周波数を
増加させて加熱器出口温度の異常を素早く抑制する一
方、加熱器出口の過熱度が設定値より特に小さい場合
は、大きく圧縮機周波数を減少させて加熱器の液バック
現象を回避している。圧縮機周波数の減少制御において
は、急激な圧縮機周波数の減少は加熱器出口温度の異常
上昇につながるため、徐々に圧縮機周波数を減少させる
必要がある。
With this control, when the superheat degree at the heater outlet is sometimes large, the compressor frequency is greatly increased to quickly suppress the abnormalities in the heater outlet temperature, while the superheat degree at the heater outlet is reduced. When the value is particularly smaller than the set value, the compressor frequency is greatly reduced to avoid the liquid back phenomenon of the heater. In the control of decreasing the compressor frequency, a sudden decrease in the compressor frequency leads to an abnormal rise in the outlet temperature of the heater, so that it is necessary to gradually reduce the compressor frequency.
【0027】加熱器出口の過熱度と圧縮機周波数との関
係は、圧縮機周波数の平均増加勾配より平均減少勾配を
小さくなるように設定して、圧縮機周波数減少制御時の
加熱器温度異常上昇を防止している。また、圧縮機周波
数の増加の上限値を7Hzに設定しているが、これは、
圧縮機周波数の増加は入力上昇につながり、圧縮機周波
数の増加制御に上限値を設けることで入力上昇を抑制し
効率的な運転を達成することができる。特に、冷媒ガス
抜け時は冷媒循環量が減少するため、加熱器出口温度が
上昇しやすく、加熱器出口温度の過熱度が大きくなるこ
とから圧縮機周波数の増加で制御することとなるが、圧
縮機周波数を増加させすぎると入力の異常上昇を招来す
るからである。
The relationship between the degree of superheat at the outlet of the heater and the compressor frequency is set so that the average decrease gradient is smaller than the average increase gradient of the compressor frequency, and the heater temperature abnormally rises during the compressor frequency decrease control. Has been prevented. The upper limit of the increase in the compressor frequency is set to 7 Hz.
An increase in the compressor frequency leads to an increase in the input, and by setting an upper limit for the increase control of the compressor frequency, it is possible to suppress the increase in the input and achieve efficient operation. In particular, when the refrigerant gas escapes, the refrigerant circulation amount decreases, so the heater outlet temperature tends to rise, and the superheat degree of the heater outlet temperature increases, so that the compressor frequency is controlled by increasing the compressor frequency. This is because if the machine frequency is excessively increased, an abnormal increase in input is caused.
【0028】さらに、図2のフローチャートには示して
いないが、吐出温度に応じて圧縮機周波数に下限値を設
けている。
Further, although not shown in the flowchart of FIG. 2, a lower limit value is set for the compressor frequency according to the discharge temperature.
【0029】すなわち、多室形空気調和機における2室
運転時、吐出温度が40℃以下では、最小圧縮機周波数
を38Hzに設定する一方、シングル空気調和機あるい
は多室形空気調和機における1室運転時、吐出温度が4
5℃以上の場合には最小圧縮機周波数を35Hzに設定
している。
That is, at the time of the two-room operation in the multi-room air conditioner, when the discharge temperature is 40 ° C. or less, the minimum compressor frequency is set to 38 Hz, while the one-room in the single air conditioner or the multi-room air conditioner is set. During operation, discharge temperature is 4
When the temperature is 5 ° C. or higher, the minimum compressor frequency is set to 35 Hz.
【0030】圧縮機周波数を減少させることで加熱器出
口の過熱度を所定位置に設定する制御では、ある圧縮機
周波数より下げると冷媒循環量が極端に減少し、室内機
運転で風量変化を行ったときに高圧の変化から冷媒循環
量が大きく変化する虞があるが、この冷媒循環量の変化
に対応できず、加熱器出口温度が異常になることがあ
る。このことから、圧縮機周波数の下限値を設けること
で、室内側からの運転変化に対応することができる。
In the control for setting the degree of superheat at the outlet of the heater to a predetermined position by decreasing the compressor frequency, when the frequency is reduced below a certain compressor frequency, the amount of circulating refrigerant is extremely reduced. In such a case, there is a possibility that the refrigerant circulation amount greatly changes due to a change in the high pressure, but it is not possible to cope with the change in the refrigerant circulation amount, and the heater outlet temperature may become abnormal. From this, by providing the lower limit value of the compressor frequency, it is possible to cope with an operation change from the indoor side.
【0031】特に冷媒ガスが多い多冷媒状態において
は、冷凍サイクルが湿り状態となり、加熱器出口の過熱
度が小さくなることから圧縮機周波数の減少制御にはい
るが、圧縮機周波数を減少させすぎると冷媒循環量が減
少しすぎて、室内風量変化(高圧の変化)に順応できな
くなる。これは、冷媒加熱の冷凍サイクルは絞りがない
ため、高圧の変化が直接低圧の変化となり、冷媒循環量
が高圧の変化に影響を大きく受けるからである。
In particular, in a multi-refrigerant state with a large amount of refrigerant gas, the refrigerating cycle is in a wet state and the degree of superheat at the outlet of the heater is reduced, so that the compressor frequency is reduced, but the compressor frequency is excessively reduced. Then, the amount of circulating refrigerant decreases too much, and it becomes impossible to adapt to a change in indoor air volume (change in high pressure). This is because the refrigerant heating refrigeration cycle does not have a throttle, so that a change in high pressure is directly a change in low pressure, and the amount of circulated refrigerant is greatly affected by a change in high pressure.
【0032】なお、上記実施形態において、圧縮機6か
ら吐出された冷媒の温度を吐出温度センサ23により感
知する構成としたが、吐出温度センサ23を吐出圧力セ
ンサ84に置き換えることもできる。
In the above embodiment, the temperature of the refrigerant discharged from the compressor 6 is detected by the discharge temperature sensor 23. However, the discharge temperature sensor 23 can be replaced with the discharge pressure sensor 84.
【0033】図5は吐出圧力センサ84を設けた場合の
制御の流れを示すブロック図である。図5に示されるよ
うに、圧縮機6から吐出された冷媒の圧力は吐出圧力セ
ンサ84で感知され、感知された吐出圧力検出回路86
に入力され、吐出圧力として検出される。上述したよう
に、高圧がわかれば加熱器出口圧は配管の圧損と圧縮機
運転周波数により決まるので、検出された吐出圧力を所
定の計算式に代入することにより加熱器出口圧の飽和温
度を予測計算することができる。
FIG. 5 is a block diagram showing a control flow when the discharge pressure sensor 84 is provided. As shown in FIG. 5, the pressure of the refrigerant discharged from the compressor 6 is detected by a discharge pressure sensor 84, and the detected discharge pressure detection circuit 86
And is detected as a discharge pressure. As described above, if the high pressure is known, the heater outlet pressure is determined by the pressure loss of the pipe and the compressor operating frequency. Therefore, the saturation temperature of the heater outlet pressure is predicted by substituting the detected discharge pressure into a predetermined formula. Can be calculated.
【0034】また、上記実施形態は、1台の室外機に2
台の室内機を接続した多室形空気調和機を例にとり説明
したが、室内機の台数は必ずしも2台に限定されるもの
ではなく、室内機が3台以上の場合でも同様の考え方に
基ずいて略同じ制御方式によりシステムを制御すること
ができる。
In the above embodiment, two outdoor units are used.
Although a multi-room air conditioner in which two indoor units are connected has been described as an example, the number of indoor units is not necessarily limited to two. Even when there are three or more indoor units, the same concept is used. The system can be controlled by almost the same control method.
【0035】また、上述したように、加熱器出口温度の
予測制御はシングル冷媒加熱式空気調和機にも適用でき
るものである。
As described above, the predictive control of the heater outlet temperature can also be applied to a single refrigerant heating type air conditioner.
【0036】[0036]
【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.
【0037】本発明のうちで請求項1に記載の発明によ
れば、冷媒加熱器出口圧の飽和温度を演算し、冷媒加熱
器の出口温度と現在運転中の圧縮機運転周波数を検出
し、演算した飽和温度と検出した冷媒加熱器の出口温度
に基づいて冷媒加熱器出口の過熱度を演算し、この演算
により得られた過熱度が所定値となるように圧縮機周波
数を変更するようにしたので、加熱器出口温度に応じて
冷媒循環量を直接増減でき加熱器出口温度を効果的に制
御することができる。
According to the first aspect of the present invention, the saturation temperature of the outlet pressure of the refrigerant heater is calculated, and the outlet temperature of the refrigerant heater and the operating frequency of the compressor currently operating are detected. The superheat degree at the refrigerant heater outlet is calculated based on the calculated saturation temperature and the detected outlet temperature of the refrigerant heater, and the compressor frequency is changed so that the superheat degree obtained by the calculation becomes a predetermined value. Therefore, the refrigerant circulation amount can be directly increased or decreased according to the heater outlet temperature, and the heater outlet temperature can be effectively controlled.
【0038】また、請求項2記載によれば、冷媒加熱器
出口圧の飽和温度の演算において、圧縮機から吐出され
る冷媒の温度を検出し、検出された温度を所定の計算式
に代入して上記冷媒加熱器出口圧の飽和温度の予測計算
を行うようにしたので、例えば安価な吐出温度センサ及
び加熱器出口温度センサを使用して加熱器出口温度を制
御することができる。
According to the second aspect of the present invention, in calculating the saturation temperature of the refrigerant heater outlet pressure, the temperature of the refrigerant discharged from the compressor is detected, and the detected temperature is substituted into a predetermined calculation formula. Since the prediction calculation of the saturation temperature of the refrigerant heater outlet pressure is performed, the heater outlet temperature can be controlled using, for example, inexpensive discharge temperature sensors and heater outlet temperature sensors.
【0039】また、請求項2記載によれば、冷媒加熱器
出口圧の飽和温度の演算において、圧縮機から吐出され
る冷媒の圧力を検出し、検出された圧力を所定の計算式
に代入して上記冷媒加熱器出口圧の飽和温度の予測計算
を行うようにしたので、高圧の飽和温度の検出を高圧圧
力センサで検出することにより正確に高圧の飽和温度を
検出でき、検出反応速度も速い。
According to the second aspect of the present invention, in calculating the saturation temperature of the outlet pressure of the refrigerant heater, the pressure of the refrigerant discharged from the compressor is detected, and the detected pressure is substituted into a predetermined calculation formula. The calculation of the prediction of the saturation temperature of the refrigerant heater outlet pressure is performed, so that the high-pressure saturation temperature can be accurately detected by detecting the high-pressure saturation temperature with a high-pressure pressure sensor, and the detection reaction speed is also high. .
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明にかかる空気調和機の冷凍サイクルの構
成図
FIG. 1 is a configuration diagram of a refrigeration cycle of an air conditioner according to the present invention.
【図2】冷媒加熱器出口温度予測制御のフローチャートFIG. 2 is a flowchart of refrigerant heater outlet temperature prediction control.
【図3】図1の空気調和機における圧縮機周波数・燃焼
量・電動膨張弁開度及び圧縮機周波数変更の制御ブロッ
ク図
FIG. 3 is a control block diagram of compressor frequency, combustion amount, electric expansion valve opening degree, and compressor frequency change in the air conditioner of FIG. 1;
【図4】冷媒加熱器出口の過熱度と増減すべき圧縮機周
波数との関係を示す説明図
FIG. 4 is an explanatory diagram showing a relationship between a superheat degree at a refrigerant heater outlet and a compressor frequency to be increased or decreased.
【図5】図2の変形例を示す制御ブロック図FIG. 5 is a control block diagram showing a modification of FIG. 2;
【符号の説明】[Explanation of symbols]
2 室外機 4a,4b 室内機 6 圧縮機 8 室外熱交換機 10 冷暖房切換用四方弁 12a,12b 室内熱交換器 22a,22b 電動膨張弁 23 吐出温度センサ 28 冷媒加熱器 32 電磁ポンプ 33 加熱器出口温度センサ 34 バーナモータ 36a,36b 室内温度センサ 38a,38b 運転設定回路 48 室内温度検出回路 50 差温演算回路 52 設定判別回路 54 ON−OFF判別回路 56 定格容量記憶回路 62 圧縮機周波数演算回路・燃焼量演算回路 64 膨張弁開度演算回路 66 負荷係数テーブル 70 弁初期開度テーブル 72 吐出温度検出回路 73 圧縮機運転周波数検出回路 74 飽和温度演算回路 76 加熱器出口温度検出回路 78 過熱度演算回路 80 過熱度テーブル 82 圧縮機運転周波数変更回路 84 吐出圧力センサ 86 吐出圧力検出回路 Reference Signs List 2 outdoor unit 4a, 4b indoor unit 6 compressor 8 outdoor heat exchanger 10 four-way valve for cooling and heating 12a, 12b indoor heat exchanger 22a, 22b electric expansion valve 23 discharge temperature sensor 28 refrigerant heater 32 electromagnetic pump 33 heater outlet temperature Sensor 34 Burner motor 36a, 36b Indoor temperature sensor 38a, 38b Operation setting circuit 48 Indoor temperature detection circuit 50 Differential temperature calculation circuit 52 Setting determination circuit 54 ON-OFF determination circuit 56 Rated capacity storage circuit 62 Compressor frequency calculation circuit / combustion amount calculation Circuit 64 Expansion valve opening calculation circuit 66 Load coefficient table 70 Initial valve opening table 72 Discharge temperature detection circuit 73 Compressor operation frequency detection circuit 74 Saturation temperature calculation circuit 76 Heater outlet temperature detection circuit 78 Superheat degree calculation circuit 80 Superheat degree Table 82 Compressor operating frequency change circuit 84 Discharge pressure Force sensor 86 Discharge pressure detection circuit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内山 邦泰 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平8−210720(JP,A) 特開 平4−288457(JP,A) 特開 平7−180888(JP,A) (58)調査した分野(Int.Cl.6,DB名) F25B 1/00 F24F 11/02 102 F25B 13/00 341 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kuniyasu Uchiyama 1006 Ojidoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References JP-A-8-210720 (JP, A) JP-A-4- 288457 (JP, A) JP-A-7-180888 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F25B 1/00 F24F 11/02 102 F25B 13/00 341

Claims (2)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】容量可変形圧縮機と四方弁と室外熱交換器
    と冷媒加熱器とを有する1台の室外機と、室内熱交換器
    を有する少なくとも1台の室内機とを、冷媒配管を介し
    て接続した空気調和機において、前記圧縮機の吐出口近
    傍の配管温度を検出し、その検出した温度から冷媒加熱
    器出口圧の相当飽和温度を演算し、さらに上記冷媒加熱
    器出口温度を検出し、前記相当飽和温度と前記冷媒加熱
    器出口温度から上記冷媒加熱器出口の過熱度を演算し、
    この過熱度が所定値となるように圧縮機周波数を変更す
    るするようにしたことを特徴とする冷媒加熱器出口温度
    の制御方法。
    A refrigerant pipe is connected to one outdoor unit having a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and a refrigerant heater, and at least one indoor unit having an indoor heat exchanger. In the air conditioner connected via the compressor, the pipe temperature near the discharge port of the compressor is detected, the equivalent saturation temperature of the refrigerant heater outlet pressure is calculated from the detected temperature, and the refrigerant heater outlet temperature is detected. Then, the superheat degree of the refrigerant heater outlet is calculated from the equivalent saturation temperature and the refrigerant heater outlet temperature,
    A method for controlling the outlet temperature of a refrigerant heater, wherein the compressor frequency is changed so that the degree of superheat becomes a predetermined value.
  2. 【請求項2】前記冷媒加熱器出口の相当飽和温度の演算
    は、前記圧縮機の吐出口近傍の配管温度とその時の圧縮
    機運転周波数に基づいて行うことを特徴とした請求項1
    に記載の冷媒加熱器出口温度の制御方法。
    2. Calculation of an equivalent saturation temperature at the outlet of the refrigerant heater.
    Is the pipe temperature near the discharge port of the compressor and the compression at that time.
    2. The method according to claim 1, wherein the step is performed based on a machine operating frequency.
    The method for controlling the temperature of the outlet of the refrigerant heater according to the above.
JP10044957A 1998-02-26 1998-02-26 Control method of refrigerant heater outlet temperature Expired - Fee Related JP2947255B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10044957A JP2947255B1 (en) 1998-02-26 1998-02-26 Control method of refrigerant heater outlet temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10044957A JP2947255B1 (en) 1998-02-26 1998-02-26 Control method of refrigerant heater outlet temperature

Publications (2)

Publication Number Publication Date
JP2947255B1 true JP2947255B1 (en) 1999-09-13
JPH11248265A JPH11248265A (en) 1999-09-14

Family

ID=12705976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10044957A Expired - Fee Related JP2947255B1 (en) 1998-02-26 1998-02-26 Control method of refrigerant heater outlet temperature

Country Status (1)

Country Link
JP (1) JP2947255B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2688480T3 (en) 2009-03-19 2018-11-02 Daikin Industries, Ltd. Air conditioning device
EP2410263A4 (en) 2009-03-19 2015-03-25 Daikin Ind Ltd Air conditioning device
EP2410265A4 (en) 2009-03-19 2017-05-31 Daikin Industries, Ltd. Air conditioner
JP5423083B2 (en) 2009-03-19 2014-02-19 ダイキン工業株式会社 Air conditioner
JP5067505B2 (en) * 2009-03-19 2012-11-07 ダイキン工業株式会社 Air conditioner
CN104791944B (en) * 2014-01-21 2018-05-01 广东美的暖通设备有限公司 Air-conditioning system and its control method, the outdoor unit of air-conditioning system
CN111121242A (en) * 2019-12-26 2020-05-08 宁波奥克斯电气股份有限公司 Adjusting method and device for operating parameters of air conditioning system and air conditioning system

Also Published As

Publication number Publication date
JPH11248265A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
KR100484800B1 (en) Compressor&#39;s Operating Method in Air Conditioner
KR100468917B1 (en) Multi-type air conditioner
US6109533A (en) Air conditioner and refrigerant heater outlet temperature control method
KR20050099799A (en) Lev control method of cooling cycle apparatus
KR100444971B1 (en) Multi-chamber type air conditioner and method for controlling electric expansion valve thereof
JP3477013B2 (en) Air conditioner
JP6609417B2 (en) Air conditioner
JP2947255B1 (en) Control method of refrigerant heater outlet temperature
JP6109307B2 (en) Air conditioner
JP2004225929A (en) Air conditioner and control method of air conditioner
KR100565995B1 (en) Method for Operating of Multi Type Air-conditioner by Install Position of Indoor-unit
JP2767937B2 (en) Refrigeration cycle refrigerant charging amount detection device
JP2001272114A (en) Control for refrigerant of multi-chamber type air conditioner
JP2663792B2 (en) Operation control device for air conditioner
JP2754933B2 (en) Multi-room air conditioner
KR100964369B1 (en) Air conditioner&#39;s control method
JP3128480B2 (en) Refrigeration apparatus and air conditioner using the refrigeration apparatus
JP2008202868A (en) Air conditioner
JP2002061979A (en) Cooling and heating system
JPH08226732A (en) Air conditioning equipment
KR100625567B1 (en) Air conditioner
KR100812780B1 (en) Heat-pump having inverter-type compressor for preventing heating overload and control method of the same
KR100600586B1 (en) Method for control electronic expansion valve of multi air conditioner system
KR100535676B1 (en) Control method of cooling cycling apparatus
JP3301823B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140702

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees