JPH0410362B2 - - Google Patents

Info

Publication number
JPH0410362B2
JPH0410362B2 JP1744286A JP1744286A JPH0410362B2 JP H0410362 B2 JPH0410362 B2 JP H0410362B2 JP 1744286 A JP1744286 A JP 1744286A JP 1744286 A JP1744286 A JP 1744286A JP H0410362 B2 JPH0410362 B2 JP H0410362B2
Authority
JP
Japan
Prior art keywords
culture
blue
green algae
algae
ferm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1744286A
Other languages
Japanese (ja)
Other versions
JPS62176510A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1744286A priority Critical patent/JPS62176510A/en
Publication of JPS62176510A publication Critical patent/JPS62176510A/en
Publication of JPH0410362B2 publication Critical patent/JPH0410362B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 本発明は微生物産生凝集剤によるアオコの凝集
方法に関するものである。 〔従来技術〕 霞ケ浦、手加沼等において見られるように、湖
沼等において、アオコは夏期に大量に発生し、水
質汚濁の典型的な表現形を与え、水質悪化、異臭
の主原因であるばかりでなく、風景も損ね、環境
保全上の深刻な問題を生じている。 従来、アオコの分離回収方法としては、遠心分
離法や高分子凝集剤による凝集法等があるが、前
者は多大なエネルギーを必要とし、また後者は二
次公害の怒れがあるため、いずれも満足し得る方
法であるとは言えない。湖沼の水を上水道に使用
する例が多いため、二次公害の恐れのないアオコ
の回収除去法の開発が強く要望されている。 〔目的〕 本発明は二次公害の恐れのないアオコの凝集法
を提供することを目的とする。 〔構成〕 本発明者らは、二次公害の恐れのないアオコの
凝集除去法の開発について種々研究を重ねたとこ
ろ、本発明者らが先に開発した特定の微生物産生
凝集剤NOC−1(特許第1096062号)がアオコに
対してすぐれた凝集能力を有することを見出し、
本発明を完成するに到つた。 即に、本発明によれば、ロードコツカス属、ノ
カルデイア属又はコリネバクテリウム属に属し、
凝集能力を有する微生物を培養して得られた培養
物又は培養処理物をアオコと接触させることを特
徴とする微生物産生凝集剤によるアオコの凝集方
法が提供される。 本発明に使用される菌株は、ロードコツカス
属、ノカルデイア属、コリネバクテリウム属に属
し、凝集物質生産能を有する菌株であればいずれ
でもよいが、その代表例は、ロードコツカス・エ
リスロポレス(旧名ノカルデイア・エリスロポレ
ス)KR−S−1株(FERM−P3530号)、ノカル
デイア・レストリクタKR−I−3(FERM−
P4169号)、及びコリネバクテリウムKR−240−
1(FERM−P3527号)等が挙げられ、いずれも
寄託されている。 なお、旧名ノカルデイア・エリスロポレスは、
1980年国際微生物命名規約委員会によりロードコ
ツカス・エリスロポレスに再整理再分類されてい
る。 これらの菌株の培地としては、グルコース、フ
ラクトース等の炭素源、尿素、硫安等の無機窒素
源、酵母エキス等の有機窒素源、その他、無機塩
類、ビタミン類等の栄養源が使用される。 培地は液体培養でも固体培養でもよい。培養
は、初発PHがPH4〜11、温度20〜40℃の範囲で行
われ、通常は通気撹拌培養で行う。約3日〜1週
間で培養を終了し、凝集能を有する培養物を得
る。遠心分離によつて菌株を除去した上澄液より
エタノール沈殿物により、凝集物質を分離精製
し、培養処理物を回収できる。しかしながら、本
発明では、精製した培養処理物を使用するまでも
なく、培養物そのものを使用してもよく、また菌
体自体も凝集能を有するため、そのまま使用する
ことができる。 本発明においては、前記のようにして得られた
培養物又は培養処理物とアオコとを接触させて凝
集させるが、この場合、カチオン系物質を添加す
ることにより、より効率的にアオコの凝集分離を
実施することができる。カチオン系物質として
は、水中でカチオンを生成し得るものであればよ
く、好ましくは2価以上の多価カチオンを生成し
得るものがよく、例えば、塩化カルシウム、塩化
アルミニウム等のカルシウムイオンやアルミニウ
ムイオンを生成するものが有利に用いられる。カ
チオン系物質の添加量は特に制約されないが、処
理系中に100〜500ppm程度で十分な効果を示す。 本発明の方法は、一般的には、アオコに対し、
培養物又は培養処理物を加え、次いで必要に応じ
てカチオン系物質を添加することによつて実施さ
れるが、その実施方法は特に制約されるものでは
ない。 〔実施例〕 以下、実施例により本発明を具体的に説明す
る。 なお、凝集物質を生産するために、グルコース
(又はフラクトース)10g、KH2PO42g、
K2HPO45g、MgSO40.2g、尿素0.5g、酵母エ
キス0.5gを蒸留水1に溶かし、培地PHをPH7.5
に調整した培地100mlを、500mlの三角フラスコに
とり、オートクーブにより120℃、15分間無菌殺
菌した後、ロードコツカス・エリスロポレス(旧
名ノカルデイア・エリスロポレス)KR−S−1
(FERM−P3530号)、ノカルデイア・レストリク
タKR−I−3(FERM−P4169号)、及びコリネ
バクテリウムKR−240−1(FERM−P3527号)
をそれぞれ1白金耳の量で各々のフラスコに移植
し、30℃にて、各々、ロータリー培養を行い、4
日間培養して培養物を得た。 実施例 培養物によるアオコの凝集効果を検討した。こ
の場合、カチオン系物質としては、塩化カルシウ
ム、塩化アルミニウムをそれぞれ蒸留水に溶かし
て1%水溶液として用いた。 凝集テストは、100mlメスシリンダーに、霞ケ
浦のアオコ93mlを入れ、各微生物の培養物を2
ml、そしてカチオン系物質併用の場合は、各カチ
オン水溶液(1%)を5ml(カチオン非併用の時
は蒸留水5ml)を加え、よく混合後、静置して凝
集効果を調べた。なお、凝集活性は、各培養物添
加後、1分後及び3分後の沈澱部体積、及び上澄
液の透明度を550nmの吸光度〔O.D.(550)〕で測
定した。その結果を次表に示す。 表からも明らかなように、各培養物を添加して
いないコントロール区では、アオコは凝集沈澱せ
ず、濁度も無限大(測定不能)であり、まるで緑
の絵の具あるいはペンキを流したかのようである
のに対し、本発明によるロードコツカス・エリス
ロポレスKR−S−1株(FERM−P3530号)、ノ
ルカデイア・レストリクタKR−I−3(FERM
−P4169号)、コリネバクテリウムKR−240−1
(FERM−P3527号)の各々の培養物を添加した
系では、3分後には透明に近い上澄液が得られ、
さらにカチオン系物質を共存させた系では、アオ
コは驚くほどすみやかにフロツクを形成し、凝集
沈澱し、ほとんど完全に近いほどの透明な上澄液
が得られる。
[Technical Field] The present invention relates to a method for flocculating blue-green algae using a microorganism-produced flocculant. [Prior art] As seen in Kasumigaura, Tekanuma, etc., algal blooms occur in large quantities in lakes and marshes during the summer, and they are a typical form of water pollution, and are the main cause of water quality deterioration and foul odors. It also damages the landscape and poses a serious problem in terms of environmental conservation. Conventional methods for separating and collecting blue-green algae include centrifugation and flocculation using polymer flocculants, but the former requires a large amount of energy, and the latter causes secondary pollution, so neither method is satisfactory. I cannot say that this is a possible method. Since water from lakes and marshes is often used for water supply, there is a strong demand for the development of a method for collecting and removing blue-green algae without the risk of secondary pollution. [Objective] The object of the present invention is to provide a method for aggregating blue-green algae without the risk of secondary pollution. [Structure] The present inventors have conducted various studies on the development of a method for coagulating and removing blue-green algae without the risk of secondary pollution, and have discovered that the specific microorganism-producing flocculant NOC-1 ( Patent No. 1096062) was found to have excellent aggregation ability against blue-green algae.
The present invention has now been completed. Thus, according to the present invention, belonging to the genus Rhodococcus, Nocardia or Corynebacterium,
Provided is a method for aggregating blue-green algae using a microorganism-produced flocculant, which comprises bringing a culture obtained by culturing a microorganism capable of flocculating or a cultured product into contact with algae. The bacterial strain used in the present invention may belong to the genus Rhodococcus, Nocardia, or Corynebacterium and may be any strain as long as it has the ability to produce flocculants. ) KR-S-1 strain (FERM-P3530), Nocardia restricta KR-I-3 (FERM-
P4169), and Corynebacterium KR-240-
1 (FERM-P3527), all of which have been deposited. The former name Nocardia erythropores is
In 1980, it was reorganized and reclassified as Rhodochotchus erythropores by the International Committee on Microbial Nomenclature. As a culture medium for these strains, carbon sources such as glucose and fructose, inorganic nitrogen sources such as urea and ammonium sulfate, organic nitrogen sources such as yeast extract, and other nutritional sources such as inorganic salts and vitamins are used. The medium may be liquid culture or solid culture. Cultivation is carried out at an initial pH of 4 to 11 and a temperature of 20 to 40°C, and is usually carried out with aeration and stirring. The culture is completed in about 3 days to 1 week to obtain a culture having agglutination ability. The aggregated substances can be separated and purified by ethanol precipitation from the supernatant liquid from which the bacterial strain has been removed by centrifugation, and the cultured product can be recovered. However, in the present invention, there is no need to use a purified culture-treated product, and the culture itself may be used, and since the bacterial cells themselves have a flocculating ability, they can be used as they are. In the present invention, the culture or culture-treated product obtained as described above is brought into contact with blue-green algae to agglomerate it, but in this case, by adding a cationic substance, the aggregation and separation of algae can be more efficiently carried out. can be carried out. The cationic substance may be one that can generate cations in water, preferably one that can generate polyvalent cations of two or more valences, such as calcium ions and aluminum ions such as calcium chloride and aluminum chloride. Those that produce the following are advantageously used. Although the amount of the cationic substance added is not particularly limited, a sufficient effect is shown at about 100 to 500 ppm in the treatment system. The method of the present invention generally includes:
This is carried out by adding a culture or a culture-treated product, and then adding a cationic substance if necessary, but the method is not particularly limited. [Example] Hereinafter, the present invention will be specifically explained with reference to Examples. In addition, in order to produce the flocculating substance, 10 g of glucose (or fructose), 2 g of KH 2 PO 4 ,
Dissolve 5 g of K 2 HPO 4 , 0.2 g of MgSO 4 , 0.5 g of urea, and 0.5 g of yeast extract in 1 part of distilled water, and adjust the medium pH to 7.5.
Transfer 100 ml of the culture medium adjusted to 500 ml to a 500 ml Erlenmeyer flask, sterilize it in an autocube at 120°C for 15 minutes, and then add Rhodococcus erythropores (formerly known as Nocardia erythropores) KR-S-1.
(FERM-P3530), Nocardia restricta KR-I-3 (FERM-P4169), and Corynebacterium KR-240-1 (FERM-P3527)
One platinum loopful of each was transplanted into each flask, and cultured in a rotary manner at 30°C.
A culture was obtained by culturing for days. Example The effect of aggregation of blue-green algae by culture was investigated. In this case, as the cationic substances, calcium chloride and aluminum chloride were each dissolved in distilled water and used as a 1% aqueous solution. For the agglutination test, put 93ml of Kasumigaura blue-green algae into a 100ml measuring cylinder, and add 2 cultures of each microorganism.
ml of each cationic aqueous solution (1%) (if cationic substances were not used together, 5 ml of distilled water) was added, mixed well, and allowed to stand to examine the aggregation effect. The aggregation activity was determined by measuring the volume of the precipitate 1 minute and 3 minutes after addition of each culture and the transparency of the supernatant using absorbance at 550 nm [OD (550)]. The results are shown in the table below. As is clear from the table, in the control plot where each culture was not added, the blue-green algae did not coagulate and precipitate, and the turbidity was infinite (unmeasurable), as if green paint had been poured over it. In contrast, Rhodococcus erythropores KR-S-1 strain (FERM-P3530) and Norcadia restricta KR-I-3 (FERM
-P4169), Corynebacterium KR-240-1
(FERM-P3527), a nearly transparent supernatant was obtained after 3 minutes.
Furthermore, in a system in which cationic substances coexist, blue-green algae surprisingly quickly form flocs and coagulate and precipitate, yielding an almost completely transparent supernatant.

〔効果〕〔effect〕

以上の実験結果から明らかなように、本発明に
よればアオコを効率よく凝集分離することがで
き、また二次公害の恐れもないことから、本発明
法はすぐれたアオコの分離回収法ということがで
きる。
As is clear from the above experimental results, according to the present invention, blue-green algae can be efficiently coagulated and separated, and there is no fear of secondary pollution, so the method of the present invention is an excellent method for separating and recovering blue-green algae. I can do it.

Claims (1)

【特許請求の範囲】 1 ロードコツカス属、ノカルデイア属又はコリ
ネバクテリウム属に属し、凝集能力を有する微生
物を培養して得られた培養物又は培養処理物をア
オコと接触させることを特徴とする微生物産生凝
集剤によるアオコの凝集方法。 2 培養物又は培養処理物とアオコとの接触をカ
チオン系物質の共存下で行う特許請求の範囲第1
項の方法。
[Scope of Claims] 1. Microorganism production characterized by contacting a cultured product or a cultured product obtained by culturing a microorganism belonging to the genus Rhodococcus, genus Nocardia, or genus Corynebacterium and having flocculation ability with blue-green algae. Method of flocculating blue-green algae using a flocculant. 2. Claim 1, in which the culture or culture-treated product is brought into contact with algae in the presence of a cationic substance.
Section method.
JP1744286A 1986-01-29 1986-01-29 Method of agglomerating crude anthracene utilizing microbe producing agglomeration agent Granted JPS62176510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1744286A JPS62176510A (en) 1986-01-29 1986-01-29 Method of agglomerating crude anthracene utilizing microbe producing agglomeration agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1744286A JPS62176510A (en) 1986-01-29 1986-01-29 Method of agglomerating crude anthracene utilizing microbe producing agglomeration agent

Publications (2)

Publication Number Publication Date
JPS62176510A JPS62176510A (en) 1987-08-03
JPH0410362B2 true JPH0410362B2 (en) 1992-02-25

Family

ID=11944141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1744286A Granted JPS62176510A (en) 1986-01-29 1986-01-29 Method of agglomerating crude anthracene utilizing microbe producing agglomeration agent

Country Status (1)

Country Link
JP (1) JPS62176510A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008223795A (en) * 2007-03-08 2008-09-25 Kawakami Sangyo Co Ltd Fixing member

Also Published As

Publication number Publication date
JPS62176510A (en) 1987-08-03

Similar Documents

Publication Publication Date Title
Tezuka Cation-dependent flocculation in a Flavobacterium species predominant in activated sludge
Tenney et al. Chemical flocculation of microorganisms in biological waste treatment
CN104193010A (en) Microbial composite flocculant
CN107236688B (en) Marine bacterium for decolorization and flocculation and preparation method of decolorization flocculant thereof
CN107460144B (en) Aerobic active marine bacterium and preparation method of decolorizing flocculant thereof
CN107502569B (en) Composite microbial inoculum for decoloring flocculation and preparation method of flocculant thereof
JPH0410362B2 (en)
JP2001129310A (en) Flocculant and sludge treatment method
US4894161A (en) Process for clarifying a liquid using a polymeric substance
JP3256047B2 (en) Wastewater treatment method and new microorganism
JPS63126596A (en) Decoloring method for soluble dye by microorganism
JPH0290903A (en) Flocculant derived from microbe and flocculation method
JPH0730121B2 (en) Polysaccharides, agglomeration / bulking suppression / thickener mainly composed of the same, and method for producing the same
JPH0661269B2 (en) Microbial flocculant production enhancement method
JPH0578309B2 (en)
JP3861129B2 (en) Decolorizing method of coloring liquid
JP3023886B2 (en) Ethanolamine-degrading bacteria
JPH0798193B2 (en) Method for suppressing the generation and growth of filamentous fungi
JPS6342686A (en) Production of protease
JPH11276160A (en) Coagulant-producing microorganism having organic acid substrate assimilating characteristic, its microbial coagulant, and treatment of sewage and sludge using the coagulant
JPH02237603A (en) Production of microbial flocculant
JPS6071008A (en) Preparation of substance having flocculation activity
JPS63126597A (en) Soluble dye decoloring agent
Ikponmwen Assessment of Bioflocculant Production by Proteus vulgaris Isolated from Ikpoba River
SU550421A1 (en) The method of growing microorganisms

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term