JPH0798193B2 - Method for suppressing the generation and growth of filamentous fungi - Google Patents

Method for suppressing the generation and growth of filamentous fungi

Info

Publication number
JPH0798193B2
JPH0798193B2 JP4059271A JP5927192A JPH0798193B2 JP H0798193 B2 JPH0798193 B2 JP H0798193B2 JP 4059271 A JP4059271 A JP 4059271A JP 5927192 A JP5927192 A JP 5927192A JP H0798193 B2 JPH0798193 B2 JP H0798193B2
Authority
JP
Japan
Prior art keywords
activated sludge
culture
flocculant
calcium chloride
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4059271A
Other languages
Japanese (ja)
Other versions
JPH0647391A (en
Inventor
隆一郎 倉根
一郎 山本
豊一 横幕
尚史 八町
Original Assignee
工業技術院長
環境エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP63307774A priority Critical patent/JPH0661556B2/en
Application filed by 工業技術院長, 環境エンジニアリング株式会社 filed Critical 工業技術院長
Priority to JP4059271A priority patent/JPH0798193B2/en
Publication of JPH0647391A publication Critical patent/JPH0647391A/en
Publication of JPH0798193B2 publication Critical patent/JPH0798193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は糸状菌の発生及び生育抑
制方法に関し、更に詳しくは活性汚泥法による有機排水
処理方法において、凝集物質生産菌を用いて糸状菌の発
生及び生育を防止して活性汚泥と処理水との分離を効率
的に行うことが出来る糸状菌の発生及び生育抑制方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for suppressing the generation and growth of filamentous fungi, and more specifically, in an organic wastewater treatment method by an activated sludge method, the method for preventing the generation and growth of filamentous fungi by using a flocculant-producing bacterium. The present invention relates to a method for suppressing the generation and growth of filamentous fungi, which enables efficient separation of activated sludge and treated water.

【0002】[0002]

【従来の技術及びその問題点】従来、各種有機物を含む
排水の処理方法として活性汚泥方式が広く使用されてい
る。この活性汚泥方式は効率の高い処理方法であり、良
質な処理水が経済的に得られることから最も広く普及し
ている処理方法である。上記活性汚泥方式において残さ
れた最も重要な問題は、処理後の処理水と活性汚泥との
分離であり、処理水と活性汚泥とは沈澱槽である分離領
域において活性汚泥が速やかに沈降分離することが望ま
しいが、分離領域において静置時に糸状菌等の発生によ
るバルキング現象やデフロック現象が生じて活性汚泥の
凝集フロック作用が低下し、活性汚泥の沈降分離が不十
分となり、活性汚泥の流出という問題が生じる。
2. Description of the Related Art Conventionally, an activated sludge system has been widely used as a method for treating wastewater containing various organic substances. This activated sludge system is a highly efficient treatment method, and is the most widely used treatment method because it produces high quality treated water economically. The most important problem left in the activated sludge system is separation of treated water and activated sludge after treatment, and the treated water and activated sludge quickly settle and separate in the separation area which is a settling tank. However, it is desirable that the flocculation or deflocculation phenomenon occurs due to the generation of filamentous fungi during standing in the separation area, which reduces the flocculating floc action of the activated sludge, resulting in insufficient sedimentation and separation of the activated sludge. The problem arises.

【0003】活性汚泥と処理水との分離を促進させる方
法として、カチオンポリマー等の高分子凝集剤や多価金
属イオン等の無機凝集剤を使用する方法が知られている
が、これらの凝集剤は生物分解性が不十分である為、処
理水と共に放水されることにより環境汚染の問題が派生
する。従って本発明の目的は、有機排水処理方法におい
て、活性汚泥のバルキング現象を生じることなく、効率
的に活性汚泥を分離することが出来る糸状菌の発生及び
生育抑制方法を提供することである。
As a method for promoting the separation of activated sludge and treated water, a method using a polymer flocculant such as a cationic polymer or an inorganic flocculant such as a polyvalent metal ion is known. Since its biodegradability is insufficient, the problem of environmental pollution is caused by being discharged together with the treated water. Therefore, an object of the present invention is to provide a method for suppressing the generation and growth of filamentous fungi, which is capable of efficiently separating activated sludge in an organic wastewater treatment method without causing the bulking phenomenon of activated sludge.

【0004】[0004]

【問題点を解決する為の手段】上記目的は以下の本発明
によって達成される。即ち、本発明は、活性汚泥法によ
る有機排水処理法において、ロードコッカス・エリスロ
ポリス凝集物質生産菌をフラクトース培地で開放系にお
いて培養して得られる培養物と塩化カルシウムとを処理
系に存在させることを特徴とする活性汚泥と処理水との
分離領域における糸状菌の発生及び生育抑制方法及び、
ロードコッカス・エリスロポリス凝集物質生産菌をフラ
クトース液体培地で開放系において培養して得られる培
養液を凍結乾燥してなることを特徴とする糸状菌の発生
抑制剤である。
The above object can be achieved by the present invention described below. That is, the present invention relates to a method for treating organic wastewater by the activated sludge method , wherein
The police flocculant-producing bacteria were placed in an open system in fructose medium.
A method for inhibiting the growth and growth of filamentous fungi in a separation region between activated sludge and treated water, characterized in that a culture obtained by culturing and calcium chloride are present in the treatment system, and
Fragmented Rhodococcus erythropolis flocculant-producing bacteria
A culture obtained by culturing in an open system in a liquid medium of cucrose.
Generation of filamentous fungi characterized by freeze-drying a nutrient solution
It is an inhibitor .

【0005】[0005]

【作用】凝集物質生産菌を用いる有機排水処理方法にお
いて、凝集物質生産菌に塩化カルシウムを併用すること
によって、バルキング現象の主たる原因である糸状菌の
発生及び生育が抑制され、活性汚泥と処理水との分離が
効率的となり、更に分離領域のpH、凝集物質生産菌及
び塩化カルシウムの濃度を特定の範囲とすることによっ
て活性汚泥と処理水の分離が著しく促進される。又、使
用する凝集物質生産菌としてはロードコッカス・エリス
ロポリスが最も好ましく、この凝集物質生産菌はフラク
トース液体培地で開放系で効率良く培養可能である為コ
スト的に工業化可能となる。更に上記の培養液は凍結乾
燥して粉末化しても生菌数の低下は少なく、これを復水
再培養することにより速やかに増殖するので、処理設備
毎に大型の培養設備は不要となり、凝集物質生産菌を用
いる有機排水処理方法を経済的に実施することが可能と
なる。
[Function] In an organic wastewater treatment method using a flocculant-producing bacterium, by using calcium chloride together with a flocculant-producing bacterium, the generation and growth of filamentous fungi, which is the main cause of the bulking phenomenon, is suppressed, and activated sludge and treated water are treated. The separation of the activated sludge and the treated water is remarkably promoted by controlling the pH of the separation area, the flocculant-producing bacteria and the concentration of calcium chloride in the specific ranges. In addition, Rhodococcus erythropolis is most preferable as the aggregating substance-producing bacterium to be used, and since the aggregating substance-producing bacterium can be efficiently cultured in a fructose liquid medium in an open system, it can be industrialized at a cost. Furthermore, even if the above-mentioned culture solution is freeze-dried and powdered, the viable cell count does not decrease much, and by rapidly reculturing it in condensate, it grows rapidly, so a large-scale culture facility is not required for each treatment facility and aggregation The organic wastewater treatment method using the substance-producing bacteria can be economically implemented.

【0006】[0006]

【好ましい実施態様】次に好ましい実施態様を挙げて本
発明を更に詳しく説明する。本発明において使用する活
性汚泥方式による有機排水処理方法自体は周知であり、
本発明はこれらの周知のいずれの有機排水処理方法にお
いても応用することが出来るものであり、特に限定され
ない。又、本発明で使用する凝集物質生産菌は、ロード
コッカス属或いはノカルディア属に属するロードコッカ
ス・エリスロポリス菌であり、その代表株はロードコッ
カス・エリスロポリスKR−256−2、FERM−P
No.3923及びロードコッカス・エリスロポリス
KR−S−1、FERM−P No.3530である。
尚、旧名ノカルディア・エリスロポレスは、1980年
に国際微生物命名規約委員会により、ロードコッカス・
エリスロポリスに再整理・再分類されている。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the preferred embodiments. The organic wastewater treatment method itself by the activated sludge system used in the present invention is well known,
The present invention can be applied to any of these well-known organic wastewater treatment methods and is not particularly limited. In addition, the aggregate-producing bacteria used in the present invention are
Lord Cocca belonging to the genus Coccus or Nocardia
S. erythropolis , and its representative strains are Rhodococcus erythropolis KR-256-2 and FERM-P.
No. 3923 and Rhodococcus erythropolis KR-S-1, FERM-P No. 3530.
The former name, Nocardia erythropoles, was established in 1980 by the International Committee for the Convention on the Naming of Microorganisms.
Reclassified and reclassified as Erythropolis.

【0007】活性汚泥のバルキング防止に用いる場合の
ロードコッカス・エリスロポリス菌の接種混合は、一般
的には目的とする排水基質の存在下で前培養(馴養も含
む)を行った菌体が望ましいが、必ずしも前培養の必要
はない。この様にして接種混合されたロードコッカス
エリスロポリス菌は、菌の成育pHを維持し且つ栄養源
を供給することが望ましいが、一定期間は特に栄養源を
添加しなくとも使用に供することが出来る。栄養源とし
ては、例えば、炭素源、無機塩類、無機窒素源、有機窒
素源、ビタミン、農産物廃棄物、食品産業廃棄物、発酵
廃液及び残渣類、都市ゴミ等が挙げられる。本菌株は一
般の有機性の炭水化物を始めとして都市下水、産業排
水、炭化水素、汚物、フタル酸エステルの様な環境汚染
物質迄、あらゆる基質への応用が可能であるので、特に
前培養なしに種菌を加えるのみでその効果を発揮させる
ことが出来る。
In order to inoculate Rhodococcus erythropolis bacterium when used for preventing bulking of activated sludge, it is generally desirable to pre-culture (including acclimatization) cells in the presence of a target drainage substrate. However, pre-culture is not always necessary. Load Lactococcus, which has been inoculated mixed in this way
It is desirable that the erythropolis bacterium maintain the growth pH of the bacterium and supply a nutrient source, but it can be used for a certain period without adding a nutrient source. Examples of nutrient sources include carbon sources, inorganic salts, inorganic nitrogen sources, organic nitrogen sources, vitamins, agricultural product wastes, food industry wastes, fermentation waste liquids and residues, municipal wastes, and the like. Since this strain can be applied to various substrates such as general organic carbohydrates, municipal wastewater, industrial wastewater, hydrocarbons, pollutants, and environmental pollutants such as phthalates, there is no need for pre-culture. The effect can be exerted only by adding seed bacteria.

【0008】ロードコッカス・エリスロポリスの培地と
しては、炭素源としてフラクトース(fructos
e)、硫安、尿素、塩安、ペプトン等の窒素源、その他
無機塩類、ビタミン、酵母エキス等の栄養源が用いられ
る。培養は液体培養でも固体培養でもよい。液体培養の
場合は、pH=4〜8程度で温度20〜40℃の範囲で
通気攪拌で行われる。約数日間の培養で培養を終了し培
養物を得る。一般的にはここに得られた培養菌体は培養
液をそのまま活性汚泥法設備の沈澱槽に添加することが
出来る。又、培養液を濃縮したり、菌体を溶液中に懸濁
させる等して添加してもよい。
The medium of Rhodococcus erythropolis includes fructose as a carbon source.
e) , nitrogen sources such as ammonium sulfate, urea, ammonium salt and peptone, and other nutrient sources such as inorganic salts, vitamins and yeast extract. The culture may be liquid culture or solid culture. In the case of liquid culture, it is carried out by aeration and agitation at a pH of about 4 to 8 and a temperature of 20 to 40 ° C. The culture is completed by culturing for about several days to obtain a culture. In general, the culture broth thus obtained can be added as it is to the settling tank of the activated sludge method equipment. Further, the culture solution may be added by concentrating it or suspending the bacterial cells in the solution.

【0009】本発明の第一の特徴は、上記の凝集物質生
産菌(ロードコッカス・エリスロポリス)に塩化カルシ
ウムを併用する点であり、塩化カルシウムの併用によっ
て有機排水処理方法の活性汚泥と処理水との分離領域に
おいてバルキングの主たる原因となる糸状菌の発生及び
その増殖が抑えられることである。従って本発明は処理
水中において糸状菌が発生し易い排水の処理に特に有効
である。本発明の第二の特徴は、活性汚泥と処理水とを
分離すべき分離領域におけるpHを好ましくは8〜9と
した点である。即ち、pHが8以下では凝集物質生産菌
に塩化カルシウムを併用しても活性汚泥の凝集分離はそ
れ程は促進されず、一方、pHが9以上でも同様に活性
汚泥の凝集分離はpHに応じて促進されず、又、活性汚
泥の活性が低下するので好ましくない。又、本発明の第
三の特徴は、分離領域における塩化カルシウムの濃度を
好ましくは0.25重量%以上、更に好ましくは0.2
5〜1.0重量%としたことである。濃度が0.25%
未満では凝集物質生産菌の量を多くしても凝集効果は不
十分であり、又、1.0重量%以上としても濃度に応じ
た凝集効果の増大は認められない。
A first feature of the present invention is that calcium chloride is used in combination with the above-mentioned flocculant-producing bacterium (Rhodococcus erythropolis). By using calcium chloride in combination, activated sludge and treated water in an organic wastewater treatment method are treated. That is, the occurrence and growth of filamentous fungi, which are the main cause of bulking, are suppressed in the separation area of and. Therefore, the present invention is particularly effective for treating wastewater in which filamentous fungi are easily generated in treated water. The second feature of the present invention is that the pH in the separation region where the activated sludge and the treated water are to be separated is preferably 8-9. That is, when the pH is 8 or less, the coagulation and separation of the activated sludge is not so promoted even when calcium chloride is used in combination with the flocculant-producing bacterium. On the other hand, when the pH is 9 or more, the coagulation and separation of the activated sludge also depends on the pH. It is not preferred because it is not promoted and the activity of the activated sludge decreases. The third feature of the present invention is that the concentration of calcium chloride in the separation region is preferably 0.25% by weight or more, more preferably 0.2% by weight or more.
It is set to 5 to 1.0% by weight. Concentration is 0.25%
When the amount is less than the above, the aggregating effect is insufficient even if the amount of the aggregating substance-producing bacterium is increased, and when the amount is 1.0% by weight or more, the aggregating effect is not increased depending on the concentration.

【0010】本発明の第四の特徴は、凝集物質生産菌の
添加量を培養液として0.5重量%以上、好ましくは
0.5〜10重量%としたことである。凝集物質生産菌
の濃度が0.5%未満では十分な凝集効果が得られず、
又、10%を越えて添加しても添加量に応じて凝集効果
が向上するものでもなかった。尚、本発明で使用する凝
集物質生産菌は凝集物質を生産して、その生産物が凝集
効果を発揮するものと考えられるが、培養液を0.45
メンブレンフィルターで濾過して菌体を除去した溶液を
用いても同様な効果が得られる。以上の如き好適なp
H、凝集物質生産菌及び塩化カルシウムの濃度を決定す
る実験を行ない、その結果を図1、図2及び図3に示し
た。以上の如き凝集物質生産菌は滅菌した純粋培養系で
培養することが出来ることは良く知られているが、これ
らの凝集物質生産菌を工業的に利用する為には雑菌が混
入する開放系で効率的に培養することが出来ることが必
要である。本発明者はこれらの点について検討したとこ
ろ、特定の液体培地において開放系で効率よく培養可能
であることを見い出した。
The fourth feature of the present invention is that the amount of the flocculant-producing bacterium added is 0.5% by weight or more, preferably 0.5 to 10% by weight, as a culture solution. If the concentration of the flocculant-producing bacterium is less than 0.5%, a sufficient flocculating effect cannot be obtained.
Further, even if added in excess of 10%, the aggregation effect was not improved depending on the added amount. It is considered that the aggregating substance-producing bacterium used in the present invention produces an aggregating substance, and the product exhibits an aggregating effect.
The same effect can be obtained by using a solution obtained by removing the bacterial cells by filtering with a membrane filter. Suitable p as described above
Experiments were carried out to determine the concentrations of H, flocculant-producing bacteria and calcium chloride, and the results are shown in FIGS. 1, 2 and 3. It is well known that the above-mentioned flocculant-producing bacteria can be cultivated in a sterilized pure culture system, but in order to industrially use these flocculant-producing bacteria, it is an open system in which various bacteria are mixed. It is necessary to be able to culture efficiently. The present inventor has examined these points and found that efficient culture can be performed in an open system in a specific liquid medium.

【0011】培養方法としては、凝集物質生産菌(ロー
ドコッカス・エリスロポリス)を下記の液体培地で振盪
培養により前培養したものを供試菌として検討した。液体培地の組成 フラクトース 10g/リットル KHPO 5g/リットル KHPO 2g/リットル MgSO 0.2g/リットル (NHSO 0.5g/リットル イースト抽出物 0.5g/リットル NaCl 0.1g/リットル
As the culturing method, a flocculant-producing bacterium (Rhodococcus erythropolis) pre-cultured by shaking culture in the following liquid medium was examined as a test bacterium. Composition of liquid medium Fructose 10 g / liter K 2 HPO 4 5 g / liter KH 2 PO 4 2 g / liter MgSO 4 0.2 g / liter (NH 4 ) 2 SO 4 0.5 g / liter Yeast extract 0.5 g / liter NaCl 0.1 g / liter

【0012】次に上記液体培地150ミリリットルを5
00ミリリットルの三角フラスコに入れ、種菌5ミリリ
ットルを接種し温度30℃で振盪培養した。培養液の力
価及び菌増殖量は、カオリン5,000mg/リットル
液80ミリリットルに10%CaCl2液10ミリリットル
を添加後、培養液0.5ミリリットルを加え、100ミ
リリットルのメスシリンダーにて良く転倒撹拌後、反応
液のpHをNaOHにてpH8に調整し、その後全体を再び
よく撹拌して静置し、5分後に澄水の濁度(OD550)を
測定し、菌の増殖量をOD660 により求めた。尚、比較
例として良く知られているフタル酸培地を用いた場合と
純粋フラクトース系培地を用いた場合についてもOD
550 とOD660 を求めた。その結果図4に示す結果が得
られた。図4の結果からして、公知のフタル酸系培地で
は純粋培養系の26%の力価であるのに対し、フラクト
ース培地開放培養系では88%であり、フラクトース系
培地では開放系でも十分に増殖可能であることが分っ
た。又、培地のpHは8〜9で、特に8.5が最良の結
果が得られた。又、培養時間は5日間程度で十分であ
る。
Next, 150 ml of the above liquid medium is added to 5
The mixture was placed in a 00 ml Erlenmeyer flask, inoculated with 5 ml of inoculum, and cultured at 30 ° C. with shaking. The titer and bacterial growth of the culture solution were as follows: 80 ml of 5,000 mg / liter kaolin solution, 10 ml of 10% CaCl 2 solution, 0.5 ml of culture solution, and 100 ml graduated cylinder. After stirring, the pH of the reaction solution was adjusted to pH 8 with NaOH, and then the whole was again well stirred and allowed to stand, and after 5 minutes, the turbidity (OD 550 ) of the clear water was measured to determine the growth amount of the bacteria OD 660. Sought by. It should be noted that the OD was also obtained when using a well-known phthalic acid medium as a comparative example and when using a pure fructose-based medium.
550 and OD 660 were calculated. As a result, the result shown in FIG. 4 was obtained. From the results of FIG. 4, the known phthalic acid medium had a titer of 26% of that of the pure culture system, whereas the fructose medium open culture system had a titer of 88%, and the fructose medium had a sufficient titer even in the open system. It was found to be able to grow. The best results were obtained when the pH of the medium was 8-9, especially 8.5. A culture time of about 5 days is sufficient.

【0013】又、上記の如き凝集物質生産菌を、より工
業的に使い易くする為には凝集物質生産菌を培養液とし
て取扱うよりも粉末で取扱えることが好ましい。本発明
では凝集物質生産菌の培養液の粉末化を凍結乾燥方法に
よって試みた。即ち、前記フラクトース液体培地で培養
した培養液200ミリリットルを1リットルの凍結乾燥
用容器に入れ、フリーズドドライヤー(太平化学製)で
凍結乾燥し粉末化した。得られた粉末を凍結乾燥前と同
重量になる様に滅菌蒸留水を加えて復水し、生存菌の割
合を調べたところ、1日保存で57.1%、1ケ月保存
で32.3%、6ケ月保存で30.6%の結果が得られ
た。又、上記で復水した試料5ミリリットルを100ミ
リリットルのフラクトース液体培地に加え30℃で振盪
培養し、菌の増殖量を調べたところ、図5に示す如く培
養3日目で力価が凍結乾燥前と同程度に増殖し、凝集活
性も同等になった。従って、本発明によれば、凝集物質
生産菌が粉末として十分に取扱うことが出来、簡単な培
養設備で凝集物質生産菌を復元することが出来るので、
凝集物質生産菌を用いる有機排水処理方法の工業化が可
能である。
In order to facilitate the industrial use of the agglutinating substance-producing bacterium as described above, it is preferable to handle the aggregating substance-producing bacterium as a powder rather than as a culture solution. In the present invention, pulverization of the culture solution of the flocculant-producing bacteria was attempted by the freeze-drying method. That is, 200 ml of the culture solution cultivated in the fructose liquid medium was placed in a 1 liter freeze-drying container, and freeze-dried with a freeze dryer (manufactured by Taihei Kagaku Co., Ltd.) to obtain powder. Sterile distilled water was added to the obtained powder so as to have the same weight as that before freeze-drying, and the mixture was reconstituted to examine the ratio of surviving bacteria. As a result, 57.1% was stored for 1 day and 32.3 was stored for 1 month. %, Storage for 6 months gave a result of 30.6%. In addition, 5 ml of the above-condensed sample was added to 100 ml of fructose liquid medium and shake-cultured at 30 ° C., and the growth amount of the bacteria was examined. As shown in FIG. 5, the titer was freeze-dried on the third day of culture. It proliferated to the same extent as before and had the same aggregating activity. Therefore, according to the present invention, the aggregate-producing bacteria can be sufficiently handled as a powder, and the aggregate-producing bacteria can be restored with a simple culture facility.
It is possible to industrialize an organic wastewater treatment method using a flocculant-producing bacterium.

【0014】[0014]

【実施例】次に実施例により本発明を更に具体的に説明
する。連続混合培養槽において人為的に発生させたバル
キング汚泥に対して、凝集物質生産菌を適用することに
より、塩化カルシウムと凝集物質生産菌の添加量及び添
加方法を変えて、そのバルキング抑制効果について検討
した。 実験方法 (イ) 供試原水 実験では下記表1に示す組成のBOD100g/リット
ルの濃厚原水を作成し、処理条件に合う濃度に水道水で
希釈して使用した。
EXAMPLES Next, the present invention will be described more specifically by way of examples. By applying flocculant-producing bacteria to the bulking sludge artificially generated in the continuous mixed culture tank, the addition amount and method of adding calcium chloride and flocculant-producing bacteria were changed, and the effect of suppressing bulking was examined. did. Experimental Method (a) Test Raw Water In the test, concentrated raw water of BOD 100 g / liter having the composition shown in Table 1 below was prepared, and diluted with tap water to a concentration suitable for the treatment conditions.

【表1】 (合成排水の基質組成) (表中の数値の単位はpH以外はmg/リットルである) 上記の合成排水は極めて糸状性バルキングを発生させ易
い基質組成であることが検証されており、その結果に基
づき選定したものある。
[Table 1] (Substrate composition of synthetic wastewater) (The unit of the numerical values in the table is mg / liter except pH.) It has been verified that the above synthetic wastewater has a substrate composition that is extremely prone to filamentous bulking, and was selected based on the results.

【0015】(ロ) 活性汚泥 実験では供試活性汚泥として前記表1の合成排水を用い
て回分式混合培養槽において馴養したものを用いた。本
活性汚泥は沈降性良好な活性汚泥である。この活性汚泥
を下記表2に示す処理条件で連続培養すると、通水開始
約6〜8日目で糸状性バルキングの状況を呈した活性汚
泥となる
(B) Activated sludge In the experiment, the activated sludge used in the experiment was the one acclimated in the batch type mixed culture tank using the synthetic wastewater shown in Table 1 above. This activated sludge is an activated sludge having a good sedimentation property. When this activated sludge is continuously cultivated under the treatment conditions shown in Table 2 below, the activated sludge becomes a filamentous bulking state about 6 to 8 days after the start of water passage.

【表2】 (処理条件) 本活性汚泥中の糸状微生物には偽分岐が多く見られ、細
胞直径0.8〜1.2μm、細胞形が卵形でグラム染色
が(−)であり、Eikelboom 及びJenkins の分類法に従
うと、Sphoerotilusnatansに分類される。
[Table 2] (Processing conditions) Filamentous microorganisms in this activated sludge often had pseudo-branching, cell diameter was 0.8-1.2 μm, cell shape was oval and Gram stain was (-). According to the classification method of Eikelboom and Jenkins, It is classified as Sphoerotilus natans.

【0016】(ハ) 実験装置 実験には図6に示す様な曝気槽容量8リットル及び沈降
分離槽2リットルの透明塩化ビニル樹脂製の連続混合培
養槽を用いた。供試原水は定量ポンプにより所定の濃度
と水量で連続的に曝気槽に供給した。曝気は空気により
常に曝気槽内にDOが立ち上がる様にエアストーンを用
いた。水温は室温で行い実験期間中22〜25℃であっ
た。 (ニ) 添加条件 通水開始より活性汚泥がバルキング状態(SVI 400 ミリ
リットル/g以上)になった時点で、下記表3に示す添
加条件で塩化カルシウム及び凝集物質生産菌培養液を添
加し、活性汚泥のSVIの経日変化よりバルキング抑制
効果を検討した。添加方法としては、25%塩化カルシ
ウム溶液と凝集物質生産菌培養液とを添加条件に合った
量に混合し、曝気槽に投入し1N NaOH でpH8.5〜
9.0に調整した。培養液はフラクトース液体培地で5
日間振盪培養したものを使用した。この培養液の力価は
2.2〜2.5であった。
(C) Experimental apparatus As shown in FIG. 6, a continuous mixing culture tank made of transparent vinyl chloride resin having an aeration tank capacity of 8 liters and a sedimentation separation tank of 2 liters was used for the experiment. The raw water to be tested was continuously supplied to the aeration tank at a predetermined concentration and water amount by a metering pump. Air stones were used for aeration so that DO would always rise in the aeration tank by air. The water temperature was room temperature and was 22 to 25 ° C. during the experiment. (D) Addition conditions When activated sludge became bulking state (SVI 400 ml / g or more) from the start of water flow, calcium chloride and flocculant-producing bacterial culture solution were added under the addition conditions shown in Table 3 below to activate the sludge. The effect of suppressing bulking was examined by the daily change of SVI of sludge. As the addition method, a 25% calcium chloride solution and a culture solution of a flocculant-producing bacterium were mixed in an amount suitable for the addition conditions, and the mixture was put into an aeration tank and pH was adjusted to 8.5 with 1N NaOH.
It was adjusted to 9.0. Culture medium is fructose liquid medium 5
What was shake-cultured for a day was used. The titer of this culture was 2.2-2.5.

【0017】[0017]

【表3】 (添加条件) *左記量を1回添加後、次の日より5日間塩化カルシウ
ムを0.25%添加した。 (ホ) 分析 下記表4に示す項目を毎日測定した。
[Table 3] (Additional conditions) * After adding the amount shown on the left once, 0.25% of calcium chloride was added for 5 days from the next day. (E) Analysis The items shown in Table 4 below were measured daily.

【表4】 (サンプルと分析項目) [Table 4] (Samples and analysis items)

【0018】結果と考察 (イ) 塩化カルシウム添加量の検討 塩化カルシウムの添加量を0.062、0.25、0.
62%と変化させ、毎日1回、5日間添加し、バルキン
グ抑制効果を検討した。図7はSV30、MLSS、SV
Iの経日変化を示したものである。塩化カルシウム0.
062〜0.25%添加条件では活性汚泥の沈降圧密性
の改善効果は認められなかったが、0.62%添加条件
では添加3日目よりSVが下がり始め、9日目迄沈降性
良好となり、その後再びSVが上昇した。又、SVの下
降に応じて、顕微鏡観察では活性汚泥中の糸状微生物(S
phoerotilus natans)が減少していることから、塩化カ
ルシウムの多量添加は、糸状微生物の増殖を阻害する作
用があるものと思われる。 (ロ) 凝集物質生産菌によるバルキング抑制効果 塩化カルシウム添加量を0.62%と一定し、凝集物質
生産菌培養液の添加量を2、5、10%と変えて添加
し、そのバルキング抑制効果を検討した。結果は図8に
示す。培養液の添加量に応じて沈降圧密改善及びバルキ
ング抑制持続効果を示した。
Results and Consideration (b) Examination of Calcium Chloride Addition The amount of calcium chloride added was 0.062, 0.25, 0.
It was changed to 62% and added once a day for 5 days, and the effect of suppressing bulking was examined. Figure 7 shows SV 30 , MLSS, SV
It shows the change with time of I. Calcium chloride 0.
Under the condition of adding 062 to 0.25%, the effect of improving the settling compaction of activated sludge was not recognized, but under the condition of adding 0.62%, the SV started to decrease from the 3rd day of addition and the settling property was good until the 9th day. , And then SV rose again. In addition, according to the decrease in SV, microscopic observation revealed that filamentous microorganisms (S
phoerotilus natans) is decreased, it seems that the addition of a large amount of calcium chloride has the effect of inhibiting the growth of filamentous microorganisms. (B) Bulking inhibitory effect of flocculant-producing bacteria The amount of calcium chloride added was fixed at 0.62%, and the flocculant-producing bacterial culture solution was added at 2, 5, or 10%, and the bulking inhibitory effect was added. It was investigated. The results are shown in Fig. 8. The effects of improving sedimentation compaction and maintaining bulking were shown depending on the amount of culture medium added.

【0019】図9は、塩化カルシウム0.62%、培養
液5%添加し、SVIの経時変化を原水が連続して流入
すると場合と、空曝気状態とで比較した結果である。添
加直後は培養液の凝集作用によりSVIが500ミリリ
ットル/gから100ミリリットル/g迄低下する。そ
の後、空曝気状態でが24Hr経過しても凝集効果が持続
するが、原水流入では時間の経過と共に凝集力が低下し
て24Hr後にはSVI 400ミリリットル/gで汚泥
の沈降性は元の状態近く迄戻ってしまう。又、pHも添
加直後8.8から24Hr後7.6迄低下する。原水流入
の場合に凝集効果が低下する原因として、 (1) 糸状性細菌の増殖 (2) 曝気によるフロックの解体 (3) pHの低下 (4) カルシウムイオンの曝気槽系外への流出 (5) 凝集培養液の希釈と系外への流出 が考えられる。
FIG. 9 shows the results of comparison of the time-dependent change in SVI between the case where raw water is continuously flowed in and the state of air aeration when 0.62% of calcium chloride and 5% of culture solution are added. Immediately after the addition, the SVI decreases from 500 ml / g to 100 ml / g due to the aggregating action of the culture solution. After that, the agglomeration effect continues even after 24 hours in the air aeration state, but the cohesive force decreases with the passage of time in raw water inflow, and after 24 hours, the SVI is 400 ml / g and the sludge sedimentation property is close to the original state. I will return until. The pH also drops from 8.8 immediately after the addition to 7.6 after 24 hours. The causes of the decrease in the coagulation effect in the case of inflow of raw water are (1) growth of filamentous bacteria (2) disassembly of flocs by aeration (3) decrease in pH (4) outflow of calcium ions out of the aeration tank system (5) ) It is possible that the coagulation culture fluid is diluted and flows out of the system.

【0020】図10に塩化カルシウム0.62%、培養
液5%添加時の曝気槽内残留カルシウムイオン濃度の経
時変化を示す。約25%が汚泥中に蓄積され、残り75
%は処理水と共に系外に排出されることがわかった。連
続混合培養槽において、凝集物質生産菌の効果を持続さ
せるには、系内にカルシウムイオンが存在し、且つpH
が8.0以上であることが必要であることから次に原水
のpH8.5に調整し、塩化カルシウムを補充する条件
で凝集物質生産菌のバルキング抑制効果を検討した。図
11及び図12は塩化カルシウム添加量を0.62%と
一定とし、凝集物質生産菌培養液を0〜10%1回添加
し、その後5日間塩化カルシウム0.25%のみを添加
し、バルキング抑制効果を検討した結果である。培養液
(力価2.2〜2.5)2%添加条件では抑制持続効果
が現われなかったが、5、10%添加条件では添加5日
後よりSVが低下し始め、それ以降20日間以上汚泥の
沈降性良好な状態が続き持続効果が認められた。しかし
ながら、培養液の添加量はその培養液の凝集力価に大き
く依存することは当然のことである。従って必ずしも培
養液の添加量が5%以上必要でないことは言うまでもな
い。図12の処理機能に与える影響では、凝集物質生産
菌の添加2%以下で処理性が悪化するのは、汚泥の流出
によるMLSS濃度の低下が起因していることによる。
従って、凝集物質生産菌5%以上の添加によって、汚泥
の沈降性が改善された場合には、処理性は良好な状態に
維持された。しかし、前述の如く、培養液の添加量が5
%以上に限定されるものではない。以上の結果は、塩化
カルシウムによる糸状微生物の増殖抑制効果と凝集物質
生産菌による凝集促進効果との相乗効果により、バルキ
ング汚泥の沈降圧密性が改善されたことを示している。
FIG. 10 shows changes with time in the residual calcium ion concentration in the aeration tank when 0.62% of calcium chloride and 5% of the culture solution were added. About 25% is accumulated in sludge, and the remaining 75
It was found that the% was discharged out of the system together with the treated water. In a continuous mixed culture tank, calcium ion is present in the system and
Since it is necessary to adjust the pH of the raw water to 8.0 or more, the pH of the raw water was adjusted to 8.5 and the effect of inhibiting the bulking substance-producing bacteria from bulking was examined under the condition of supplementing with calcium chloride. Figures 11 and 12 show that the amount of calcium chloride added was kept constant at 0.62%, the flocculant-producing bacterial culture solution was added once, and then 0.25% calcium chloride alone was added for 5 days, followed by bulking. This is the result of examining the suppression effect. In the condition of adding 2% of culture solution (titer 2.2-2.5), the inhibitory-lasting effect did not appear, but in the condition of adding 5% and 10%, the SV started to decrease 5 days after the addition, and the sludge for 20 days or more thereafter. The sedimentation property of No. 2 was good, and a sustained effect was observed. However, it goes without saying that the added amount of the culture solution largely depends on the aggregation titer of the culture solution. Therefore, it goes without saying that the amount of the culture solution added is not necessarily 5% or more. With respect to the effect on the treatment function of FIG. 12, the reason that the treatability deteriorates when the amount of the flocculant-producing bacterium added is 2% or less is that the MLSS concentration is decreased due to the outflow of sludge.
Therefore, when the sedimentation of sludge was improved by adding 5% or more of the flocculant-producing bacteria, the processability was maintained in a good state. However, as mentioned above, the amount of culture solution added was 5
It is not limited to% or more. The above results indicate that the sedimentation compaction property of the bulking sludge was improved by the synergistic effect of the growth inhibitory effect of the filamentous microorganisms by calcium chloride and the aggregation promoting effect by the aggregate-producing bacteria.

【0021】[0021]

【発明の効果】以上の如き本発明によれば、ロードコッ
カス・エリスロポリス凝集物質生産菌を用いる有機排水
処理方法において、この凝集物質生産菌及び塩化カルシ
ウムを併用することによってバルキング現象の主たる原
因である糸状菌の発生が抑制され、活性汚泥と処理水と
の分離が効率的となり、更に分離領域のpH、凝集物質
生産菌及び塩化カルシウムの濃度を特定の範囲とするこ
とによって活性汚泥と処理水の分離がより一層著しく促
進される。又、使用するロードコッカス・エリスロポリ
凝集物質生産菌は、フラクトース液体培地で開放系で
効率良く培養可能である為コスト的に工業化可能とな
る。更に上記の培養液は凍結乾燥して粉末化しても生菌
数の低下は少なく、これを復水再培養することにより速
やかに増殖し、凝集力価を発揮するので、処理設備毎に
大型の培養設備は不要となり、凝集物質生産菌を用いる
有機排水処理方法を経済的に実施することが可能とな
る。
According to the present invention as described above, the road cot
In an organic wastewater treatment method using a Cass erythropolis flocculant-producing bacterium, by using this flocculant-producing bacterium and calcium chloride in combination, the generation of filamentous fungi, which is the main cause of the bulking phenomenon, is suppressed, and activated sludge and treated water Of the activated sludge and treated water are further remarkably promoted by controlling the pH of the separation area, the flocculant-producing bacteria and the concentration of calcium chloride within a specific range. Also, the Road Coccus erythropol to be used
Since the flocculant-producing bacterium can be efficiently cultured in a fructose liquid medium in an open system, it can be industrialized at a cost. Furthermore, even if the above culture solution is freeze-dried and pulverized, the number of viable cells is not significantly reduced, and by reculturing in condensate, it rapidly proliferates and exerts a coagulation titer. Cultivation equipment is not required, and the organic wastewater treatment method using the flocculant-producing bacteria can be economically implemented.

【0022】[0022]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の結果を示す図。FIG. 1 is a diagram showing a result of an example of the present invention.

【図2】本発明の実施例の結果を示す図。FIG. 2 is a diagram showing a result of an example of the present invention.

【図3】本発明の実施例の結果を示す図。FIG. 3 is a diagram showing a result of an example of the present invention.

【図4】本発明の実施例の結果を示す図。FIG. 4 is a diagram showing a result of an example of the present invention.

【図5】本発明の実施例の結果を示す図。FIG. 5 is a diagram showing a result of an example of the present invention.

【図6】本発明で使用した装置を示す図。FIG. 6 is a diagram showing an apparatus used in the present invention.

【図7】本発明の実施例の結果を示す図。FIG. 7 is a diagram showing a result of an example of the present invention.

【図8】本発明の実施例の結果を示す図。FIG. 8 is a diagram showing a result of an example of the present invention.

【図9】本発明の実施例の結果を示す図。FIG. 9 is a diagram showing a result of an example of the present invention.

【図10】本発明の実施例の結果を示す図。FIG. 10 is a diagram showing a result of an example of the present invention.

【図11】本発明の実施例の結果を示す図。FIG. 11 is a diagram showing a result of an example of the present invention.

【図12】本発明の実施例の結果を示す図。FIG. 12 is a diagram showing a result of an example of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八町 尚史 千葉県君津市南子安4−25−25 審査官 中野 孝一 (56)参考文献 特開 昭54−31965(JP,A) 特開 昭58−183910(JP,A) 特開 昭63−126597(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naofumi Hachimachi 4-25-25 Minamikoyasu Kimitsu City, Chiba Examiner Koichi Nakano (56) References JP-A-54-31965 (JP, A) JP-A-58 -183910 (JP, A) JP-A-63-126597 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活性汚泥法による有機排水処理法におい
て、ロードコッカス・エリスロポリス凝集物質生産菌を
フラクトース培地で開放系において培養して得られる培
養物と塩化カルシウムとを処理系に存在させることを特
徴とする活性汚泥と処理水との分離領域における糸状菌
の発生及び生育抑制方法。
1. A method for producing Rhodococcus erythropolis flocculant in an organic wastewater treatment method using an activated sludge method.
Cultures obtained by culturing in an open system in fructose medium
A method for suppressing the generation and growth of filamentous fungi in a separation area between activated sludge and treated water, which comprises allowing a nutrient and calcium chloride to exist in the treatment system.
【請求項2】 ロードコッカス・エリスロポリス凝集物
質生産菌をフラクトース液体培地で開放系において培養
して得られる培養液を凍結乾燥してなることを特徴とす
糸状菌の発生抑制剤
2. A Rhodococcus erythropolis aggregate
Of quality-producing bacteria in fructose liquid medium in an open system
Characterized in that it is obtained by freeze-drying the culture solution obtained by
Generation inhibitor of filamentous fungi that.
JP4059271A 1988-12-07 1992-02-14 Method for suppressing the generation and growth of filamentous fungi Expired - Fee Related JPH0798193B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63307774A JPH0661556B2 (en) 1988-12-07 1988-12-07 Organic wastewater treatment method
JP4059271A JPH0798193B2 (en) 1988-12-07 1992-02-14 Method for suppressing the generation and growth of filamentous fungi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63307774A JPH0661556B2 (en) 1988-12-07 1988-12-07 Organic wastewater treatment method
JP4059271A JPH0798193B2 (en) 1988-12-07 1992-02-14 Method for suppressing the generation and growth of filamentous fungi

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63307774A Division JPH0661556B2 (en) 1988-12-07 1988-12-07 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH0647391A JPH0647391A (en) 1994-02-22
JPH0798193B2 true JPH0798193B2 (en) 1995-10-25

Family

ID=26400324

Family Applications (2)

Application Number Title Priority Date Filing Date
JP63307774A Expired - Fee Related JPH0661556B2 (en) 1988-12-07 1988-12-07 Organic wastewater treatment method
JP4059271A Expired - Fee Related JPH0798193B2 (en) 1988-12-07 1992-02-14 Method for suppressing the generation and growth of filamentous fungi

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP63307774A Expired - Fee Related JPH0661556B2 (en) 1988-12-07 1988-12-07 Organic wastewater treatment method

Country Status (1)

Country Link
JP (2) JPH0661556B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350381B2 (en) * 1998-10-27 2002-02-26 Kinder Morgan Energy Partners, L.P. Biodegradation of ethers using fatty acid enhanced microbes
JP2011224569A (en) * 2011-07-20 2011-11-10 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
CN109111041B (en) * 2018-09-13 2021-05-07 福建海峡环保集团股份有限公司 Method for inhibiting biological foams caused by Nocardia in aeration tank
CN110195026B (en) * 2019-03-04 2022-10-11 暨南大学 Preparation of DEHP degrading microbial inoculum and method for effectively reducing DEHP pollution in vegetable production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431965A (en) * 1977-08-15 1979-03-09 Agency Of Ind Science & Technol Method of managing activated sludge
JPS58183910A (en) * 1982-04-22 1983-10-27 Agency Of Ind Science & Technol Flocculation of filthy substance by microorganism
JPS63126597A (en) * 1986-11-14 1988-05-30 Agency Of Ind Science & Technol Soluble dye decoloring agent

Also Published As

Publication number Publication date
JPH0647391A (en) 1994-02-22
JPH0661556B2 (en) 1994-08-17
JPH02157097A (en) 1990-06-15

Similar Documents

Publication Publication Date Title
DK2999801T3 (en) MICROBIAL WASTE WATER TREATMENT COMPOSITIONS AND PROCEDURES FOR USING THEREOF
US20070062865A1 (en) Novel biological flocculants and production methods
JP2001523539A (en) Preparation method of microorganism culture for wastewater treatment
CN109706096A (en) One plant of brevibacterium frigoritolerans and its application with denitrogenation and efficient flocculating ability
JPH0798193B2 (en) Method for suppressing the generation and growth of filamentous fungi
EP1204608A2 (en) Method of purifying water, suitable bacteria for the method and use thereof
CN110938567B (en) Bacillus subtilis, microbial agent and application thereof
JP2751862B2 (en) Method for producing microbial flocculant by fermentation method
JP3580696B2 (en) Coagulant-producing microorganism having organic acid substrate utilization characteristics, microbial coagulant, and wastewater / sludge treatment method using the same
JPH10286085A (en) Brevundimonas sp. p3-4 strain and treatment of orthophosphoric acid-containing water
JPS5913276B2 (en) Method for purifying factory waste liquid using yeast
Mohammed et al. Production of Bioflocculant through Fermentation of Spoilt Orange Juice with Bacillus spp Isolated from Sediment of Local Clay Pot
JP3062121B2 (en) Formaldehyde decomposition method
JP3193007B2 (en) Bioreactor and wastewater treatment system using microorganisms capable of degrading raw starch or protein
SU1172887A1 (en) Method of biochemical treatment of waste water
JPH06277693A (en) Treatment process for high concentration alkali waste water
Al-Shahwani et al. Effects of bacterial communities on floc sizes and numbers in industrial and domestic effluents
Ramadhani et al. The combination of anaerobic-aerobic and coagulation-flocculation method using tamarind seed as natural coagulant for tofu wastewater treatment
JPH10165174A (en) Coagulant producing microorganism using organic acid as substrate, microbial coagulant produced therefrom and treatment of sewage using the coagulant
JP3781455B2 (en) Emulsion destruction by microorganisms
JPH0661B2 (en) Flocculant-producing microorganism
JPH0466639B2 (en)
JPH02215387A (en) Method for flocculating and recovering useful substance from fermentation residual suspension with flocculant produced by microorganism
Al-Shahwani Visual Analysis of Flocculation by Microthrix parvicella
JPS62195288A (en) Production enhancement of microbial flocculant

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960430

LAPS Cancellation because of no payment of annual fees