JPH02157097A - Bacteria flocculant and bulking control method - Google Patents

Bacteria flocculant and bulking control method

Info

Publication number
JPH02157097A
JPH02157097A JP63307774A JP30777488A JPH02157097A JP H02157097 A JPH02157097 A JP H02157097A JP 63307774 A JP63307774 A JP 63307774A JP 30777488 A JP30777488 A JP 30777488A JP H02157097 A JPH02157097 A JP H02157097A
Authority
JP
Japan
Prior art keywords
activated sludge
flocculant
producing bacteria
bulking
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63307774A
Other languages
Japanese (ja)
Other versions
JPH0661556B2 (en
Inventor
Ryuichiro Kurane
隆一郎 倉根
Ichiro Yamamoto
一郎 山本
Toyoichi Yokomaku
豊一 横幕
Hisafumi Yamachi
八町 尚史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Kankyo Engineering Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kankyo Engineering Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP63307774A priority Critical patent/JPH0661556B2/en
Publication of JPH02157097A publication Critical patent/JPH02157097A/en
Priority to JP4059271A priority patent/JPH0798193B2/en
Publication of JPH0661556B2 publication Critical patent/JPH0661556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To prevent the bulking of activated sludge in a decomposition region by allowing flocculant producing bacteria belonging to the genus Rhodococcus or Nocardia and calcium chloide to be present in an org. waste water treatment system. CONSTITUTION:By allowing flocculant producing bacteria belonging to the genus Rhodococcus or Nocardia and calcium chloride to be present in an org. waste water treatment system using activated sludge, the bulking of activated sludge in the separation region of activated sludge and treated water is prevented. As a representative strain of flocculant producing bacteria belonging to the genus Rhodococcus or Nocardia, there is Rhodococcus erythropolice KR-256-2, FERM-PNo. 3923. When this org. waste water treatment method is used, the generation of filamentous fungi being a main cause of a bulking phenomenon is suppressed and the separation of activated sludge and treated water becomes efficient.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は有機排水処理方法に関し、更に詳しくは活性汚
泥法による有機排水処理方法において凝集物質生産菌を
用いて活性汚泥のバルキングを防止して活性汚泥と処理
水との分離を効率的に行う有機排水処理方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an organic wastewater treatment method, and more specifically, in an organic wastewater treatment method using an activated sludge method, flocculant-producing bacteria are used to prevent bulking of activated sludge. This invention relates to an organic wastewater treatment method that efficiently separates activated sludge and treated water.

(従来の技術及びその問題点) 従来、各種有機物を含む排水の処理方法として活性汚泥
方式が広く使用されている。この活性汚泥方式は効率の
高い処理方法てあり、良質な処理水が経済的に得られる
ことから最も広く普及している処理方法である。
(Prior Art and its Problems) Conventionally, activated sludge systems have been widely used as a method for treating wastewater containing various organic substances. This activated sludge method is a highly efficient treatment method and is the most widely used treatment method because it can economically obtain high-quality treated water.

一]二部活性汚泥方式において残された最も重要な問題
は、処理後の処理水と活性汚泥との分離であり、処理水
と活性汚泥とは沈澱梢である分離領域において活性汚泥
が速やかに沈降分離1−ることか望ましいか、分離領域
において静置時に糸状菌等の発生によるバルキング現象
やデフロック現象か生じて活性汚泥の凝集フロック作用
か低下し、活性汚泥の沈降分離か不十分となり、活性汚
泥の流出という問題か生じる。
1] The most important problem remaining in the two-part activated sludge system is the separation of treated water and activated sludge after treatment. Sedimentation separation 1 - Is it desirable that when the separation area is allowed to stand still, bulking and differential locking phenomena occur due to the growth of filamentous fungi, which reduces the flocculation effect of the activated sludge and makes the sedimentation separation of the activated sludge insufficient. This may cause the problem of activated sludge flowing out.

活性汚泥と処理水との分離を促進させる方法として、カ
チオンポリマー等の高分子凝集剤や多価金属イオン等の
無機凝集剤を使用する方法か知られているが、これらの
凝集剤は生物分解性か不十分であるため、処理水と共に
放水されることにより環境汚染の問題が派生する。
A known method for promoting the separation of activated sludge and treated water is to use polymer flocculants such as cationic polymers or inorganic flocculants such as polyvalent metal ions, but these flocculants cannot be biodegraded. Due to insufficient water quality, water is discharged together with treated water, leading to environmental pollution problems.

従って本発明の目的は、有機排水処理方法において、活
性汚泥のバルキング現象を生しることなく効率的に活性
汚泥を分離することが出来る有機υF水処理方法を提供
することである。
Therefore, an object of the present invention is to provide an organic υF water treatment method that can efficiently separate activated sludge without causing the activated sludge bulking phenomenon.

(問題点を解決するための手段) 上記目的は以下の本発明によって達成される。(Means for solving problems) The above objects are achieved by the present invention as described below.

すなわち、本発明は、活性汚泥法による有機υ1水処理
方法において、ロードコッカス属又はツカルティア属に
属する凝集物質生産菌と塩化カルシウムとを処理系に存
在させ、活性汚泥と処理水との分離領域において活性汚
泥のパルキンクを防止することを特徴とする有機排水処
理方法及びロードコッカス・エリスロポリスの1合養液
を凍結乾燥して得られた粉末状のハルキンク防止剤であ
る。
That is, the present invention provides an organic υ1 water treatment method using an activated sludge method, in which flocculant-producing bacteria belonging to the genus Rhodococcus or the genus Tucartia and calcium chloride are present in the treatment system, and in the separation area between activated sludge and treated water. The present invention is an organic wastewater treatment method characterized by preventing pulkinking of activated sludge, and a powdery hulkinking inhibitor obtained by freeze-drying a rhodococcus erythropolis nutrient solution.

(作  用) 凝集物質生産菌を用いる有機)J)水処理方法において
、凝集物質生産菌に塩化カルシウムを併用することによ
って、ハルキンク現象の主たる原因である糸状菌の発生
か抑制され、活刊ンち泥と処理水との分離が効率的とな
り、更に分11を領域のpH1凝集物質生産菌及び塩化
カルシウムの濃度を特定の範囲とすることによって活性
汚泥と処理水の分離が著しく促進される。
(Effect) In the organic (J) water treatment method using flocculant-producing bacteria, by using calcium chloride together with flocculant-producing bacteria, the generation of filamentous fungi, which is the main cause of the hull kink phenomenon, is suppressed and active The separation of activated sludge and treated water becomes efficient, and furthermore, by setting the concentration of pH 1 flocculant-producing bacteria and calcium chloride in the range 11 to a specific range, the separation of activated sludge and treated water is significantly promoted.

又、使用する凝集物質生産菌としてはロードコッカス・
エリスロポリスが最も好ましく、この凝集物質生産菌は
フラクトース液体培地て開放系で効率良く培養可能であ
るためコスト的に工業化可能となる。
In addition, the flocculant-producing bacteria used are Rhodococcus spp.
Erythropolis is the most preferred, and this flocculant-producing bacterium can be efficiently cultured in an open system in a fructose liquid medium, making industrialization possible in terms of cost.

更に上記の培養液は凍結乾燥して粉末化しても生菌数の
低下は少なく、これを復水再培養することにより速やか
に増殖するので、処理設備毎に大型の培養設備は不要と
なり、凝集物質生産菌を用いる有機排水処理方法を経済
的に実施′1−ることか可能となる。
Furthermore, even if the above-mentioned culture solution is freeze-dried and powdered, the number of viable bacteria will not decrease much, and if it is re-cultivated in condensed water, it will quickly proliferate, so there is no need for large-scale culture equipment for each processing facility, and it will not cause aggregation. It becomes possible to economically implement an organic wastewater treatment method using substance-producing bacteria.

(好ましい実施態様) 次に好ましい実施態様を挙げて本発明を更に詳しく説明
する。
(Preferred Embodiments) Next, the present invention will be described in more detail by citing preferred embodiments.

本発明において使用する活性汚泥方式による有機排水処
理方法自体は周知であり、本発明はこれらの周知のいず
れの有機排水処理方法においても応用出来るものであり
、特に限定されない。
The activated sludge organic wastewater treatment method used in the present invention is well known, and the present invention is not particularly limited and can be applied to any of these well-known organic wastewater treatment methods.

又、本発明で使用する凝集物質生産菌とは、特公昭56
−29598号公報において公知の凝集物質生産菌であ
り、本発明において使用出来る凝集物質生産菌は、ロー
ドコッカス属或いはツカルティア属に属する活性汚泥凝
集能を有する菌であればいずれでもよいか、その代表株
はロードコッカス・エリスロポリスにR−256−2、
FERM−P No、3923及びロードコッカス・エ
リスロポリスKR−5−1、FERM−PNo。
In addition, the flocculant-producing bacteria used in the present invention are
The flocculant-producing bacteria known in Japanese Patent Publication No. 29598, and which can be used in the present invention, may be any bacteria having activated sludge flocculation ability belonging to the genus Rhodococcus or the genus Tucartia, or a representative thereof. The strain is Rhodococcus erythropolis R-256-2,
FERM-P No. 3923 and Rhodococcus erythropolis KR-5-1, FERM-P No.

3530である。尚、18名ノカルディア・エリスロポ
レスは、1980年に国際微生物命名規約委員会により
、ロードコッカス・エリスロポリスに再整理・再分類さ
れている。
It is 3530. The 18 Nocardia erythropores were reorganized and reclassified as Rhodococcus erythropolis by the International Committee on Nomenclature of Microorganisms in 1980.

活性汚泥のバルキング防止に用いる場合のロードコツカ
ス属菌の接種混合は、−船釣には目的とする排水基質の
存在下て前培養(!Ill養も含む)を行った菌体が望
ましいが、必ずしも前培養の必要はない。
When inoculating and mixing Rhodococcus bacteria when used to prevent bulking of activated sludge, - For boat fishing, it is preferable to use bacteria that have been precultured (including !Ill culture) in the presence of the target wastewater substrate; There is no need for pre-incubation.

この様にして接種混合されたロードコツカス属菌は、菌
の生育pHを維持し且つ適宜栄養源を供給することが望
ましいが、一定期間は特に栄養源を添加しなくとも使用
に供することが出来る。栄異部としては、例えば、炭素
源、無機塩類、無機窒素源、有機窒素源、ビタミン、農
産物廃棄物、食品産業廃棄物、発酵廃液及び残渣類、都
市ゴミ等か挙げられる。
Although it is desirable to maintain the growth pH of the Rhodococcus bacteria inoculated and mixed in this way and to supply an appropriate nutrient source, it can be used for a certain period of time without adding any nutrient source. Examples of the nutrient include carbon sources, inorganic salts, inorganic nitrogen sources, organic nitrogen sources, vitamins, agricultural wastes, food industry wastes, fermentation waste liquids and residues, municipal garbage, and the like.

木菌株は一=般の有機性の炭水化物を始めとして都市下
水、産業排水、炭化水素、汚物、フタル酸エステルの様
な環境汚染物買込、あらゆる基質への応用か可能である
のて特に前培養なしに種菌を加えるのみてその効果を発
揮させることが出来る。
Wood fungi are particularly useful as they can be applied to all kinds of substrates, including general organic carbohydrates, urban sewage, industrial wastewater, hydrocarbons, filth, and environmental pollutants such as phthalates. The effect can be exerted simply by adding seed bacteria without culturing.

ロードコツカス属菌の培地としては、グルコース、ショ
糖、廃糖蜜、澱粉、テキストリン等の炭素源、硫安、尿
素、温室、ペプトン等の窒素源、その他無機塩類、ビタ
ミン、酵母エキス等の栄養源が用いられる。培養は液体
培養でも固体培養でもよい。液体培養の場合はpH=4
乃至8程度で温度20乃至40℃の範囲て通気攪拌て行
われる。
The culture medium for Rhodococcus bacteria includes carbon sources such as glucose, sucrose, blackstrap molasses, starch, and texturin, nitrogen sources such as ammonium sulfate, urea, greenhouse, peptone, and other nutritional sources such as inorganic salts, vitamins, and yeast extract. used. Culture may be liquid culture or solid culture. For liquid culture, pH = 4
Aeration and stirring are carried out at a temperature of 20 to 40°C at a temperature of about 8°C to 8°C.

約数日間の培養て培養を終了し培養物を得る。After culturing for about several days, the culture is completed and a culture product is obtained.

船釣にはここに得られた培養菌体は培養液をそのまま活
性汚泥法設備の沈N槽に添加することがてきる。又、培
養液を濃縮したり、菌体を溶液中に懸濁させる等して添
加してもよい。
When fishing by boat, the culture solution of the cultured bacterial cells obtained here can be directly added to the settling N tank of activated sludge method equipment. Alternatively, the culture solution may be concentrated or the bacterial cells may be suspended in the solution before addition.

上記の如き凝集物質生産菌のうちで特に本発明に好まし
いものは、ロードコッカス・エリスロポリスであり、以
下このロードコッカス・エリスロポリスを代表例として
説明する。
Among the above flocculant-producing bacteria, Rhodococcus erythropolis is particularly preferred for the present invention, and Rhodococcus erythropolis will be described below as a representative example.

本発明の第一の特徴は、」−記の凝集物質生産菌(ロー
ドコッカス・エリスロポリス)に塩化カルシウムを併用
する点であり、塩化カルシウムの併用によって有機排水
処理方法の活性汚泥と処理水との分離領域においてバル
キングの主たる原因となる糸状菌の発生及びその増殖が
抑えられることである。従って本発明は処理水中におい
て糸状菌が発生し易い排水の処理に特に有効である。
The first feature of the present invention is that calcium chloride is used in combination with the flocculant-producing bacteria (Rhodococcus erythropolis) described in "-", and the combination of calcium chloride and activated sludge and treated water in the organic wastewater treatment method The generation and proliferation of filamentous fungi, which are the main cause of bulking, can be suppressed in the separation area. Therefore, the present invention is particularly effective in treating wastewater where filamentous fungi are likely to occur in the treated water.

本発明の第二の特徴は活性汚泥と処理水とを分離すべき
分離領域におけるpHを好ましくは8乃至9とした点で
ある。すなわち、pHが8以下では凝集物質生産菌に塩
化カルシウムを併用しても活性汚泥の凝集分離はそれ程
は促進されず、方、pHが9以上でも同様に活性汚泥の
凝集分離はpHに応じて促進されず、又、活性汚泥の活
性が低下するのて好ましくない。
The second feature of the present invention is that the pH in the separation region where activated sludge and treated water are to be separated is preferably set to 8 to 9. In other words, when the pH is 8 or less, coagulation and separation of activated sludge is not promoted much even if calcium chloride is used in combination with flocculant-producing bacteria, and on the other hand, even when the pH is 9 or more, the flocculation and separation of activated sludge similarly increases depending on the pH. This is undesirable because it does not promote the activation of activated sludge and also reduces the activity of the activated sludge.

又、本発明の第三の特徴は分離領域における塩化カルシ
ウムの濃度を好ましくは0.25重量%以上、更に好ま
しくは0.25乃至1.0重量%としたことである。濃
度が0.25%未満ては凝集物質生産菌の量を多くして
も凝集効果は不十分てあり、又、1.0重量%以上とし
ても濃度に応じた凝集効果の増大は認められない。
A third feature of the present invention is that the concentration of calcium chloride in the separation region is preferably 0.25% by weight or more, more preferably 0.25 to 1.0% by weight. If the concentration is less than 0.25%, the flocculation effect is insufficient even if the amount of flocculant-producing bacteria is increased, and even if it is 1.0% by weight or more, no increase in the flocculation effect depending on the concentration is observed. .

本発明の第四の特徴は凝集物質生産菌の添加量を培養液
として0.5重量%以上、好ましくは0.5乃至10重
量%とじたことである。凝集物質生産菌の濃度が0.5
%未満では十分な凝集効果が得られず、又、10%を越
えて添加しても添加量に応じて凝集効果が向」−するも
のでもなかった。
The fourth feature of the present invention is that the amount of flocculant-producing bacteria added to the culture solution is 0.5% by weight or more, preferably 0.5 to 10% by weight. The concentration of flocculant-producing bacteria is 0.5
If it was less than 10%, a sufficient flocculating effect could not be obtained, and even if it was added in excess of 10%, the flocculating effect could not be improved depending on the amount added.

尚、本発明で使用する凝集物質生産菌は凝集物質を生産
して、その生産物が凝集効果を発揮するものと考えられ
るが、培養液を0.45メンブレンフイルターて濾過し
て菌体を除去した溶液を用いても同様な効果が得られる
It should be noted that the flocculating substance-producing bacteria used in the present invention is thought to produce flocculating substances and the product exerts the flocculating effect, but the culture solution can be filtered through a 0.45 membrane filter to remove bacterial bodies. A similar effect can be obtained by using a solution containing

以」−の如き好適なpH,凝集物質生産菌及び塩化カル
シウムの濃度を決定する実験を行ないその結果を第1図
、第2図及び第3図に示した。
Experiments were conducted to determine suitable pH, flocculant-producing bacteria, and calcium chloride concentration as described below, and the results are shown in FIGS. 1, 2, and 3.

以上の如き凝集物質生産菌は滅菌した純粋培養系で培養
出来ることは良く知られているが、これらの凝集物質生
産菌を工業的に利用するためには雑菌が混入する開放系
で効率的に培養出来ることが必要である。
It is well known that the above-mentioned flocculant-producing bacteria can be cultured in a sterilized pure culture system, but in order to industrially utilize these flocculant-producing bacteria, it is necessary to efficiently cultivate them in an open system where various bacteria are mixed. It is necessary to be able to cultivate it.

本発明者はこれらの点について検討したところ、特定の
液体培地において開放系で効率よく培養可能であること
を見い出した。
The present inventor investigated these points and found that it is possible to efficiently culture in an open system in a specific liquid medium.

培養方法としては、凝集物質生産菌(ロードコッカス・
エリスロポリス)を下記の液体培地で振盪培養により前
培養したものを供試菌として検討した。
As a culture method, flocculant-producing bacteria (Rhodococcus spp.
Erythropolis) was precultured by shaking culture in the following liquid medium and was investigated as a test microorganism.

攻朱暗煎の則減 フラクトース       10g/uK211PO,
+            5 g / I’K112
PO42g/ 11 Mg5O40,2g/fl (NH4)2504         0 、 5 g
 / R−イースト抽出物     0.5g/fiN
aCI            O,Ig/u次に上記
液体培地150mfiを500mMの角フラスコに入れ
、種菌5mJZを接種し温度30℃で振盪培養した。培
養液の力価及び菌増殖量は、カオリン5,000mg/
fL液80m、Cに10%CaCl2液10m11.を
添加後、培養液05m1を加え、100+nJ1のメス
シリンダーにて良く転倒攪拌後、反応液のpHをNaO
HにてpH8に調整し、その後全体を再びよく攪拌して
静置し、5分後に澄水の濁度(OD550)を測定し、
菌の増殖量を0D660により求めた。尚、比較例とし
て良く知られているフタル酸培地を用いた場合と純粋フ
ラクトース系培地を用いた場合についても○I)iso
とOD ar、oを求めた。その結果第4図示の結果が
得られた。
Toshu dark roasted reduced fructose 10g/uK211PO,
+ 5 g / I'K112
PO42g/11 Mg5O40,2g/fl (NH4)2504 0,5g
/ R-yeast extract 0.5g/fiN
aCI O, Ig/u Next, 150 mfi of the above liquid medium was placed in a 500 mM square flask, and 5 mJZ of seed bacteria was inoculated and cultured with shaking at a temperature of 30°C. The titer and bacterial growth of the culture solution were 5,000 mg kaolin/
fL solution 80m, C 10% CaCl2 solution 10m11. After adding 05 ml of culture solution, stir well by inverting with a 100+nJ1 measuring cylinder, and adjust the pH of the reaction solution to NaO.
Adjust the pH to 8 with H, then stir the whole thing well again and let it stand, and measure the turbidity (OD550) of the clear water after 5 minutes.
The amount of bacterial growth was determined by 0D660. In addition, as a comparative example, ○I) iso
and OD ar,o were calculated. As a result, the results shown in Figure 4 were obtained.

第4図の結果からして、公知のフタル酸系培地ては純粋
培養系の26%の力価であるのに対し、フラク]・−ス
培地開放培養系では88%てあり、フラクト−ス系培地
では開放系でも七分に増殖可能であることか分った。又
、培地のpHは8乃至9て、特に8.5か最良の結果が
得られた。又、培養時間は5日間程度で十分である。
From the results shown in Figure 4, the titer of the known phthalate-based medium is 26% of that of the pure culture system, while the titer of the fructose medium open culture system is 88%. It was found that it was possible to proliferate for 7 minutes even in an open system using a system culture medium. In addition, the best results were obtained when the pH of the medium was 8 to 9, especially 8.5. Further, a culture time of about 5 days is sufficient.

又、上記の如き凝集物質生産菌を、より工業的に使い易
くするためには凝集物質生産菌を培養液として取扱うよ
りも粉末で取扱えることが好ましい。本発明では凝集物
質生産菌の培養液の粉末化を凍結乾燥方法によって試み
た。すなわち、前記フラクトース液体培地で培養した培
養液200m℃をIJlの凍結乾燥用容器に入れ、フリ
ーズドドライヤー(太平化学製)で凍結乾燥し粉末化し
た。
Furthermore, in order to make the flocculant-producing bacteria as described above easier to use industrially, it is preferable that the flocculant-producing bacteria can be handled as a powder rather than as a culture solution. In the present invention, an attempt was made to powderize the culture solution of flocculant-producing bacteria using a freeze-drying method. That is, the culture solution cultured in the fructose liquid medium at 200 m°C was placed in an IJl freeze-drying container, and freeze-dried and powdered using a freeze dryer (manufactured by Taihei Kagaku).

得られた粉末を凍結乾燥前と同重量になる様に滅菌蒸留
水を加えて復水し、生存閑の割合を調べたところ11ヨ
保存で57.1%、1ケ月保存で32.3%、6ケ月保
存て30.6%の結果が得られた。又、上記て復水した
試料5mMを100m2のフラクトース液体培地に加え
30℃で振盪培養し、菌の増殖量を調べたところ第5図
示の如く培養3日目で力価か凍結乾燥前と同程度に増殖
し、凝集活性も同等になった。
The obtained powder was condensed by adding sterile distilled water to the same weight as before freeze-drying, and the percentage of viable particles was examined: 57.1% after storage for 11 months and 32.3% after storage for 1 month. , a result of 30.6% was obtained after storage for 6 months. In addition, 5mM of the above condensed sample was added to 100m2 of fructose liquid medium and cultured with shaking at 30°C.The amount of bacterial growth was examined. The cells proliferated to a certain degree, and the aggregation activity became the same.

従って、本発明によれば、凝集物質生産菌が粉末として
十分に取扱うことが出来、簡単な培養設備で凝集物質生
産菌を復元することが出来るのて凝集物質生産菌を用い
る有機排水処理方法の工業化か可能である。
Therefore, according to the present invention, the flocculant-producing bacteria can be sufficiently handled as a powder, and the flocculant-producing bacteria can be restored with simple culture equipment. Industrialization is possible.

(実施例) 次に実施例により本発明を更に具体的に説明する。(Example) Next, the present invention will be explained in more detail with reference to Examples.

連続混合培養槽において人為的に発生させたバルキング
汚泥に対して、凝集物質生産菌を適用することにより、
塩化カルシウムと凝集物質生産菌の添加量及び添加方法
を変えて、そのバルキング抑制効果について検討した。
By applying flocculant-producing bacteria to artificially generated bulking sludge in a continuous mixed culture tank,
The bulking suppression effect was investigated by varying the amount and method of addition of calcium chloride and flocculant-producing bacteria.

実験方法 (イ)供試原水 実験では下記第1表に示す組成のBOD 100g/J
lの濃厚原水を作成し、処理条件に合う濃度に水道水で
希釈して使用した。
Experimental method (a) In the sample raw water experiment, BOD 100g/J with the composition shown in Table 1 below.
1 of concentrated raw water was prepared, diluted with tap water to a concentration suitable for the treatment conditions, and used.

と   1  − (合成υF水の基質組成) グルコース 720 7.3 280 450 480
スターチ 400 7.7 145 260 220ペ
プトン3207.315511030042尿  素 
 16−−−−8 リン酸−カリ    40−−−−−9合成排水  −
8,158082010005010(表中の数値の単
位はp11以外はmg/xである)上記の合成排水は極
めて糸状性バルキングを発生させ易い基質組成であるこ
とが検証されており、その結果に基づき選定したものあ
る。
and 1 - (Substrate composition of synthetic υF water) Glucose 720 7.3 280 450 480
Starch 400 7.7 145 260 220 Peptone 3207.315511030042 Urea
16---8 Phosphoric acid-potassium 40---9 Synthetic wastewater -
8,158082010005010 (The units of numerical values in the table are mg/x except for p11) It has been verified that the above synthetic wastewater has a substrate composition that is extremely likely to cause filamentous bulking, and it was selected based on the results. There are things.

(ロ)活性汚泥 実験では供試活性汚泥として前記第1表の合成排水を用
いて回分式混合培養槽において馴養したものを用いた。
(b) In the activated sludge experiment, activated sludge that had been acclimatized in a batch-type mixing culture tank was used as the activated sludge using the synthetic wastewater shown in Table 1 above.

本活性汚泥は沈降性良好な活性汚泥である。This activated sludge has good settling properties.

この活性汚泥を下記第2表に示ず処理条件て連続培養す
ると、通水開始約6乃至8「1目て糸状性ハルキンクの
状況を呈した活性汚泥となるBOD負荷(g/u−El
)     o、  a水    量(fl / El
 )           8BODfi度(mg/u
)      8o。
When this activated sludge is continuously cultured under treatment conditions not shown in Table 2 below, the BOD load (g/u-El
) o, a Water amount (fl / El
) 8BODfi degrees (mg/u
) 8o.

7す泥の5RT([」)          s沈降分
@MRT (1lr)        6本活性汚泥中
の糸状微生物には偽分岐か多く見られ、細胞直径0.8
乃至1.2μm、細胞形が卵形でクラム染色が(−)て
あり、Eikclboom及びJenkinsの分類法
に従うと、Spl+oeroj、i Iusn a j
: a II Sに分類される。
7. 5RT of sludge (['') s Sedimentation @MRT (1lr) 6. False branching is often seen in filamentous microorganisms in activated sludge, and cell diameter is 0.8
1.2 μm to 1.2 μm, the cell shape is oval and Crumb staining is (-), and according to the classification method of Eikclboom and Jenkins, Spl + oeroj, i Iusn a j
: Classified as a II S.

(ハ)実験装置 実験には第6図に示す様な曝気槽容量8旦及び沈降分#
を槽21の透明塩ビ製の連続混合培養槽を用いた。供試
原水は定量ポンプにより所定の濃度と水量て連続的に曝
気槽に供給した。曝気は空気により常に曝気槽内にDo
が立ち上がる様にエアストーンを用いた。水温は室温で
行い実験期間中22乃至25℃てあった。
(c) Experimental equipment For experiments, the aeration tank capacity is 8 degrees and the sedimentation amount is as shown in Figure 6.
A continuous mixing culture tank 21 made of transparent PVC was used. The sample raw water was continuously supplied to the aeration tank at a predetermined concentration and volume using a metering pump. Aeration is always carried out in the aeration tank by air.
I used an air stone to make it stand up. The water temperature was at room temperature and was between 22 and 25° C. during the experiment.

(ニ)添加条件 通水開始より活性汚泥がバルキング状態(SVI400
m、Q/g以上)になった時点て、下記第3表に示す添
加条件で塩化カルシウム及び凝集物質生産菌培養液を添
加し、活性汚泥のSVIの経口変化よりパルキンク抑制
効果を検討した。
(d) Addition conditions Activated sludge is in a bulking state from the start of water flow (SVI400
m, Q/g or more), calcium chloride and a culture solution of flocculant-producing bacteria were added under the addition conditions shown in Table 3 below, and the palkink suppression effect was examined from the oral change in SVI of activated sludge.

添加方法としては、25%塩化カルシウム溶液と凝集物
質生産菌培養液とを添加条件に合った量に混合し、曝気
槽に投入しI NNa0t(でpH8,5乃至90に調
整した。培養液はフラクトース液体培地で5日間振盪培
養したものを使用した。この培養液の力価は2.2乃至
25であった。
The addition method was to mix a 25% calcium chloride solution and a flocculant-producing bacterial culture solution in an amount that matched the addition conditions, put it into an aeration tank, and adjust the pH to 8.5 to 90 with INNa0t. The culture solution was cultured with shaking in a fructose liquid medium for 5 days.The titer of this culture solution was 2.2 to 25.

”3   −一 (添加条件) γ7 4  − 1    0.062    0    5日間添加2
   0.25     0    5日間添加3  
  0.62     0    5日間添加4   
0.62     2    1回添加5   0.6
2     5    1回添加6   0.62  
  10    1回添加7      0.62  
       0            *8   
 0.62     2       *9     
 0.62        5           
*10      0.62       10   
        **左記量を1回添加後、次の日より
5日間塩化カルシウムを0.25%添加した。
”3-1 (addition conditions) γ7 4-1 0.062 0 Addition for 5 days 2
0.25 0 Added for 5 days 3
0.62 0 Added for 5 days 4
0.62 2 Added once 5 0.6
2 5 Added once 6 0.62
10 Added once 7 0.62
0 *8
0.62 2 *9
0.62 5
*10 0.62 10
**After adding the amount shown on the left once, 0.25% calcium chloride was added for 5 days from the next day.

(ホ)分 析 下記第4表に示す項目を毎[ヨ測定した。(e) Analysis The items shown in Table 4 below were measured.

サンプル   分析項目 汚  泥   MLSS、5V3o、顕微鏡写真処理水
    pH,TOC 結果と考察 (イ)塩化カルシウム添加量の検討 塩化カルシウムの添加量を0.062.0.25.06
2%と変化させ、毎日1回、5日間添加し、バルキング
抑制効果を検討した。第7図は5V30.MLSS、S
VIの経口変化を示したものである。
Sample Analysis items Sludge MLSS, 5V3o, micrograph Treated water pH, TOC Results and discussion (a) Examination of the amount of calcium chloride added The amount of calcium chloride added was 0.062.0.25.06
2% was added once a day for 5 days, and the bulking suppressing effect was examined. Figure 7 shows 5V30. MLSS,S
This shows oral changes in VI.

塩化カルシウム0.062乃至0.25%添加条件では
活性汚泥の沈降圧密性の改善効果は認められなかったが
、0.62%添加条件では添加31目よりSVが下がり
始め、9日目迄沈降性良好となり、その後再びSVが上
昇した。又、SVの下降に応じて、顕微鏡観察ては活性
汚泥中の糸状微生物(Sphoerotilus na
l、ans)が減少していることから、塩化カルシウム
の多量添加は、糸状微生物の増殖を阻害する作用がある
ものと思われる。
No improvement effect on the sedimentation compaction of activated sludge was observed under the addition conditions of 0.062 to 0.25% calcium chloride, but under the addition conditions of 0.62%, the SV began to decrease from the 31st addition, and sedimentation continued until the 9th day. The patient's sex improved, and the SV increased again. Furthermore, as the SV decreases, microscopic observation shows that filamentous microorganisms (Sphoerotilus na.
1, ans) decreased, it seems that the addition of a large amount of calcium chloride has the effect of inhibiting the growth of filamentous microorganisms.

(I+)凝集物質生産菌によるパルキンク抑制効果塩化
カルシウム添加量を0.62%と一定し、凝集物質生産
菌培養液の添加量を2.5.10%と変えて添加し、そ
のバルキング抑制効果を検討した。結果は第8図に示す
(I+) Effect on inhibiting bulking caused by flocculant-producing bacteria The amount of calcium chloride added was kept constant at 0.62%, and the amount of flocculant-producing bacteria culture solution was changed to 2.5.10%. It was investigated. The results are shown in FIG.

培養液の添加量に応して沈降圧密改善及びバルキング抑
制持続効果を示した。
A sustained effect of improving sedimentation compaction and inhibiting bulking was shown depending on the amount of culture solution added.

第9図は、塩化カルシウム0.62%、培養液5%添加
し、SVIの経時変化を原水が連続して流入すると場合
と、空曝気状態とて比較した結果である。
FIG. 9 shows the results of a comparison of changes in SVI over time when 0.62% calcium chloride and 5% culture medium were added, with continuous flow of raw water, and with air aeration.

添加直後は培養液の凝集作用によりSVIが500m1
/gから100m1/g迄低下する。
Immediately after addition, the SVI was 500ml due to the aggregation effect of the culture solution.
/g to 100ml/g.

その後、空曝気状態でが24Hr経過しても凝集効果が
持続するか、原水流入では時間の経過と共に凝集力が低
下して24 tlrJ、4にはSVI  400m11
/gて汚泥の沈降性は元の状態近く迄戻ってしまう。又
、pHも添加直後8.8から241+r後7.6迄低下
する。原水流入の場合に凝集効果が低下する原因とlノ
て、 糸状性細菌の増殖 2)@気によるフロックの解体 3  pHの低下 4)カルシウムイオンの曝気槽系外への流出5)凝集培
養液の希釈と系外への流出 か考えられる。
After that, the coagulation effect persists even after 24 hours in the air aeration state, or the cohesive force decreases over time when raw water is injected, resulting in an SVI of 400 m11 at 24 tlrJ and 4.
/g, the sedimentation property of the sludge returns to near its original state. The pH also decreased from 8.8 immediately after addition to 7.6 after 241+r. The reasons why the flocculation effect decreases when raw water flows in are as follows: Proliferation of filamentous bacteria 2) Disintegration of flocs by air 3 Decrease in pH 4) Outflow of calcium ions to the outside of the aeration tank system 5) Coagulation culture solution This is thought to be due to dilution and leakage out of the system.

第10図に塩化カルシウム062%、培養液5%添加時
の曝気槽内残留カルシウムイオン濃度の経時変化を示す
Figure 10 shows the change over time in the concentration of residual calcium ions in the aeration tank when 062% calcium chloride and 5% culture solution were added.

約25%が汚泥中に蓄積され、残り75%は処理水と共
に系外に排出されることがわかった。連続混合培養槽に
おいて、凝集物質生産菌の効果を持続させるには、系内
にカルシウムイオンが存在し、且つpHが8.0以上で
あることが必要であることから次に原水のpH8,5に
調整し、塩化カルシウムを補充する条件て凝集物質生産
菌のバルキング抑制効果を検討した。第11図及び第1
2図は塩化カルシウム添加量を0.62%と定とし、凝
集物質生産菌培養液を0乃至10%1回添加し、その後
5日間塩化カルシウム0.25%のみを添加し、バルキ
ング抑制効果を検討した結果である。
It was found that about 25% was accumulated in the sludge, and the remaining 75% was discharged to the outside of the system together with the treated water. In a continuous mixed culture tank, in order to sustain the effect of flocculant-producing bacteria, it is necessary that calcium ions exist in the system and the pH is 8.0 or higher. The effect of suppressing the bulking of flocculant-producing bacteria was investigated under conditions where calcium chloride was supplemented. Figure 11 and 1
Figure 2 shows that the amount of calcium chloride added was fixed at 0.62%, and the culture solution of flocculant producing bacteria was added once at 0 to 10%, and then only 0.25% of calcium chloride was added for 5 days to obtain the bulking suppressing effect. This is the result of consideration.

培養液(力価2.2乃至25)2%添加条件ては抑制持
続効果が現われなかったが、5.10%添加条件では添
加5日後よりSVが低下し始め、それ以降20日間以上
汚泥の沈降性良好な状態が続き持続効果が認められた。
No sustained suppressive effect was observed under the condition of adding 2% culture solution (titer 2.2 to 25), but under the condition of adding 5.10%, the SV began to decrease 5 days after addition, and after that, the SV of the sludge was reduced for more than 20 days. Good sedimentation continued and a sustained effect was observed.

しかしながら、培養液の添加量はその培養液の凝集力価
に大きく依存することは当然のことである。従って必ず
しも培養液の添加量が5%以上必要てないことは言うま
でもない。第12図の処理機能に与える影響では、凝集
物質生産菌の添加2%以下で処理性が悪化するのは、汚
泥の流出によるMLSS濃度の低下が起因していること
による。従って、凝集物質生産菌5%以上の添加によっ
て、汚泥の沈降性か改善された場合には、処理性は良好
な状態に維持された。しかし、前述の如く、培養液の添
加量が5%以上に限定されるものではない。
However, it goes without saying that the amount of culture solution added largely depends on the agglutination titer of the culture solution. Therefore, it goes without saying that the amount of culture solution added does not necessarily need to be 5% or more. Regarding the influence on the treatment function shown in FIG. 12, the reason why the treatment performance deteriorates when the flocculant-producing bacteria is added at 2% or less is due to the decrease in the MLSS concentration due to the outflow of sludge. Therefore, when the sedimentation properties of sludge were improved by adding 5% or more of flocculant-producing bacteria, the treatability was maintained in a good state. However, as mentioned above, the amount of culture solution added is not limited to 5% or more.

以上の結果は、塩化カルシウムによる糸状微生物の増殖
抑制効果と凝集物質生産菌による凝集促進効果との相乗
効果により、バルキング汚泥の沈降圧密性が改善された
ことを示している。
The above results indicate that the sedimentation compaction of bulking sludge was improved due to the synergistic effect of calcium chloride's growth-inhibiting effect on filamentous microorganisms and flocculant-producing bacteria's aggregation-promoting effect.

(効  果) 以]−の如き本発明によれば、凝集物質生産菌を用いる
打機排水処理方法において、凝集物質生産菌に塩化カル
シウムを併用することによって、ハルキンク現象の主た
る原因である糸状菌の発生が抑制され、活性汚泥と処理
水との分離が効率的となり、更に分離領域のpH,凝集
物質生産菌及び塩化カルシウムの濃度を特定の範囲とす
ることによりて活性汚泥と処理水の分離がより一層著し
く促進される。
(Effects) According to the present invention as described below, in the method for treating wastewater from a battering machine using flocculant-producing bacteria, by using calcium chloride together with the flocculant-producing bacteria, filamentous bacteria, which is the main cause of the hull kink phenomenon, can be eliminated. The generation of activated sludge and treated water is suppressed, and the separation of activated sludge and treated water becomes efficient. Furthermore, the separation of activated sludge and treated water is made possible by controlling the pH of the separation area, the concentration of flocculant-producing bacteria, and calcium chloride within specific ranges. is promoted even more significantly.

又、使用する凝集物質生産菌としてはロードコッカス・
エリスロポリスか最も好ましく、この凝集物質生産菌は
フラクトース液体培地で開放系て効率良く培養可能であ
るためコスト的に工業化可能となる。
In addition, the flocculant-producing bacteria used are Rhodococcus spp.
Erythropolis is the most preferred, and this flocculant-producing bacterium can be efficiently cultured in an open system in a fructose liquid medium, making industrialization possible in terms of cost.

更に上記の培養液は凍結乾燥して粉末化しても生菌数の
低下は少なく、これを復水再培養することにより速やか
に増殖し、凝集力価を発揮するので、処理設備毎に大型
の培養設備は不要となり、凝集物質生産菌を用いる有機
υ1水処理方法を経済的に実施することか可能となる。
Furthermore, even if the above-mentioned culture solution is freeze-dried and powdered, there is little decrease in the number of viable bacteria, and by re-cultivating it in condensed water, it quickly proliferates and exhibits agglutinating potency. No culture equipment is required, and it becomes possible to economically implement the organic υ1 water treatment method using flocculant-producing bacteria.

【図面の簡単な説明】[Brief explanation of the drawing]

第1乃至5及び7乃至12図は本発明の実施例の結果を
示す図てあり、第6図は本発明て使用した装置を示す図
である。 出願人 工業技術院長 飯 塚 幸
1 to 5 and 7 to 12 are diagrams showing the results of examples of the present invention, and FIG. 6 is a diagram showing the apparatus used in the present invention. Applicant Yuki Iizuka, Director General of the Agency of Industrial Science and Technology

Claims (6)

【特許請求の範囲】[Claims] (1)活性汚泥法による有機排水処理方法において、ロ
ードコッカス属又はノカルディア属に属する凝集物質生
産菌と塩化カルシウムとを処理系に存在させ、活性汚泥
と処理水との分離領域において活性汚泥のバルキングを
防止することを特徴とする有機排水処理方法。
(1) In an organic wastewater treatment method using the activated sludge method, flocculant-producing bacteria belonging to the genus Rhodococcus or the genus Nocardia and calcium chloride are present in the treatment system, and activated sludge is An organic wastewater treatment method characterized by preventing bulking.
(2)活性汚泥の分離領域のpHを8乃至9に保持し、
凝集物質生産菌の培養液を0.5乃至10重量%の濃度
とし、且つ塩化カルシウム(CaCl_2)の濃度を0
.25乃至1.0重量%とする請求項1に記載の有機排
水処理方法。
(2) Maintaining the pH of the activated sludge separation area at 8 to 9;
The concentration of the culture solution of flocculant-producing bacteria is 0.5 to 10% by weight, and the concentration of calcium chloride (CaCl_2) is 0.
.. The organic wastewater treatment method according to claim 1, wherein the amount is 25 to 1.0% by weight.
(3)被処理排水が糸状菌を発生し易い排水である請求
項1に記載の有機排水処理方法。
(3) The organic wastewater treatment method according to claim 1, wherein the wastewater to be treated is wastewater that is likely to generate filamentous fungi.
(4)凝集物質生産菌がロードコッカス・エリスロポリ
スである請求項1に記載の有機排水処理方法。
(4) The organic wastewater treatment method according to claim 1, wherein the flocculant-producing bacteria is Rhodococcus erythropolis.
(5)ロードコッカス・エリスロポリスの培養液が、フ
ラクトース液体培地で開放系において培養したものであ
る請求項1に記載の有機排水処理方法。
(5) The organic wastewater treatment method according to claim 1, wherein the culture solution of Rhodococcus erythropolis is cultured in an open system in a fructose liquid medium.
(6)ロードコッカス・エリスロポリスの培養液を凍結
乾燥して得られた粉末状のバルキング防止剤。
(6) Powdered anti-bulking agent obtained by freeze-drying a culture solution of Rhodococcus erythropolis.
JP63307774A 1988-12-07 1988-12-07 Organic wastewater treatment method Expired - Fee Related JPH0661556B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63307774A JPH0661556B2 (en) 1988-12-07 1988-12-07 Organic wastewater treatment method
JP4059271A JPH0798193B2 (en) 1988-12-07 1992-02-14 Method for suppressing the generation and growth of filamentous fungi

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63307774A JPH0661556B2 (en) 1988-12-07 1988-12-07 Organic wastewater treatment method
JP4059271A JPH0798193B2 (en) 1988-12-07 1992-02-14 Method for suppressing the generation and growth of filamentous fungi

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4059271A Division JPH0798193B2 (en) 1988-12-07 1992-02-14 Method for suppressing the generation and growth of filamentous fungi

Publications (2)

Publication Number Publication Date
JPH02157097A true JPH02157097A (en) 1990-06-15
JPH0661556B2 JPH0661556B2 (en) 1994-08-17

Family

ID=26400324

Family Applications (2)

Application Number Title Priority Date Filing Date
JP63307774A Expired - Fee Related JPH0661556B2 (en) 1988-12-07 1988-12-07 Organic wastewater treatment method
JP4059271A Expired - Fee Related JPH0798193B2 (en) 1988-12-07 1992-02-14 Method for suppressing the generation and growth of filamentous fungi

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP4059271A Expired - Fee Related JPH0798193B2 (en) 1988-12-07 1992-02-14 Method for suppressing the generation and growth of filamentous fungi

Country Status (1)

Country Link
JP (2) JPH0661556B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195026A (en) * 2019-03-04 2019-09-03 暨南大学 A kind of method that DEHP degradation bacterial agent prepared and its be effectively reduced DEHP pollution in vegetables production

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6350381B2 (en) * 1998-10-27 2002-02-26 Kinder Morgan Energy Partners, L.P. Biodegradation of ethers using fatty acid enhanced microbes
JP2011224569A (en) * 2011-07-20 2011-11-10 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
CN109111041B (en) * 2018-09-13 2021-05-07 福建海峡环保集团股份有限公司 Method for inhibiting biological foams caused by Nocardia in aeration tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431965A (en) * 1977-08-15 1979-03-09 Agency Of Ind Science & Technol Method of managing activated sludge
JPS58183910A (en) * 1982-04-22 1983-10-27 Agency Of Ind Science & Technol Flocculation of filthy substance by microorganism
JPS63126597A (en) * 1986-11-14 1988-05-30 Agency Of Ind Science & Technol Soluble dye decoloring agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431965A (en) * 1977-08-15 1979-03-09 Agency Of Ind Science & Technol Method of managing activated sludge
JPS58183910A (en) * 1982-04-22 1983-10-27 Agency Of Ind Science & Technol Flocculation of filthy substance by microorganism
JPS63126597A (en) * 1986-11-14 1988-05-30 Agency Of Ind Science & Technol Soluble dye decoloring agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110195026A (en) * 2019-03-04 2019-09-03 暨南大学 A kind of method that DEHP degradation bacterial agent prepared and its be effectively reduced DEHP pollution in vegetables production

Also Published As

Publication number Publication date
JPH0798193B2 (en) 1995-10-25
JPH0661556B2 (en) 1994-08-17
JPH0647391A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
EP2999801B1 (en) Microbial-based waste water treatment compositions and methods of use thereof
Liu et al. Substrate concentration‐independent aerobic granulation in sequential aerobic sludge blanket reactor
AU2011292811B2 (en) Method of treating municipal wastewater and producing biomass with biopolymer production potential
Xie et al. Immobilized microalgae for anaerobic digestion effluent treatment in a photobioreactor-ultrafiltration system: Algal harvest and membrane fouling control
Jhung et al. A comparative study of UASB and anaerobic fixed film reactors with development of sludge granulation
CN105254155B (en) A kind of biological wall breaking method improving dewatering performance of sludge
CN112243428B (en) System and method for treating wastewater and providing class A sludge
JP2013506550A (en) Method for improving biological water treatment
Garg et al. Green technologies for the treatment and utilisation of dairy product wastes
JP2001523539A (en) Preparation method of microorganism culture for wastewater treatment
JPH02157097A (en) Bacteria flocculant and bulking control method
Rajeshkumar et al. Treatment of dairy wastewater using a selected bacterial isolate, Alcaligenes sp. MMRR 7
CN110938567B (en) Bacillus subtilis, microbial agent and application thereof
Setianingsih et al. Development of Aerobic Microbial Granules to Enhance the Performance of Activated Sludge Technology for Wastewater Treatment Application
JP3247269B2 (en) Anaerobic treatment of organic wastewater containing enzymes
JPS62282697A (en) Improvement of settleability of activated sludge
Sekaran et al. Cost-effective activated sludge process using Effective Microorganisms (EM)
JPH10286085A (en) Brevundimonas sp. p3-4 strain and treatment of orthophosphoric acid-containing water
JPH03285676A (en) Flocculant-producing new microorganism and treatment of waste water
KR950011356B1 (en) Waste water clariflier
Qin et al. Aerobic granulation at different settling times
JPH04131193A (en) Elimination of filamentous bulking in waste water treatment
최두복 et al. Optimization for phosphorus remove by loess ball using Chromobacterium
Ahn et al. Use of zoogloeal culture for enhancing tannery wastewater treatment: High organic loading and unbalanced nutrient condition
Shukla Treatment of Dairy Waste Water with Inorganic and Organic Coagulants

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees