JPH039945B2 - - Google Patents

Info

Publication number
JPH039945B2
JPH039945B2 JP58232656A JP23265683A JPH039945B2 JP H039945 B2 JPH039945 B2 JP H039945B2 JP 58232656 A JP58232656 A JP 58232656A JP 23265683 A JP23265683 A JP 23265683A JP H039945 B2 JPH039945 B2 JP H039945B2
Authority
JP
Japan
Prior art keywords
thin film
molded product
diethynylbenzene
para
highly conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58232656A
Other languages
Japanese (ja)
Other versions
JPS60127210A (en
Inventor
Yukihiro Ikeda
Masaru Ozaki
Tatsumi Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58232656A priority Critical patent/JPS60127210A/en
Publication of JPS60127210A publication Critical patent/JPS60127210A/en
Priority to US06/904,823 priority patent/US4701317A/en
Publication of JPH039945B2 publication Critical patent/JPH039945B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/12Chemical after-treatment of artificial filaments or the like during manufacture of carbon with inorganic substances ; Intercalation
    • D01F11/125Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/28Other inorganic materials
    • C03C2217/282Carbides, silicides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/152Deposition methods from the vapour phase by cvd

Description

【発明の詳細な説明】 本発明は、パラ−ジエチニルベンゼンを熱分解
させることにより得られる高導電性熱分解炭素薄
膜成形物の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a highly conductive pyrolytic carbon thin film molded product obtained by thermally decomposing para-diethynylbenzene.

従来、導電性の熱分解炭素薄膜を得る方法とし
て、メタン、プロパン、ベンゼン、アセチレン等
の炭化水素の気相熱分解法が最も重要なものと考
えられ、すでに多くの製造条件が提案されてき
た。しかし、反応温度は通常1000〜3000℃と一般
に高く、エネルギー消費が著しい。しかもこの範
囲中の低温領域では、高導電性の薄膜は得られに
くい。たとえば250〜1000S・cm-1の電導度を有す
る薄膜を製造するには、1500〜1700℃の熱分解温
度を必要とする。
Conventionally, gas-phase pyrolysis of hydrocarbons such as methane, propane, benzene, and acetylene has been considered the most important method for obtaining conductive pyrolytic carbon thin films, and many production conditions have already been proposed. . However, the reaction temperature is generally high, typically 1000 to 3000°C, and energy consumption is significant. Moreover, in this low temperature range, it is difficult to obtain a highly conductive thin film. For example, producing a thin film with an electrical conductivity of 250 to 1000 S·cm -1 requires a thermal decomposition temperature of 1500 to 1700°C.

本発明者らはこれらの欠点を解決すべく検討を
重ねた結果、パラ−ジエチニルベンゼンをアルゴ
ンのキヤリアガス中において950〜1050℃の温度
範囲で熱分解すると、電導度が1000S・cm-1以上
の高導電性熱分解炭素薄膜成形物が得られること
を見出し、またこの薄膜を3000〜3300℃の高温で
処理することにより更に高導電性のグラフアイト
薄膜成形物が得られることを見出し、本発明をな
すに到つた。
The inventors of the present invention have conducted repeated studies to solve these drawbacks, and have found that when para-diethynylbenzene is thermally decomposed in an argon carrier gas at a temperature range of 950 to 1050°C, the electrical conductivity is 1000 S cm -1 or more. We have discovered that a highly conductive pyrolytic carbon thin film molded product can be obtained, and that by treating this thin film at a high temperature of 3000 to 3300°C, an even more highly conductive graphite thin film molded product can be obtained. I came up with an invention.

本発明は、パラ−ジエチニルベンゼンをアルゴ
ンのキヤリアガス中において、950〜1050℃の温
度範囲で熱分解することにより、電導度が
1000S・cm-1以上である高導電性熱分解炭素薄膜
成形物の製造方法および当該製造方法により製造
した薄膜を3000〜3300℃の高温で熱処理すること
により更に高導電性のグラフアイト薄膜成形物を
得る方法に関するものである。
In the present invention, conductivity is improved by thermally decomposing para-diethynylbenzene in an argon carrier gas at a temperature range of 950 to 1050°C.
A method for producing a highly conductive pyrolytic carbon thin film molded product having a conductivity of 1000 S cm -1 or more, and a graphite thin film molded product that has even higher conductivity by heat-treating the thin film produced by the manufacturing method at a high temperature of 3000 to 3300°C. It is about how to obtain .

本発明の高導電性熱分解炭素薄膜成形物は単独
に使用する以外にも、多くの耐熱材料、セラミツ
クスまたは核燃料の被覆材として使用することが
可能である。
In addition to being used alone, the highly conductive pyrolytic carbon thin film molded product of the present invention can be used as a coating material for many heat-resistant materials, ceramics, or nuclear fuel.

本発明において、パラ−ジエチニルベンゼンを
アルゴンのキヤリアガスとともに加熱雰囲気下に
導入しやすくするために、パラ−ジエチニルベン
ゼン自体をもその融点もしくは融点以上の温度に
加熱する必要がある。キヤリアガスの流量は、た
とえば反応ガスの流路となる石英管の内径が40mm
の場合0.01〜5/min、好ましくは0.1〜1/mi
nである。
In the present invention, in order to facilitate introduction of para-diethynylbenzene into a heated atmosphere together with a carrier gas of argon, it is necessary to heat para-diethynylbenzene itself to its melting point or a temperature above its melting point. The flow rate of the carrier gas is, for example, when the inner diameter of the quartz tube that serves as the flow path for the reaction gas is 40 mm.
0.01~5/min, preferably 0.1~1/mi
It is n.

上記のアルゴンガス中にパラ−ジエチニルベン
ゼン蒸気を含んだ反応ガスを950〜1050℃の電気
炉等の加熱雰囲気下に導入することにより、電導
度が1000S・cm-1以上の高導電性熱分解炭素薄膜
成形物を得ることができる。これより低い温度で
は薄膜成形物の電導度は1000S・cm-1にまでは達
しない。また、これより高い温度では、通常の流
量下で電導度が1000S・cm-1以上の薄膜成形物を
得ることは困難である。
By introducing the reaction gas containing para-diethynylbenzene vapor in the argon gas mentioned above into a heated atmosphere such as an electric furnace at 950 to 1050°C, a highly conductive heat with an electrical conductivity of 1000 S cm -1 or more can be produced. A decomposed carbon thin film molded product can be obtained. At temperatures lower than this, the conductivity of the thin film molding does not reach 1000 S cm -1 . Moreover, at temperatures higher than this, it is difficult to obtain a thin film molded product with an electrical conductivity of 1000 S·cm -1 or more under normal flow rates.

本発明の高導電性熱分解炭素薄膜成形物は基板
上に設けることが可能で、基板としては石英ガラ
ス板、アルミナ板、シリコンウエハー等、1050℃
までの温度に耐え得るものが使用可能である。
The highly conductive pyrolytic carbon thin film molded product of the present invention can be provided on a substrate, such as a quartz glass plate, an alumina plate, a silicon wafer, etc.
It is possible to use materials that can withstand temperatures up to

さらに、本発明の特許請求の範囲第1項記載の
方法によつて製造された高導電性の熱分解炭素薄
膜成形物は、ソフトカーボンすなわち易黒鉛化性
炭素材料としての特色を有している。この薄膜成
形物をアルゴン気流下、3000〜3300℃の温度で熱
処理すると、炭素質の黒鉛化が進行し、電導度が
(1〜2.5)×104S・cm-1の高導電性熱分解炭素薄
膜成形物を得ることができる。当該薄膜成形物は
本質的にグラフアイトであり、グラフアイト材料
自身としての有用性を有している。
Furthermore, the highly conductive pyrolytic carbon thin film molded product produced by the method described in claim 1 of the present invention has characteristics as a soft carbon, that is, a graphitizable carbon material. . When this thin film molded product is heat-treated at a temperature of 3000 to 3300°C under an argon stream, graphitization of the carbonaceous material progresses, resulting in highly conductive thermal decomposition with an electrical conductivity of (1 to 2.5) x 10 4 S cm -1. A carbon thin film molded product can be obtained. The thin film molded product is essentially graphite and has utility as a graphite material itself.

以下、実施例により本発明をさらに具体的に説
明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 内径40mmの石英製円筒内に18mm角の石英ガラス
基板を設置し、その反応管を電気炉内に挿入す
る。反応管の一端に、パラ−ジエチニルベンゼン
の昇華用前室を設け、0.5gのパラ−ジエチニル
ベンゼンを入れておく。前室および反応管内に
0.3/minの流速のアルゴンキヤリアガスを30分
間導入する。
Example 1 A 18 mm square quartz glass substrate is placed in a quartz cylinder with an inner diameter of 40 mm, and the reaction tube is inserted into an electric furnace. A pre-chamber for sublimation of para-diethynylbenzene is provided at one end of the reaction tube, and 0.5 g of para-diethynylbenzene is placed therein. In the front chamber and reaction tube
Introduce argon carrier gas for 30 min at a flow rate of 0.3/min.

その後、電気炉を1000℃にまで昇温させ、次に
前室を90℃に加熱して、昇華したパラ−ジエチニ
ルベンゼンの蒸気をキヤリアガスとともに電気炉
内に導入した。その結果、2時間で厚さ6000Åの
範囲光沢を有する薄膜成形物が石英ガラス基板上
に得られた。四端子法によりこの薄膜成形物の電
導度を測定したところ、1300S・cm-1であつた。
Thereafter, the temperature of the electric furnace was raised to 1000°C, and then the front chamber was heated to 90°C, and the sublimated para-diethynylbenzene vapor was introduced into the electric furnace together with the carrier gas. As a result, a thin film molded product having a gloss of 6000 Å in thickness was obtained on a quartz glass substrate in 2 hours. The electrical conductivity of this thin film molded product was measured by the four-terminal method and was found to be 1300 S·cm -1 .

実施例 2 実施例1と同様にしてシリコンウエハー上に厚
さ1.3μmの薄膜成形物を作製した。この薄膜成形
物をシリコンウエハーからはがし取り、その一片
を超高温炉でアルゴン気流下、3000℃で高温処理
を2時間行つた。処理後の薄膜について、四端子
法により電導度を測定したところ、2×104S・cm
-1であつた。
Example 2 A thin film molded product having a thickness of 1.3 μm was produced on a silicon wafer in the same manner as in Example 1. This thin film molding was peeled off from the silicon wafer, and a piece of it was subjected to high temperature treatment at 3000° C. for 2 hours in an ultra-high temperature furnace under an argon stream. The electrical conductivity of the thin film after treatment was measured using the four-terminal method and was found to be 2×10 4 S・cm.
It was -1 .

Claims (1)

【特許請求の範囲】 1 パラ−ジエチニルベンゼンをアルゴンのキヤ
リアガス中において、950〜1050℃の温度範囲で
熱分解することより電導度が1000S・cm-1以上で
ある高導電性熱分解炭素薄膜成形物を製造する方
法 2 パラ−ジエチニルベンゼンをアルゴンのキユ
リアガス中において、950〜1050℃の温度範囲で
熱分解することにより得られ、かつ電導度が
1000S・cm1以上である高導電性熱分解炭素薄膜成
形物を3000〜3300℃の高温で、熱処理することに
よるグラフアイト薄膜成形物の製造方法。
[Claims] 1. A highly conductive pyrolyzed carbon thin film having an electrical conductivity of 1000 S cm -1 or more obtained by thermally decomposing para-diethynylbenzene in a carrier gas of argon at a temperature range of 950 to 1050°C. Method 2 for producing a molded product Obtained by thermally decomposing para-diethynylbenzene in a argon urea gas at a temperature range of 950 to 1050°C, and having a conductivity of
A method for producing a graphite thin film molded product by heat-treating a highly conductive pyrolytic carbon thin film molded product having a conductivity of 1000 S cm 1 or more at a high temperature of 3000 to 3300°C.
JP58232656A 1983-06-14 1983-12-12 Production of high electrically conductive thin film Granted JPS60127210A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58232656A JPS60127210A (en) 1983-12-12 1983-12-12 Production of high electrically conductive thin film
US06/904,823 US4701317A (en) 1983-06-14 1986-09-08 Highly electroconductive films and process for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58232656A JPS60127210A (en) 1983-12-12 1983-12-12 Production of high electrically conductive thin film

Publications (2)

Publication Number Publication Date
JPS60127210A JPS60127210A (en) 1985-07-06
JPH039945B2 true JPH039945B2 (en) 1991-02-12

Family

ID=16942719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58232656A Granted JPS60127210A (en) 1983-06-14 1983-12-12 Production of high electrically conductive thin film

Country Status (1)

Country Link
JP (1) JPS60127210A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3644124A1 (en) * 1986-12-23 1988-07-07 Linotype Gmbh OPTICAL-MECHANICAL DEFLECTOR
JP4929531B2 (en) * 2001-04-27 2012-05-09 住友電気工業株式会社 Conductive hard carbon film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143321A (en) * 1981-03-03 1982-09-04 Japan Synthetic Rubber Co Ltd Conjugated polymer and its preparation
JPS57207329A (en) * 1981-06-15 1982-12-20 Kanebo Ltd Organic type semiconductor and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143321A (en) * 1981-03-03 1982-09-04 Japan Synthetic Rubber Co Ltd Conjugated polymer and its preparation
JPS57207329A (en) * 1981-06-15 1982-12-20 Kanebo Ltd Organic type semiconductor and manufacture thereof

Also Published As

Publication number Publication date
JPS60127210A (en) 1985-07-06

Similar Documents

Publication Publication Date Title
US4701317A (en) Highly electroconductive films and process for preparing same
US7226643B2 (en) Thermal pyrolysising chemical vapor deposition method for synthesizing nano-carbon material
US3116975A (en) Artificial graphite process
JPS6221867B2 (en)
EP0529593B1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
EP0201696B1 (en) Production of carbon films
JPH039945B2 (en)
CN109574668A (en) The manufacturing method of carbonized film
EP0495095A1 (en) Process for forming crack-free pyrolytic boron nitride on a carbon structure and article.
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
Kumar et al. Survival of diamond at 2200° C in hydrogen
JPS643801B2 (en)
JPH01167210A (en) Processed article of carbonaceous felt and production thereof
JPH0848509A (en) Production of carbonaceous porous body
JP2005112659A (en) Apparatus and method for manufacturing carbon nanotube
EP0449312A2 (en) Process for preparing a graphite film or block from polyamido acid films
US4375443A (en) Process for producing electrically-conductive articles from silicon powder by treatment in the presence of boron oxide
JPS6248754B2 (en)
Shimoo et al. Effect of Vacuum Heat Treatment on Electron‐Beam‐Irradiation‐Cured Polycarbosilane Fibers
JP2003183076A (en) Method for manufacturing pyrolytic carbon or graphite- coated carbon material
JP2629772B2 (en) Method for producing carbon film
JPS61170570A (en) Formation of conductive graphite film
Sano et al. The Electrical Conductivity of Graphite Filaments and Their Alkali-metal Intercalation Compounds
JPS62292611A (en) Production of glassy carbon film
JPH0426576A (en) Silicon carbide coated carbon product and production thereof