JPS6221867B2 - - Google Patents

Info

Publication number
JPS6221867B2
JPS6221867B2 JP54093942A JP9394279A JPS6221867B2 JP S6221867 B2 JPS6221867 B2 JP S6221867B2 JP 54093942 A JP54093942 A JP 54093942A JP 9394279 A JP9394279 A JP 9394279A JP S6221867 B2 JPS6221867 B2 JP S6221867B2
Authority
JP
Japan
Prior art keywords
amorphous material
carbon
temperature
based amorphous
energy level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54093942A
Other languages
Japanese (ja)
Other versions
JPS5617988A (en
Inventor
Toshio Hirai
Takashi Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9394279A priority Critical patent/JPS5617988A/en
Priority to US06/170,168 priority patent/US4393097A/en
Publication of JPS5617988A publication Critical patent/JPS5617988A/en
Priority to US06/642,700 priority patent/US4585704A/en
Publication of JPS6221867B2 publication Critical patent/JPS6221867B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5066Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/18Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は化学気相析出法による新規なSi3N4
C系非晶質材料及びその製造方法に関するもので
ある。 最近、窒化ケイ素(Si3N4)は高温用構造材料及
び電気絶縁材料として注目されている。本発明者
等は先に、熱衝撃にも強い工業化できる大きさの
超硬窒化ケイ素を安価な化学気相析出(CVD)
法により合成することに成功し、特願昭51−2468
号(特開昭52−96999号)として出願したが、今
回これとは特性が或る面では全く異なる優れた新
規なSi3N4−C系非晶質材料を得るのに成功し
た。 前述の特願昭51−2468号のSi3N4は、熱膨脹係
数が小さく、耐熱衝撃性に優れ、低温では勿論高
温でも高硬度であるため、高温材料として有用な
ものである。さらに電気抵抗が極めて大きいた
め、電気絶縁材料として電気・電子工業において
も有用である。しかしながら、上記材料に電気伝
導性を附与することができれば、高温電気材料と
してまた高硬度の電気材料として広い用途が期待
できる。 本発明は上記材料の優れた熱的、機械的諸性質
を維持し、かつ電気伝導性を持つSi3N4を提供す
る。 本発明のSi3N4−C系非晶質材料は、化学気相
析出法により同時析出させて得た非晶質Si3N4
炭素とを含有し、電気伝導度σ=σ0exp(−
0.02〜0.06エレクトロンボルト/2kT)であ
る。 ここで、σは比例定数、kはボルツマン定
数、Tは絶対温度を示し、EはSi3N4−C系非晶
質材料中の非晶質カーボンの価電子体のエネルギ
ーレベルと伝導体のエネルギーレベルとの間に存
在するエネルギーギヤツプであつて、E=0.02〜
0.06eVの範囲内でSi3N4−C系非晶質材料の組成
によつて定まる値を示す。 比例定数σは次のようにして求められる。温
度T(K)のときの電気導電度σをσ(T)、
273K(0℃)のときの電気導電度σをσ(273)
とすると、 σ(T)=σ0exp(−E/2kT) ……(1) σ(273)=σ0exp(−E/2k×273) ……(2) (1)÷(2)より (3)を変形すると (1)式と(4)式を比較すると、
The present invention is a novel Si 3 N 4
The present invention relates to a C-based amorphous material and a method for producing the same. Recently, silicon nitride (Si 3 N 4 ) has attracted attention as a high-temperature structural material and an electrical insulating material. The present inventors first developed ultra-hard silicon nitride, which is resistant to thermal shock and has a size suitable for industrial use, using an inexpensive chemical vapor deposition (CVD) process.
Succeeded in synthesizing it by the method, and filed a patent application in 1982
(Japanese Unexamined Patent Publication No. 52-96999), but this time we succeeded in obtaining an excellent new Si 3 N 4 --C-based amorphous material whose properties are completely different in some respects. The Si 3 N 4 disclosed in Japanese Patent Application No. 51-2468 is useful as a high-temperature material because it has a small coefficient of thermal expansion, excellent thermal shock resistance, and high hardness not only at low temperatures but also at high temperatures. Furthermore, since it has extremely high electrical resistance, it is also useful in the electrical and electronic industries as an electrical insulating material. However, if electrical conductivity can be imparted to the above-mentioned materials, a wide range of applications can be expected as high-temperature electrical materials and high-hardness electrical materials. The present invention provides Si 3 N 4 that maintains the excellent thermal and mechanical properties of the above materials and has electrical conductivity. The Si 3 N 4 -C-based amorphous material of the present invention contains amorphous Si 3 N 4 and carbon obtained by simultaneous precipitation using a chemical vapor deposition method, and has an electrical conductivity σ=σ 0 exp (−
0.02 to 0.06 electron volt/2kT). Here, σ 0 is the proportionality constant, k is the Boltzmann constant, T is the absolute temperature, and E is the energy level of the valence body of amorphous carbon in the Si 3 N 4 -C-based amorphous material and the conductor. The energy gap that exists between the energy level of E=0.02~
It shows a value determined by the composition of the Si 3 N 4 --C-based amorphous material within a range of 0.06 eV. The proportionality constant σ 0 is obtained as follows. Electrical conductivity σ at temperature T (K) is σ (T),
Electrical conductivity σ at 273K (0℃) is σ(273)
Then, σ(T)=σ 0 exp(−E/2kT) ……(1) σ(273)=σ 0 exp(−E/2k×273) ……(2) (1)÷(2) Than When (3) is transformed, Comparing equations (1) and (4), we get

【式】となる。 例えば、E=0.06eVのときには、k=8.62×
10-5eV/kを代入して、σ=3.58×σ(273)
となる。同様にE=0.02eVのときには、σ
1.53×σ(273)となる。 電気伝導度σの値は常温で約10-1〜10-3Ω-1cm
-1である。密度は2.6〜3.0g/cm3、熱伝導度は常
温で0.004〜0.010cal/cm・秒・℃、比熱は常温で
約0.16cal/g・℃、熱拡散率は常温で0.010〜
0.022cm2/秒、マイクロビツカース硬度は100g荷
重時に常温で2500〜3500Kg/mm2である。 本発明方法によれば、特願昭51−2468号の
Si3N4と同じマツシブな大寸法のSi3N4−C系非晶
質材料を得ることができた。 本発明物質の電気抵抗は、例えば特願昭51−
2468号のSi3N4に比べて常温で1012倍減少させる
ことができ、著しく導電性となつた。その一例を
第1図に示す。同図は合成温度1300℃の場合で図
中・印はプロパンガスの流量0cm3/分の場合、〇
印は10cm3/分の場合、■印は25cm3/分の場合、□
印は40cm3/分の場合、▲印は70cm3/分の場合、△
印は100cm3/分の場合を示す。また、電気抵抗の
温度係数は極めて小さくなつた。また、他の代表
的なセラミツクスと電気伝導度を第2図に比較し
て示す。本発明物質は、他の絶縁体セラミツクス
と導電性セラミツクスとのほぼ中間の電気伝導度
を示す。 「Journal of Less−Common Metals」
Vol37、(1974)p317〜329に掲載の論文
「Chemical Vapor Deposition in the System
Silicon−Carbon and Silicon−Carbon−
Nitrogen」によれば、原料としてSiCl4とCCl4
N2とH2の混合ガスを1100〜1300℃の範囲の温度
で気相反応させ、非晶質Si3N4と結晶質(β型)
SiCの混合物を製造しているが、この混合物の電
気的性質又はその他の物理的、化学的性質は記載
されていない。また、粉末焼結法によるSi−C−
N系の材料については従来知られているが、それ
らはいずれも結晶質Si3N4と結晶質SiCの混合物で
ある。米国特許3926857号公報によれば、結晶質
Si3N4にコロイド状炭素を10〜20重量%加え、こ
れを混合し1300〜1450℃で15〜20時間熱処理して
コロイド状炭素をSiCに変化させることにより、
16〜29.5体積%のSiCを含むSi3N4−SiC系材料を
得、その電気抵抗は2.5〜140Ωcmである。また、
Special Ceramic(1960)p102〜135に掲載の論
文「Preparation、Microstructure、and
Mechanical Properties of Silicon Nitride」に
よれば、結晶質Si3N4に5重量%の結晶質SiCを混
合することによつて、結晶質Si3N4の1200℃にお
けるクリープ強度が著しく向上した。また、
「Journal of American Ceramic Society」
Vcl56、No.9、(1973)p.445〜450に掲載の論文
「Effect of Microstructure on Strength of
Si3N4−SiC Composite System」によれば、結
晶質Si3N4と20体積%の結晶質SiCとの混合物の
1400℃における高温強度は、結晶質Si3N4の2倍
にも達する。 しかしながら、これらの刊行物の記載によつて
も判るように、従来未だ非晶質Si3N4と炭素の混
合物については製造された例がなく、その種々の
性質特に電気的性質は全く知られていない。 本発明のSi3N4−C系非晶質材料は、化学気相
析出法により、ケイ素沈積源ガス、窒素沈積源ガ
ス及びH2に炭素沈積源ガスを、合成温度1100〜
1300℃、炉内全圧力30〜70mmHg(30〜70Torr)
で反応させて基体上にSi3N4−C系非晶質材料を
沈積させることにより合成される。 合成反応に先立ち、炉内を約0.001mmHg
(10-3Torr)の真空にし、基体を700〜800℃に数
分間加熱して脱ガスすることが好ましい。続いて
炉内をを水素雰囲気にし、基体を所定温度に加熱
して、C3H8又はCCl4ガス、NH3ガス、SiCl4+H2
ガスの順に炉内に装入することが好ましい。基体
は沈積温度に耐え、雰囲気ガスに対して耐食性の
物質であれば、どの物質でも差支えない。通常は
黒鉛を使用する。 炭素沈積源ガスの流量の調整により、生成する
Si3N4−C系非晶質材料の炭素含有量を調整す
る。本発明の一実験例においては、特願昭51−
2468号の装置とほぼ同様の装置を用い、炭素沈積
源ガスとしてプロパンガスを用い、その流量を
100cm3/分以下に調節して炭素含有量を約10重量
%以下にした。約10重量%より大とすることもで
きたが、亀裂が発生するため好ましくない。 本発明方法の操作にあたつては、特願昭51−
2468号の装置の操作方法を任意に用い得る。 本発明において、製造条件の適当、不適当な範
囲と、好適な範囲とを、第3〜5図に示す。 本発明のSi3N4−C系非晶質材料は、空気中で
約300℃以上で加熱すると、Cが酸化されてガス
として抜け出て、多孔質な物質が残る。この物質
は電気伝導度が小であり、非晶質である。加熱の
度合の調節により、電気伝導度と多孔性を調整す
る。この多孔中に研削剤、テフロン樹脂、絶縁性
油等を含浸させると、非晶質Si3N4の機械的、電
気的性質を改善又は修整し得る。含浸させないで
そのままマイクロフイルターとして使用すること
もできる。 本発明のSi3N4−C系非晶質材料は、以上のよ
うな優れた電気的性質ならびに高温特性を利用し
て、下記の方面に利用できる。 1 被覆材として (イ) 任意材料の基体の表面に被覆することによ
り、絶縁性物質から成る基体にも導電性を附
与する。 (ロ) 絶縁体の表面に被覆することにより、静電
気の発生を防止する。 (ハ) 任意材料の表面に被覆することにより、高
温腐食性ガス、薬品、溶融金属との反応を阻
止する(例えばルツボ、化学プラント、ロケ
ツトノズルなど)。 (ニ) 耐摩耗性を要する機械的部品の表面に被覆
することにより、摩耗及び高温焼付を防止す
る(例えばベアリング、歯車など)。 2 ブロツク材として (ホ) 軽量で高い硬度が要求される発熱体、例え
ば記録用熱ペンに。 (ヘ) 静電印刷装置の記録針に。 (ト) 高温用フイラメントに。 (チ) 高温用発熱体に。 (リ) 酸化性雰囲気で熱処理することによつてマ
イクロフイルターとして。 本発明を次に実施例につき、さらに詳細に説明
する。 実施例 1 特願昭51−2468号に示したとほぼ同様の装置を
用い、人造黒鉛から成る板状基体を1300℃に加熱
し、これにプロパンガスを70cm3/分、アンモニア
ガスを60cm3/分、20℃の飽和四塩化ケイ素蒸気を
含む水素ガスを700cm3/分の流量で、2重管を用
いて反応炉内に装入した。なお、アンモニアガス
は2重管の内管より、その他のガスは外管より流
出させた。その時の反応炉内の圧力を30mmHgと
した。6時間ガスを流した後、電流を切つて冷却
し、中の基体を取り出したところ、基体の表面上
に1.8mm厚さの黒色の板状Si3N4−C系非晶質材料
を得た。この時の沈積速度は0.3mm/時であつ
た。この材料の特性を測定したところ次の通りで
あつた。密度2.95g/cm3、Si/N0.67、炭素濃度
2重量%、硬度2700Kg/mm2(100g荷重)、電気抵
抗32Ωcm(200℃)、20Ωcm(900℃)、熱伝導度
0.0085cal/cm・秒・℃、比熱1.7cal/g・℃、熱
拡散率0.017cm2/秒。X線回折によるとSiCは存在
しなかつた。 実施例 2 実施例1と同様な装置を使用し、同様な操作を
行なつてSi3N4−C系非晶質材料を製造した。製
造条件は、基体温度1300℃、アンモニアガス流量
60cm3/分、プロパンガス流量100cm3/分、20℃の
飽和四塩化ケイ素蒸気を含む水素ガス700cm3
分、反応炉内の圧力70mmHgとした。6時間の反
応時間で基体の表面に厚さ3mmの黒色の板状
Si3N4−C系非晶質材料を得た。この時の沈積速
度は0.5mm/時であつた。この材料の特性を測定
したところ次の通りであつた。密度2.8g/cm3
Si/N0.67、炭素濃度10重量%、硬度2600Kg/mm2
(100荷重)、電気抵抗20Ωcm(200℃)、15Ωcm
(900℃)、熱伝導度0.0065cal/cm・秒・℃、比熱
1.7cal/g・℃、熱拡散率0.013cm2/秒。 実施例 3 実施例1により得たSi3N4−C系非晶質材料
を、空気中で400℃で6時間加熱したところ、電
気抵抗は400℃で3×102Ωcm、1000℃で2×105
Ωcmになつた。しかしながら、密度及び熱伝導度
等の電気抵抗以外の性質は全く変化しなかつた。 実施例 4 実施例1と同様な装置を使用し、発熱体として
ルツボ型に成型した人造黒鉛を用い、その中に市
販の焼結窒化珪素を置き、焼結窒化珪素上に
Si3N4−C系非晶質材料を被覆した。 被覆条件は次の通りであつた。基体温度1300
℃、アンモニアガス流量60cm3/分、プロパンガス
流量40cm3/分、20℃の飽和四塩化ケイ素蒸気を含
む水素ガス700cm3/分、反応炉内の圧力30mmHg、
反応時間10分。焼結窒化珪素表面上に黒色の
Si3N4−C系非晶質被覆を50μmの膜厚で得た。
炭素含有量は0.6重量%であつた。Si3N4−C系非
晶質被覆と市販焼結窒化珪素との密着性は極めて
強固であり、1300℃からの急冷によつても剥離し
なかつた。
[Formula] becomes. For example, when E=0.06eV, k=8.62×
Substituting 10 -5 eV/k, σ 0 = 3.58×σ (273)
becomes. Similarly, when E=0.02eV, σ 0 =
It becomes 1.53×σ(273). The value of electrical conductivity σ is approximately 10 -1 to 10 -3 Ω -1 cm at room temperature.
-1 . Density is 2.6 to 3.0 g/cm 3 , thermal conductivity is 0.004 to 0.010 cal/cm・sec・℃ at room temperature, specific heat is about 0.16 cal/g・℃ at room temperature, thermal diffusivity is 0.010 to 0.010 at room temperature
0.022 cm 2 /sec, and microvits hardness is 2500 to 3500 Kg/mm 2 at room temperature when loaded with 100 g. According to the method of the present invention, Japanese Patent Application No. 51-2468
It was possible to obtain an Si 3 N 4 -C-based amorphous material with the same large size and large size as Si 3 N 4 . The electrical resistance of the material of the present invention can be determined, for example, by
Compared to Si 3 N 4 in No. 2468, it was possible to reduce the amount by 10 12 times at room temperature, making it extremely conductive. An example is shown in FIG. The figure shows the case where the synthesis temperature is 1300℃. The marks in the figure are when the propane gas flow rate is 0cm 3 /min, the 〇 marks are when the flow rate is 10cm 3 /min, the ■ marks are when the flow rate is 25cm 3 /min, and the □
The mark is for 40cm 3 /min, ▲ is for 70cm 3 /min, △
The mark indicates the case of 100cm 3 /min. Furthermore, the temperature coefficient of electrical resistance has become extremely small. Furthermore, the electrical conductivity of other typical ceramics is compared with that in FIG. The material of the present invention exhibits an electrical conductivity approximately intermediate between that of other insulating ceramics and conductive ceramics. "Journal of Less-Common Metals"
Vol 37, (1974) p317-329, "Chemical Vapor Deposition in the System
Silicon−Carbon and Silicon−Carbon−
According to Nitrogen, the raw materials are SiCl 4 and CCl 4 .
A gaseous mixture of N2 and H2 is reacted in the gas phase at a temperature in the range of 1100-1300℃ to form amorphous Si3N4 and crystalline (β type)
A mixture of SiC is produced, but the electrical properties or other physical and chemical properties of this mixture are not described. In addition, Si-C-
N-based materials are conventionally known, but all of them are mixtures of crystalline Si 3 N 4 and crystalline SiC. According to US Pat. No. 3,926,857, crystalline
By adding 10-20% by weight of colloidal carbon to Si3N4 , mixing this and heat-treating at 1300-1450℃ for 15-20 hours to change the colloidal carbon to SiC,
A Si 3 N 4 -SiC material containing 16 to 29.5 volume % of SiC is obtained, and its electrical resistance is 2.5 to 140 Ωcm. Also,
The paper “Preparation, Microstructure, and
According to ``Mechanical Properties of Silicon Nitride'', the creep strength of crystalline Si 3 N 4 at 1200° C. was significantly improved by mixing 5% by weight of crystalline SiC with crystalline Si 3 N 4 . Also,
"Journal of American Ceramic Society"
The paper “Effect of Microstructure on Strength of
According to ``Si 3 N 4 −SiC Composite System'', a mixture of crystalline Si 3 N 4 and 20% by volume of crystalline SiC
The high temperature strength at 1400°C is twice that of crystalline Si 3 N 4 . However, as can be seen from the descriptions in these publications, no mixture of amorphous Si 3 N 4 and carbon has ever been produced, and its various properties, especially its electrical properties, are completely unknown. Not yet. The Si 3 N 4 -C-based amorphous material of the present invention is produced by chemical vapor deposition using a silicon deposition source gas, a nitrogen deposition source gas, and a carbon deposition source gas in addition to H 2 at a synthesis temperature of 1100 to
1300℃, total pressure in the furnace 30~70mmHg (30~70Torr)
It is synthesized by depositing an Si 3 N 4 --C-based amorphous material on a substrate. Prior to the synthesis reaction, the temperature inside the furnace is approximately 0.001mmHg.
It is preferred to degas the substrate by applying a vacuum of (10 −3 Torr) and heating the substrate to 700-800° C. for several minutes. Next, the inside of the furnace is made into a hydrogen atmosphere, the substrate is heated to a predetermined temperature, and C 3 H 8 or CCl 4 gas, NH 3 gas, SiCl 4 + H 2
It is preferable to charge the gases into the furnace in this order. The substrate may be any material as long as it can withstand the deposition temperature and is corrosion resistant to atmospheric gases. Usually graphite is used. Produced by adjusting the flow rate of carbon deposition source gas
The carbon content of the Si 3 N 4 -C-based amorphous material is adjusted. In one experimental example of the present invention, patent application No. 51-
Using a device almost similar to the device in No. 2468, propane gas was used as the carbon deposition source gas, and its flow rate was
The carbon content was adjusted to less than 100 cm 3 /min to about 10% by weight or less. Although it was possible to increase the content to more than about 10% by weight, this is not preferable because cracks will occur. Regarding the operation of the method of the present invention, please refer to the following patent application
The method of operating the device of No. 2468 may optionally be used. In the present invention, appropriate and inappropriate ranges and suitable ranges of manufacturing conditions are shown in FIGS. 3 to 5. When the Si 3 N 4 --C-based amorphous material of the present invention is heated in air at about 300° C. or higher, C is oxidized and escapes as a gas, leaving behind a porous substance. This material has low electrical conductivity and is amorphous. By adjusting the degree of heating, electrical conductivity and porosity are adjusted. By impregnating the pores with an abrasive, Teflon resin, insulating oil, etc., the mechanical and electrical properties of amorphous Si 3 N 4 can be improved or modified. It can also be used as a microfilter without impregnation. The Si 3 N 4 --C-based amorphous material of the present invention can be used in the following fields by taking advantage of the excellent electrical properties and high-temperature properties described above. 1. As a coating material (a) By coating the surface of a substrate made of any material, it imparts conductivity even to a substrate made of an insulating material. (b) Prevent the generation of static electricity by coating the surface of the insulator. (c) By coating the surface of any material, it prevents reactions with high-temperature corrosive gases, chemicals, and molten metals (for example, crucibles, chemical plants, rocket nozzles, etc.). (d) Prevent wear and high-temperature seizure by coating the surfaces of mechanical parts that require wear resistance (e.g. bearings, gears, etc.). 2. As a block material (e) For heating elements that require light weight and high hardness, such as recording thermal pens. (f) For the recording needle of electrostatic printing equipment. (g) For high temperature filaments. (H) For high temperature heating elements. (li) As a microfilter by heat treatment in an oxidizing atmosphere. The invention will now be explained in more detail with reference to examples. Example 1 Using almost the same apparatus as shown in Japanese Patent Application No. 51-2468, a plate-shaped substrate made of artificial graphite was heated to 1300°C, and propane gas was added to it at 70 cm 3 /min and ammonia gas was added at 60 cm 3 /min. Hydrogen gas containing saturated silicon tetrachloride vapor at 20° C. was charged into the reactor at a flow rate of 700 cm 3 /min using a double tube. Note that ammonia gas was discharged from the inner tube of the double tube, and other gases were discharged from the outer tube. The pressure inside the reactor at that time was 30 mmHg. After flowing the gas for 6 hours, the current was turned off and the substrate was cooled. When the substrate inside was taken out, a black plate-like Si 3 N 4 -C amorphous material with a thickness of 1.8 mm was obtained on the surface of the substrate. Ta. The deposition rate at this time was 0.3 mm/hour. The properties of this material were measured and were as follows. Density 2.95g/cm 3 , Si/N 0.67, carbon concentration 2% by weight, hardness 2700Kg/mm 2 (100g load), electrical resistance 32Ωcm (200℃), 20Ωcm (900℃), thermal conductivity
0.0085 cal/cm・sec・℃, specific heat 1.7 cal/g・℃, thermal diffusivity 0.017cm 2 /sec. According to X-ray diffraction, no SiC was present. Example 2 A Si 3 N 4 --C-based amorphous material was produced using the same apparatus as in Example 1 and performing the same operations. Manufacturing conditions are substrate temperature 1300℃, ammonia gas flow rate.
60cm 3 /min, propane gas flow rate 100cm 3 /min, hydrogen gas containing saturated silicon tetrachloride vapor at 20℃ 700cm 3 / min
The pressure inside the reactor was 70 mmHg. A black plate with a thickness of 3 mm was formed on the surface of the substrate after 6 hours of reaction time.
A Si 3 N 4 -C based amorphous material was obtained. The deposition rate at this time was 0.5 mm/hour. The properties of this material were measured and were as follows. Density 2.8g/cm 3 ,
Si/N0.67, carbon concentration 10% by weight, hardness 2600Kg/mm 2
(100 load), electrical resistance 20Ωcm (200℃), 15Ωcm
(900℃), thermal conductivity 0.0065cal/cm・sec・℃, specific heat
1.7cal/g・℃, thermal diffusivity 0.013cm 2 /sec. Example 3 When the Si 3 N 4 -C amorphous material obtained in Example 1 was heated in air at 400°C for 6 hours, the electrical resistance was 3 × 10 2 Ωcm at 400°C and 2 at 1000°C. ×10 5
I became Ωcm. However, properties other than electrical resistance, such as density and thermal conductivity, did not change at all. Example 4 Using the same apparatus as in Example 1, artificial graphite molded into a crucible shape was used as the heating element, commercially available sintered silicon nitride was placed in it, and the sintered silicon nitride was placed on top of the sintered silicon nitride.
A Si 3 N 4 -C based amorphous material was coated. The coating conditions were as follows. Base temperature 1300
℃, ammonia gas flow rate 60cm 3 /min, propane gas flow rate 40cm 3 /min, hydrogen gas containing saturated silicon tetrachloride vapor at 20℃ 700cm 3 /min, pressure inside the reactor 30mmHg,
Reaction time: 10 minutes. Black color on sintered silicon nitride surface
A Si 3 N 4 -C based amorphous coating was obtained with a film thickness of 50 μm.
The carbon content was 0.6% by weight. The adhesion between the Si 3 N 4 -C-based amorphous coating and the commercially available sintered silicon nitride was extremely strong, and did not peel off even after rapid cooling from 1300°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明Si3N4−C系非晶質材料の高温
における電気伝導度を合成時のプロパンガス流量
をパラメータとして示す特性図、第2図は本発明
Si3N4−C系非晶質材料と他のセラミツクス物質
の電気伝導度と温度との関係を比較して示す特性
図、第3〜5図は製造条件の適当、不適当又は好
適を示す特性図である。
Figure 1 is a characteristic diagram showing the electrical conductivity at high temperatures of the Si 3 N 4 -C based amorphous material of the present invention using the propane gas flow rate during synthesis as a parameter, and Figure 2 is a characteristic diagram of the present invention.
Characteristic diagrams that compare and show the relationship between electrical conductivity and temperature of Si 3 N 4 -C-based amorphous materials and other ceramic materials. Figures 3 to 5 show appropriate, inappropriate, or suitable manufacturing conditions. It is a characteristic diagram.

Claims (1)

【特許請求の範囲】 1 化学気相析出法により同時析出させて得た非
晶質Si3N4と炭素とを含有し、電気伝導度 σ=σ0exp(−E/2kT) (ただし、σは比例定数、kはボルツマン定
数、Tは絶対温度を示し、EはSi3N4−C系非晶
質材料中の非晶質カーボンの価電子体のエネルギ
ーレベルと伝導体のエネルギーレベルとの間に存
在するエネルギーギヤツプであつて、E=0.02〜
0.06eVの範囲内でSi3N4−C系非晶質材料の組成
によつて定まる値を示す)であることを特徴とす
るSi3N4−C系非晶質材料。 2 Cの含有量が約10重量%以下である特許請求
の範囲1記載のSi3N4−C系非晶質材料。 3 化学気相析出法により同時析出させて得た非
晶質Si3N4と炭素とを含有し、電気伝導度 σ=σ0exp(−E/2kT) (ただし、σは比例定数、kはボルツマン定
数、Tは絶対温度を示し、EはSi3N4−C系非晶
質材料中の非晶質カーボンの価電子体のエネルギ
ーレベルと伝導体のエネルギーレベルとの間に存
在するエネルギーギヤツプであつて、E=0.02〜
0.06eVの範囲内でSi3N4−C系非晶質材料の組成
によつて定まる値を示す)であるSi3N4−C系非
晶質材料を、空気中で約300℃以上の温度で加熱
して電気抵抗を増加したことを特徴とするSi3N4
−C系非晶質材料。 4 化学気相析出法により、ケイ素沈積源ガス、
窒素沈積源ガスおよびH2に、炭素沈積源ガス
を、合成温度1100〜1300℃、炉内全圧力30〜70mm
Hgの析出条件で反応させて、基体上にSi3N4−C
系非晶質材料を沈積させることを特徴とする
Si3N4−C系非晶質材料の製造方法。
[Claims] 1 Contains amorphous Si 3 N 4 and carbon obtained by co-precipitating by chemical vapor deposition method, and has electrical conductivity σ=σ 0 exp (-E/2kT) (however, σ 0 is the proportionality constant, k is the Boltzmann constant, T is the absolute temperature, and E is the energy level of the valence body of amorphous carbon in the Si 3 N 4 -C-based amorphous material and the energy level of the conductor. The energy gap that exists between E=0.02~
1. A Si 3 N 4 -C amorphous material having a value determined by the composition of the Si 3 N 4 -C amorphous material within a range of 0.06 eV. 2. The Si3N4 -C-based amorphous material according to claim 1, wherein the content of 2C is about 10% by weight or less. 3 Contains amorphous Si 3 N 4 and carbon obtained by co-precipitating by chemical vapor deposition method, and has electrical conductivity σ = σ 0 exp (-E/2kT) (where σ 0 is a proportionality constant, k is the Boltzmann constant, T is the absolute temperature, and E exists between the energy level of the valence body of amorphous carbon in the Si 3 N 4 -C-based amorphous material and the energy level of the conductor. Energy gap, E=0.02~
The Si 3 N 4 -C amorphous material is heated in air at a temperature of about 300°C or above. Si 3 N 4 characterized by increased electrical resistance by heating at high temperatures
-C-based amorphous material. 4 By chemical vapor deposition method, silicon deposition source gas,
Add carbon deposition source gas to nitrogen deposition source gas and H2 , synthesis temperature 1100~1300℃, total furnace pressure 30~70mm
By reacting under Hg precipitation conditions, Si 3 N 4 -C is deposited on the substrate.
characterized by depositing amorphous material
A method for producing a Si 3 N 4 -C-based amorphous material.
JP9394279A 1979-07-24 1979-07-24 Electroconductive si3n44c type noncrystalline material by chemical gas phase deposition and its manufacture Granted JPS5617988A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9394279A JPS5617988A (en) 1979-07-24 1979-07-24 Electroconductive si3n44c type noncrystalline material by chemical gas phase deposition and its manufacture
US06/170,168 US4393097A (en) 1979-07-24 1980-07-18 Electrically conductive Si3 N4 -C series amorphous material and a method of producing the same
US06/642,700 US4585704A (en) 1979-07-24 1984-08-21 Electrically conductive Si3 N4 --C series amorphous material and a method of processing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9394279A JPS5617988A (en) 1979-07-24 1979-07-24 Electroconductive si3n44c type noncrystalline material by chemical gas phase deposition and its manufacture

Publications (2)

Publication Number Publication Date
JPS5617988A JPS5617988A (en) 1981-02-20
JPS6221867B2 true JPS6221867B2 (en) 1987-05-14

Family

ID=14096480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9394279A Granted JPS5617988A (en) 1979-07-24 1979-07-24 Electroconductive si3n44c type noncrystalline material by chemical gas phase deposition and its manufacture

Country Status (2)

Country Link
US (2) US4393097A (en)
JP (1) JPS5617988A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116063U (en) * 1988-01-29 1989-08-04

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462772A (en) * 1957-06-27 1995-10-31 Lemelson; Jerome H. Methods for forming artificial diamond
JPS5617988A (en) * 1979-07-24 1981-02-20 Toshio Hirai Electroconductive si3n44c type noncrystalline material by chemical gas phase deposition and its manufacture
US4537942A (en) * 1984-02-10 1985-08-27 Minnesota Mining And Manufacturing Company Polyhydridosilanes and their conversion to pyropolymers
US4611035A (en) * 1984-02-10 1986-09-09 Minnesota Mining And Manufacturing Company Polyhydridosilanes and their conversion to pyropolymers
US4704444A (en) * 1984-02-10 1987-11-03 Minnesota Mining And Manufacturing Company Polyhydridosilanes and their conversion to pyropolymers
US4568614A (en) * 1984-06-27 1986-02-04 Energy Conversion Devices, Inc. Steel article having a disordered silicon oxide coating thereon and method of preparing the coating
JPS61174128A (en) * 1985-01-28 1986-08-05 Sumitomo Electric Ind Ltd Mold for molding lens
DE3609503A1 (en) * 1985-03-22 1986-10-02 Canon K.K., Tokio/Tokyo HEATING RESISTANCE ELEMENT AND HEATING RESISTANCE USING THE SAME
GB2174877B (en) * 1985-03-23 1989-03-15 Canon Kk Thermal recording head
DE3609456A1 (en) * 1985-03-23 1986-10-02 Canon K.K., Tokio/Tokyo HEAT-GENERATING RESISTANCE AND HEAT-GENERATING RESISTANCE ELEMENT USING THE SAME
US4845513A (en) * 1985-03-23 1989-07-04 Canon Kabushiki Kaisha Thermal recording head
GB2175252B (en) * 1985-03-25 1990-09-19 Canon Kk Thermal recording head
GB2176443B (en) * 1985-06-10 1990-11-14 Canon Kk Liquid jet recording head and recording system incorporating the same
US4753856A (en) * 1987-01-02 1988-06-28 Dow Corning Corporation Multilayer ceramic coatings from silicate esters and metal oxides
US4775203A (en) * 1987-02-13 1988-10-04 General Electric Company Optical scattering free metal oxide films and methods of making the same
JPH01119675A (en) * 1987-07-28 1989-05-11 Morton Thiokol Inc Ultralight high temperature action structure
US5135809A (en) * 1987-11-13 1992-08-04 Dow Corning Corporation Method for densification of amorphous ceramic material
FR2643071B1 (en) * 1989-02-16 1993-05-07 Unirec LOW TEMPERATURE STEAM DEPOSITION PROCESS OF A NITRIDE OR METAL CARBONITRIDE CERAMIC COATING
JPH0560528A (en) * 1991-09-03 1993-03-09 Hitachi Ltd Input device for three-dimensional information
US5422534A (en) * 1992-11-18 1995-06-06 General Electric Company Tantala-silica interference filters and lamps using same
US5740941A (en) * 1993-08-16 1998-04-21 Lemelson; Jerome Sheet material with coating
US5935705A (en) * 1997-10-15 1999-08-10 National Science Council Of Republic Of China Crystalline Six Cy Nz with a direct optical band gap of 3.8 eV
US7510742B2 (en) * 2005-11-18 2009-03-31 United Technologies Corporation Multilayered boron nitride/silicon nitride fiber coatings
KR102181727B1 (en) * 2019-04-17 2020-11-24 주식회사 티씨케이 Manufacturing method of silicon carbide-silicon nitride composite material and silicon carbide-silicon nitride composite material thereby

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1258850B (en) * 1965-05-10 1968-01-18 Lonza Werke Elektrochemische F Process for the production of pure silicon carbide
US4145224A (en) * 1974-11-22 1979-03-20 Gte Sylvania Incorporated Method for enhancing the crystallization rate of high purity amorphous Si3 N4 powder, powders produced thereby and products therefrom
US4036653A (en) * 1975-05-28 1977-07-19 E. I. Du Pont De Nemours And Company Amorphous silicon nitride composition containing carbon, and vapor phase process
DE2557079C2 (en) * 1975-12-18 1984-05-24 Ibm Deutschland Gmbh, 7000 Stuttgart Method for producing a masking layer
JPS6047202B2 (en) * 1976-01-13 1985-10-21 東北大学金属材料研究所長 Super hard high purity oriented polycrystalline silicon nitride
US4158717A (en) * 1977-02-14 1979-06-19 Varian Associates, Inc. Silicon nitride film and method of deposition
US4178415A (en) * 1978-03-22 1979-12-11 Energy Conversion Devices, Inc. Modified amorphous semiconductors and method of making the same
US4187344A (en) * 1978-09-27 1980-02-05 Norton Company Protective silicon nitride or silicon oxynitride coating for porous refractories
US4225355A (en) * 1979-02-16 1980-09-30 United Technologies Corporation Amorphous boron-carbon alloy in bulk form and methods of making the same
JPS5617988A (en) * 1979-07-24 1981-02-20 Toshio Hirai Electroconductive si3n44c type noncrystalline material by chemical gas phase deposition and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116063U (en) * 1988-01-29 1989-08-04

Also Published As

Publication number Publication date
US4393097A (en) 1983-07-12
JPS5617988A (en) 1981-02-20
US4585704A (en) 1986-04-29

Similar Documents

Publication Publication Date Title
JPS6221867B2 (en)
US4645713A (en) Method for forming conductive graphite film and film formed thereby
US3492153A (en) Silicon carbide-aluminum nitride refractory composite
US5300322A (en) Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
US5114749A (en) Method for manufacturing carbon material having good resistance to oxidation by coating the carbon material with an inorganic polysilazane and then heating
US11148978B2 (en) Method for producing silicon-carbide-based composite
JPS61232269A (en) Manufacture of boron-containing silicon carbide powder
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JPS6332841B2 (en)
JPH0465361A (en) Silicon carbide heater and manufacture thereof
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPH0789776A (en) Production of boron nitride coated carbon material
JPH0648867A (en) Production of boron carbide-coated carbon material
JP3482480B2 (en) Graphite-silicon carbide composite having excellent oxidation resistance and method for producing the same
KR910000293B1 (en) Process for production of graphite coated silicon carbide
US3956193A (en) Conductivity of silicon nitride
JPH05319963A (en) Non-oxidizable carbon material and its production
JP3182907B2 (en) Method for producing boron carbide converted carbon material and boron carbide converted carbon material produced by the method
JPH05306169A (en) Production of carbon material
RU2149215C1 (en) Method of preparing pyrolytic carbon
JP3484505B2 (en) Carbon material having a layer of pyrolysis products consisting of boron and carbon
Kato Vapour phase synthesis of ultrafine non-oxide powders and their sintering behaviour
JP2528928B2 (en) Method for producing silicon carbide-silicon nitride composite film
JPH04254486A (en) Formation of oxidation resistant coating layer on carbon fiber reinforced composite material