JPH05319963A - Non-oxidizable carbon material and its production - Google Patents

Non-oxidizable carbon material and its production

Info

Publication number
JPH05319963A
JPH05319963A JP3038679A JP3867991A JPH05319963A JP H05319963 A JPH05319963 A JP H05319963A JP 3038679 A JP3038679 A JP 3038679A JP 3867991 A JP3867991 A JP 3867991A JP H05319963 A JPH05319963 A JP H05319963A
Authority
JP
Japan
Prior art keywords
carbon
carbide
metal carbide
heating
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3038679A
Other languages
Japanese (ja)
Other versions
JP2792749B2 (en
Inventor
Takashi Ueda
隆 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3038679A priority Critical patent/JP2792749B2/en
Publication of JPH05319963A publication Critical patent/JPH05319963A/en
Application granted granted Critical
Publication of JP2792749B2 publication Critical patent/JP2792749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain a non-oxidizable carbon material not releasing by heat strain of coating material and not reducing strength of carbon parent material by excessive modification by coating the surface of a carbonaceous base with a mixture of carbon and a metal carbide and increasing the ratio of the metal carbide from the base side toward the surface side of the coating film. CONSTITUTION:A mixture of a metal element-containing compound to form a metal carbide by heating and an organic compound to form carbon by heating, subjected to composition adjustment, is applied to a carbon material comprising a carbonaceous material as a base and a heating process is repeated. Consequently, the formed mixture of carbon and the metal carbide has a higher carbon ratio at the base side, gradually reduces the ratio of carbon toward the surface side and increases the ratio of the metal carbide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐酸化性炭素材料、更に
詳しくは耐酸化対策が施された断熱用炭素材、炭素繊
維、炭素/炭素複合材料等の炭素材料及びその製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation resistant carbon material, more specifically to a carbon material such as a heat insulating carbon material, a carbon fiber, a carbon / carbon composite material and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】炭素材料は耐熱性のある軽量材料とし
て、断熱壁、炭素繊維使用の複合材料等に多く利用され
ており、低熱膨張率、熱伝導性、電気伝導性等の物理的
特徴を生かした機能製品への用途も増加している。中で
も高温構造材料である炭素/炭素複合材料(以下、C/
Cコンポジットと略す)は、金属やセラミックスでは耐
えられない温度領域での材料として非常に注目されてい
る。このように炭素材料は多くの長所を有しているが、
反面、酸化性ガス雰囲気下では酸化減肉するという大き
な問題点を有するため、種々の耐酸化手段が講じられて
いる。例えば、炭化ケイ素、炭化ホウ素、二酸化ケイ素
等の炭化物、酸化物等を炭素表面に被覆するような手段
が行われている。
2. Description of the Related Art Carbon materials are widely used as heat-resistant lightweight materials for heat insulating walls, composite materials using carbon fibers, etc., and have physical characteristics such as low coefficient of thermal expansion, thermal conductivity, and electrical conductivity. Applications for functional products that make the most of it are also increasing. Among them, carbon / carbon composite materials (hereinafter, C /
C composites) are attracting a great deal of attention as a material in a temperature range where metals and ceramics cannot withstand. Thus, carbon materials have many advantages,
On the other hand, since there is a big problem that the wall thickness is reduced due to oxidation in an oxidizing gas atmosphere, various measures against oxidation are taken. For example, a means for coating the carbon surface with a carbide such as silicon carbide, boron carbide, or silicon dioxide, an oxide, or the like is used.

【0003】これらの物質を炭素質基材表面に被覆する
手段としては、化学蒸着法(CVD法)などにより直接
被覆することもあるし、炭素質基材を金属化合物と反応
させることにより表面を改質させる方法もある。
As a means for coating the surface of the carbonaceous substrate with these substances, there is a case where it is directly coated by a chemical vapor deposition method (CVD method) or the like, or the surface of the carbonaceous substrate is reacted with a metal compound. There is also a method of modifying.

【0004】前者のCVD法では、例えばメタン、ベン
ゼンなどの炭化水素ガスとシランガスのようなケイ素含
有ガスを気相中で加熱反応させ、炭素質基材表面に炭化
ケイ素を数十〜数百μm の厚さで蒸着させることが可能
である。一方、後者の改質法では、例えばケイ素、酸化
アルミニウム、炭化ケイ素の混合物を炭素質基材表面と
加熱反応させ、数十〜数百μm の深さの炭化ケイ素改質
層を炭素質基材に形成させることが可能である。この後
者の改質法はその他種々の方法があり、例えば金属化合
物としてシリコンテトラエチラートを使用し、シリコン
テトラエチラートの熱分解によりシリコンラジカルを発
生させ、これと母材の炭素と反応させて炭化ケイ素に変
換させるような方法、シリコンテトラエチラートのかわ
りに二酸化ケイ素と酸化アルミニウムとの混合物を使用
し、同様に熱分解により二酸化ケイ素を還元して、一酸
化ケイ素とし、これと炭素と反応させて炭化ケイ素に最
終的に変換される方法もある。
In the former CVD method, for example, a hydrocarbon gas such as methane or benzene and a silicon-containing gas such as a silane gas are heated and reacted in a gas phase to deposit silicon carbide on the surface of the carbonaceous substrate in the range of several tens to several hundreds of μm. It is possible to vapor-deposit it in the thickness of. On the other hand, in the latter modification method, for example, a mixture of silicon, aluminum oxide, and silicon carbide is heated and reacted with the surface of the carbonaceous substrate to form a silicon carbide modified layer having a depth of tens to hundreds of μm on the carbonaceous substrate. Can be formed. There are various other methods for this latter reforming method, for example, using silicon tetraethylate as a metal compound, generating a silicon radical by thermal decomposition of silicon tetraethylate, and reacting this with carbon of the base material. A method of converting to silicon carbide, using a mixture of silicon dioxide and aluminum oxide instead of silicon tetraethylate, similarly reducing silicon dioxide by thermal decomposition to give silicon monoxide, which reacts with carbon. There is also a method in which it is finally converted into silicon carbide.

【0005】[0005]

【発明が解決しようとする課題】CVD法では緻密な炭
化物等の耐酸化物層を形成させることが可能であるが、
高温時に亀裂を発生させない信頼性の高い膜厚数百μm
以上の層を形成させることは困難である。特に炭素質と
耐酸化物層との熱膨張の差により熱応力が発生し、海面
剥離が生じる恐れもあり、侵入した酸素により炭素質の
酸化が超えるという欠点があった。さらに、CVD法で
は大型部材への被覆は装置の制約があり問題があった。
Although it is possible to form a dense oxide-resistant layer of carbide or the like by the CVD method,
Reliable film thickness of several hundred μm that does not cause cracks at high temperatures
It is difficult to form the above layers. In particular, there is a possibility that thermal stress is generated due to the difference in thermal expansion between the carbonaceous material and the oxide resistant layer, and sea surface delamination may occur, and the oxidation of the carbonaceous material is exceeded by the invading oxygen. Further, in the CVD method, there is a problem in covering a large member due to the limitation of the device.

【0006】一方、改質法では炭素の物理・化学性状が
改質後の改質層性状にも影響し、特に複合材料のように
細孔径の大きな空隙を有するような材料に対しては、緻
密な炭化物層を形成することは困難である。また、改質
に伴う性状変化により、炭素質そのものの強度が低下す
るといった懸念があった。
On the other hand, in the reforming method, the physical and chemical properties of carbon also affect the properties of the reformed layer after reforming, and particularly for materials such as composite materials having large pores, It is difficult to form a dense carbide layer. In addition, there was a concern that the strength of the carbonaceous material itself would decrease due to the change in properties accompanying the modification.

【0007】本発明は上記技術水準に鑑み、被覆材の熱
ひずみによる剥離、過度の改質による炭素母材強度が低
下しない耐酸化性炭素材料及びその製造方法を提供しよ
うとするものである。
In view of the above-mentioned state of the art, the present invention aims to provide an oxidation resistant carbon material which does not reduce the strength of the carbon base material due to peeling due to thermal strain of the coating material and excessive modification, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明は (1)炭素質を基材とし、その表面に金属炭化物が被覆
された炭素材料であって、炭素と金属炭化物との混合物
が基材の表面に被覆されており、かつ上記炭素と金属炭
化物との混合物が基材側で炭素の割合が多く、順次表面
側に向けて炭素の割合が減少し、金属炭化物の割合が増
加していることを特徴とする耐酸化性炭素材料。
MEANS FOR SOLVING THE PROBLEMS The present invention is (1) a carbon material having a carbonaceous material as a base material, the surface of which is coated with a metal carbide, wherein a mixture of carbon and metal carbide is applied to the surface of the base material. It is coated, and the mixture of the carbon and the metal carbide has a large proportion of carbon on the base material side, the proportion of carbon gradually decreases toward the surface side, and the proportion of metal carbide increases. And an oxidation resistant carbon material.

【0009】(2)加熱により金属炭化物を生成する金
属元素含有化合物と、加熱により炭素を生成する有機化
合物とを組成調整してなる混合物を、炭素質を基材とす
る炭素材料に塗布し加熱する工程を繰り返し、生成され
る上記炭素と金属炭化物との混合物が基材側で炭素の割
合が高く、順次表面側に向けて炭素の割合が減少し、金
属炭化物の割合を増加させることを特徴とする耐酸化性
炭素材料の製造方法。
(2) A mixture prepared by adjusting the composition of a metal element-containing compound that produces a metal carbide by heating and an organic compound that produces carbon by heating is applied to a carbonaceous material having a carbonaceous base material and heated. The step of repeating the above step is characterized in that the mixture of the above-mentioned carbon and metal carbide produced has a high proportion of carbon on the base material side, the proportion of carbon gradually decreases toward the surface side, and the proportion of metal carbide increases. A method for producing an oxidation resistant carbon material.

【0010】(3)炭素質を基材としその表面に金属炭
化物が被覆された炭素材料であって、炭素と炭素質粉末
と金属炭化物との混合物が基材の表面に被覆されてお
り、かつ炭素と金属炭化物との混合物が基材側で炭素の
割合が多く、順次表面側に向けて炭素の割合が減少し、
金属炭化物の割合が増加していることを特徴とする耐酸
化性炭素材料。
(3) A carbon material having a carbonaceous material as a base material, the surface of which is coated with metal carbide, wherein the surface of the base material is coated with a mixture of carbon, carbonaceous powder and metal carbide, and The mixture of carbon and metal carbide has a large proportion of carbon on the base material side, and the proportion of carbon gradually decreases toward the surface side,
An oxidation resistant carbon material characterized by an increased proportion of metal carbides.

【0011】(4)加熱により金属炭化物を生成する金
属元素含有化合物と加熱により炭素を生成する有機化合
物と炭素化処理を施した炭素質粉末とを組成調整してな
る混合物を、炭素質を基材とする炭素材料に塗布し加熱
する工程を繰り返し、生成される上記炭素と金属炭化物
との混合物が基材側で炭素の割合が高く、順次表面側に
向けて炭素の割合が減少し、金属炭化物の割合を増加さ
せることを特徴とする耐酸化性炭素材料の製造方法。で
ある。
(4) A mixture obtained by adjusting the composition of a metal element-containing compound that produces a metal carbide by heating, an organic compound that produces carbon by heating, and a carbonaceous powder that has been carbonized The step of applying and heating the carbon material to be used as a material is repeated, and the resulting mixture of carbon and metal carbide has a high proportion of carbon on the base material side, and the proportion of carbon gradually decreases toward the surface side. A method for producing an oxidation resistant carbon material, which comprises increasing the ratio of carbides. Is.

【0012】本発明ではこれまでの方法の問題点を解決
すべく鋭意検討した結果、熱膨張の違いに伴う亀裂、剥
離の発生に対しては、被覆炭化物と炭素との量滴割合を
基材側で炭素の割合が高く、順次表面側に向けて炭素の
割合を減少させ、表面を炭化物のみにする構成とした耐
酸化性炭素材料であり、加熱により炭化物を生成する金
属元素含有化合物と加熱により炭素を生成する有機物及
び場合により更に既に炭素化処理を施した炭素質粉末を
使用することにより上記構成の耐酸化性炭素材料の製造
を可能としたものである。また、母材自身の改質に伴う
材料強度低下防止に対しては母材炭素の表面に新たに炭
化物/炭素の層を設け母材にまで改質が及ばないことに
より対処可能としたものである。具体的には以下の通り
である。
In the present invention, as a result of extensive studies to solve the problems of the conventional methods, as a result of the occurrence of cracks and peeling due to the difference in thermal expansion, the ratio of the amount of the coated carbide and the carbon droplets to the base material is used. It is an oxidation-resistant carbon material that has a high carbon ratio on the side and gradually decreases the carbon ratio toward the surface side, and the surface is made of only carbide. By using an organic substance which produces carbon by the above method and a carbonaceous powder which has already been subjected to a carbonization treatment as the case may be, it is possible to produce the oxidation resistant carbon material having the above constitution. In addition, the prevention of material strength deterioration due to the modification of the base metal itself can be dealt with by providing a new carbide / carbon layer on the surface of the base material carbon and not modifying the base material. is there. Specifically, it is as follows.

【0013】まず、加熱により金属炭化物を生成する金
属元素含有化合物と、加熱により炭素を生成する有機化
合物及び場合により更に既に炭素化処理を施した炭素質
粉末を所定組成に混合調製する。金属元素含有化合物と
してはポリジメチルシラン、ポリメチルカルボシラン、
ポリカルボラニレンシロキサン等のケイ素含有化合物が
挙げられ、これらは加熱により炭化ケイ素に変化する。
金属元素含有化合物としては上記ケイ素化合物以外にホ
ウ素化合物、チタン化合物等もあり、使用環境に応じて
選択することができる。炭素を生成する有機化合物とし
ては、石油系ピッチ、石炭系ピッチ、合成高分子等が挙
げられる。これら有機化合物の加熱により生成する炭素
は、原料の種類、加熱条件により性状、特に黒鉛度が異
なるため、所望黒鉛化度の炭素を調製することが可能で
ある。さらに、本発明においては、場合により既に炭素
化処理を施した炭素質粉末を前述の金属元素化合物と有
機化合物の混合物に添加する。この炭素質粉末として
は、コークス、黒鉛、カーボンブラック等が挙げられ
る。
First, a metal element-containing compound that forms a metal carbide by heating, an organic compound that forms carbon by heating, and optionally a carbonaceous powder that has already been carbonized are mixed and prepared to a predetermined composition. As the metal element-containing compound, polydimethylsilane, polymethylcarbosilane,
Examples thereof include silicon-containing compounds such as polycarboranylene siloxane, which are converted into silicon carbide by heating.
As the metal element-containing compound, there are a boron compound, a titanium compound and the like in addition to the above silicon compound, and they can be selected according to the use environment. Examples of organic compounds that generate carbon include petroleum pitch, coal pitch, and synthetic polymers. The carbon generated by heating these organic compounds has different properties, particularly the degree of graphitization, depending on the type of raw material and the heating conditions, so that it is possible to prepare carbon having a desired degree of graphitization. Further, in the present invention, carbonaceous powder which has already been subjected to carbonization treatment is added to the above-mentioned mixture of the metal element compound and the organic compound. Examples of the carbonaceous powder include coke, graphite and carbon black.

【0014】これら混合物は濃度調製した後、母材炭素
表面に塗布する。この場合、有機溶剤を使用することも
ある。塗布した混合物は窒素等の不活性ガス雰囲気下で
加熱することにより、母材炭素表面に金属炭化物を含む
炭素の層が形成される。このような塗布−加熱の工程を
繰り返すことにより、母材炭素表面に炭化物濃度が断続
的に変化する被覆層が形成されることになる。
After adjusting the concentration of these mixtures, the mixture is applied to the surface of the base carbon material. In this case, an organic solvent may be used. By heating the applied mixture in an atmosphere of an inert gas such as nitrogen, a carbon layer containing metal carbide is formed on the surface of the base carbon material. By repeating such a coating-heating step, a coating layer in which the concentration of carbide changes intermittently is formed on the surface of the base material carbon.

【0015】[0015]

【作用】母材炭素に接触する金属炭化物/炭素の被覆層
は炭素濃度の高い組成にしておくことが望ましい。これ
は前述したように炭素同志の密着により熱膨張の差が少
なく、剥離、亀裂発生を防止するためである。そして、
次の層は炭化物濃度を増し、徐々に炭化物層に近づけて
いく。このような構成にすると母材炭素自体への強度低
下の懸念もなく、酸化性ガスの侵入を被覆材で遮断する
ことが可能となる。
It is desirable that the metal carbide / carbon coating layer that comes into contact with the base material carbon has a composition having a high carbon concentration. This is because, as described above, the difference in thermal expansion is small due to the close contact between the carbons, and peeling and cracking are prevented. And
The next layer increases the carbide concentration and gradually approaches the carbide layer. With such a structure, it is possible to block the invasion of the oxidizing gas by the coating material without concern that the strength of the base material carbon itself will decrease.

【0016】また、上記被覆層構成にするために塗布・
加熱時に場合により炭素質粉末を使用するが、これは有
機化合物や金属元素含有化合物の炭素収率(残渣収率)
が増加するという長所を有すると共に、層の強度保持の
点でも有効である。
Further, in order to form the above coating layer, coating /
Carbonaceous powder is sometimes used during heating, but this is the carbon yield of organic compounds and compounds containing metal elements (residue yield).
Is also effective in maintaining the strength of the layer.

【0017】[0017]

【実施例】以下、本発明の具体的な実施例をあげ、本発
明の効果を立証する。 (例1)耐酸化処理を施す対象となる母材炭素材料とし
ては、X線回折によるC軸方向の黒鉛層積層厚みが15
0Åの異方性黒鉛と、ピッチ系炭素繊維/ピッチ原料マ
トリックス炭素の二次元織C/Cコンポジット(Vf値
50%)を使用した。
EXAMPLES The effects of the present invention will be proved below with reference to specific examples of the present invention. (Example 1) As a base material carbon material to be subjected to oxidation resistance treatment, a graphite layer lamination thickness in the C-axis direction by X-ray diffraction is 15
Two-dimensional woven C / C composite (Vf value 50%) of 0Å anisotropic graphite and pitch-based carbon fiber / pitch raw material matrix carbon was used.

【0018】炭化物の原料としてはジメチルクロロシラ
ンのナトリウムによる脱塩素反応で合成したポリシラ
ン、ポリシランを熱変成させて合成したポリカルボシラ
ン、フェニルジクロロボランのナトリウムによる脱塩素
反応で合成したポリフェニルボラン及びポリカルボラニ
レンシロキサン(以下、ポリカルボラニレンと略す)で
ある。
As a raw material for the carbide, polysilane synthesized by dechlorination reaction of dimethylchlorosilane with sodium, polycarbosilane synthesized by thermal modification of polysilane, polyphenylborane and polyphenylborane synthesized by dechlorination reaction of phenyldichloroborane with sodium. Carboranylene siloxane (hereinafter abbreviated as polycarboranylene).

【0019】炭素の原料としては石油系ピッチ(水素/
炭素原子比0.54)、石炭系ピッチ(水素/炭素原子
比0.57)及びフェノール樹脂を使用した。
As a raw material of carbon, petroleum pitch (hydrogen /
A carbon atom ratio of 0.54), a coal pitch (hydrogen / carbon atom ratio of 0.57) and a phenol resin were used.

【0020】炭化物原料と炭素原料はアセトン溶媒中で
所定濃度に調整し、母材炭素材料に塗布し加熱乾燥で脱
溶媒を行った。この試料を150℃で3時間、窒素ガス
雰囲気中で加熱処理を行った。加熱後、被膜断面を走査
型電子顕微鏡で金属元素の強度を測定することにより、
被膜中の炭化物の割合を測定した。なお、炭化物の確認
は断面のX線回折により確認した。表1にその結果を示
す。いずれの場合も母材炭素材料表面に炭化物がある濃
度で形成できることがわかった。また、炭化物原料の濃
度が高い程、被膜中の炭化物割合も多くなった。
The carbide raw material and the carbon raw material were adjusted to a predetermined concentration in an acetone solvent, applied to a base carbon material, and dried by heating to remove the solvent. This sample was heat-treated at 150 ° C. for 3 hours in a nitrogen gas atmosphere. After heating, by measuring the strength of the metal element in the cross section of the coating with a scanning electron microscope,
The percentage of carbide in the coating was measured. The carbide was confirmed by X-ray diffraction of the cross section. The results are shown in Table 1. In each case, it was found that carbide could be formed at the concentration of carbide on the surface of the base carbon material. Further, the higher the concentration of the carbide raw material, the greater the proportion of carbide in the coating.

【0021】表1のNo. 1の条件でまず黒鉛に炭素のみ
の層を形成させた。次に、No. 2の条件、No. 3の条件
で被覆中での炭化物濃度を上げてゆき、最後にNo. 4の
条件で炭化物のみを層を形成させた。塗布、加熱の方法
は上述した条件と同じである。このようにして形成させ
た黒鉛上の被膜を空気雰囲気中で150℃まで上げ、次
に室温まで冷却する熱サイクルを10回行ったが、試験
後の被膜には外観上亀裂は認められず、走査型電子顕微
鏡による断面観察でも亀裂、剥離は認められなかった。
Under the conditions of No. 1 in Table 1, a carbon-only layer was first formed on graphite. Next, the carbide concentration in the coating was increased under the conditions of No. 2 and No. 3, and finally the layer of carbide alone was formed under the conditions of No. 4. The coating and heating methods are the same as those described above. The graphite coating thus formed was heated to 150 ° C. in an air atmosphere and then cooled to room temperature 10 times, but no cracks were visually observed in the coating after the test. No crack or peeling was observed even when the cross-section was observed with a scanning electron microscope.

【0022】表1のNo. 5〜No. 8の操作(例2)、N
o. 9〜No. 11の操作(例3)、No. 12〜No. 14
の操作(例4)、No. 15〜No. 17の操作(例5)、
No. 18〜No. 19の操作(例6)、No. 20〜No. 2
1の操作(例7)によっても、上記例1と同様の効果が
得られた。
Operation No. 5 to No. 8 in Table 1 (Example 2), N
Operation 9 to No. 11 (Example 3), No. 12 to No. 14
No. 15 to No. 17 (Example 5),
Operation of No. 18 to No. 19 (Example 6), No. 20 to No. 2
The same effect as in Example 1 was obtained by the operation 1 (Example 7).

【表1】 [Table 1]

【0023】(例8)耐酸化処理を施す対象となる母材
炭素材料、炭化物の原料及び炭素の原料としては例1と
同じものを使用し、また炭素質粉末としてはかさ比重4
80kg/m3、粒径約5μm のコークス、C軸方向の黒
鉛層積層厚みが550Åで粒径約2μm の異方性黒鉛粉
を使用した。
(Example 8) As the base material carbon material, the raw material of carbide and the raw material of carbon to be subjected to the oxidation resistance treatment, the same ones as in Example 1 were used, and the carbonaceous powder had a bulk specific gravity of 4
80 kg / m 3 , coke having a particle size of about 5 μm, and anisotropic graphite powder having a particle size of about 2 μm and a graphite layer lamination thickness in the C-axis direction of 550 Å were used.

【0024】炭化物原料、炭素原料及び炭素質粉末はア
セトン溶媒中で所定濃度に調製し、母材炭素に塗布し、
加熱乾燥で脱溶媒を行った。この試料を1500℃で3
時間、窒素ガス雰囲気中で加熱処理を行った。加熱後、
被膜断面を走査型電子顕微鏡で金属元素の強度を測定す
ることにより、被膜中の炭化物の割合を測定した。な
お、炭化物の確認は、断面のX線回折により確認した。
The carbide raw material, the carbon raw material and the carbonaceous powder are prepared to a predetermined concentration in an acetone solvent and applied to the base carbon material.
The solvent was removed by heating and drying. This sample at 1500 ℃ 3
Heat treatment was performed in a nitrogen gas atmosphere for a period of time. After heating
The proportion of carbides in the coating was measured by measuring the strength of the metal element on the coating cross section with a scanning electron microscope. The carbide was confirmed by X-ray diffraction of the cross section.

【0025】表2に結果を示す。いずれの場合も、母材
炭素表面に炭化物がある濃度で形成できることがわかっ
た。また炭化物原料の濃度が高いほど、被膜中の炭化物
割合も多くなった。また、炭素質を添加したものは、添
加しないものと比較して、被膜の緻密性が向上すること
が観察された。
The results are shown in Table 2. In each case, it was found that carbide could be formed at a concentration of carbon on the surface of the base material carbon. Further, the higher the concentration of the carbide raw material, the greater the proportion of carbide in the coating. In addition, it was observed that the one to which the carbonaceous material was added had an improved denseness of the film as compared with the one to which the carbonaceous material was not added.

【0026】表2のNo. 1の条件でまず黒鉛に炭素のみ
の層を形成させ、次いで、No. 2条件、No. 3の条件で
被膜中での炭化物濃度を上げてゆき、最後にNo. 5の条
件で炭化物のみの層を形成させた。塗布、加熱の方法は
上記と同様である。
Under the condition of No. 1 in Table 2, first, a layer of only carbon was formed on graphite, and then the concentration of carbides in the coating was increased under the conditions of No. 2 and No. 3, and finally No. A carbide only layer was formed under the conditions of 0.5. The coating and heating methods are the same as above.

【0027】このようにして形成させた黒鉛上の被膜を
空気雰囲気中で1500℃まで上げ、次に室温まで冷却
する熱サイクル操作を10回行ったが、試験後の被膜に
は外観上亀裂は認められず、走査電子顕微鏡による断面
観察でも亀裂、剥離は認められなかった。
The coating film on the graphite thus formed was heated to 1500 ° C. in an air atmosphere and then cooled to room temperature 10 times in a thermal cycle operation. Neither was observed, nor was cracking or peeling observed by cross-sectional observation with a scanning electron microscope.

【表2】 [Table 2]

【0028】[0028]

【発明の効果】本発明では、従来のCVD法や改質法で
は問題のあった被覆材の熱応力による剥離、亀裂、過度
の改質による母材炭素の強度低下、緻密性不足を妨ぐた
め、母材炭素表面に炭素質粉末を添加した炭化物濃度勾
配のついた炭化物/炭素被膜を形成することにより熱応
力の集中を緩和し、高温酸化ガス雰囲気でも剥離、酸化
のない材料に仕上げることが可能となった。特に炭素質
粉末を添加することにより緻密な被膜が実現でき、酸化
反応に弱い炭素表面の改質方法として極めて有効である
ことがわかった。
The present invention prevents the peeling and cracking of the coating material due to the thermal stress of the conventional CVD method and the reforming method, the reduction of the strength of the base material carbon due to excessive modification, and the lack of compactness. Therefore, the concentration of thermal stress is relaxed by forming a carbide / carbon coating with a carbide concentration gradient in which carbonaceous powder is added to the surface of the base material carbon, and a material that does not peel or oxidize even in a high temperature oxidizing gas atmosphere is finished. Became possible. In particular, it has been found that the addition of carbonaceous powder makes it possible to realize a dense coating and is extremely effective as a method for modifying the surface of carbon, which is weak against oxidation reaction.

【手続補正書】[Procedure amendment]

【提出日】平成3年4月5日[Submission date] April 5, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【発明が解決しようとする課題】 CVD法では緻密な
炭化物等の耐酸化物層を形成させることが可能である
が、高温時に亀裂を発生させない信頼性の高い膜厚数百
μm以上の層を形成させることは困難である。特に炭素
質と耐酸化物層との熱膨張の差により熱応力が発生し、
面剥離が生じる恐れもあり、侵入した酸素により炭素
質の酸化が起こるという欠点があった。さらに、CVD
法では大型部材への被覆は装置の制約があり問題があっ
た。
Although it is possible to form a dense oxide-resistant layer of carbide or the like by the CVD method, a highly reliable layer having a thickness of several hundreds of μm or more which does not cause cracks at high temperature is formed. It is difficult to get it done. In particular, thermal stress is generated due to the difference in thermal expansion between the carbonaceous material and the oxide resistant layer,
There is also a possibility that interfacial peeling occurs, has a drawback that that to put the oxidation of the carbonaceous Intrusion oxygen. In addition, CVD
According to the method, there is a problem in covering a large member due to the limitation of the device.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】 本発明ではこれまでの方法の問題点を解
決すべく鋭意検討した結果、熱膨張の違いに伴う亀裂、
剥離の発生に対しては、被覆炭化物と炭素との量割合
を基材側で炭素の割合が高く、順次表面側に向けて炭素
の割合を減少させ、表面を炭化物のみにする構成とした
耐酸化性炭素材料であり、加熱により炭化物を生成する
金属元素含有化合物と加熱により炭素を生成する有機物
及び場合により更に既に炭素化処理を施した炭素質粉末
を使用することにより上記構成の耐酸化性炭素材料の製
造を可能としたものである。また、母材自身の改質に伴
う材料強度低下防止に対しては母材炭素の表面に新たに
炭化物/炭素の層を設け母材にまで改質が及ばないこと
により対処可能としたものである。具体的には以下の通
りである。
In the present invention, as a result of intensive studies to solve the problems of the conventional methods, cracks due to the difference in thermal expansion,
For separation of the generation, the proportion of carbon amounts proportions of coating the carbide with the carbon at the substrate side is higher, toward the sequential surface side reduces the percentage of carbon, the surface is configured to only the carbides Oxidation-resistant carbon material, which is a metal element-containing compound that forms a carbide by heating, an organic substance that forms carbon by heating, and a carbonaceous powder that has already been carbonized if necessary It is possible to manufacture a functional carbon material. In addition, the prevention of material strength deterioration due to the modification of the base metal itself can be dealt with by providing a new carbide / carbon layer on the surface of the base material carbon and not modifying the base material. is there. Specifically, it is as follows.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】 まず、加熱により金属炭化物を生成する
金属元素含有化合物と、加熱により炭素を生成する有機
化合物及び場合により更に既に炭素化処理を施した炭素
質粉末を所定組成に混合調製する。金属元素含有化合物
としてはポリジメチルシラン、ポリメチルカルボシラ
ン、ポリカルボラニレンシロキサン等のケイ素含有化合
物が挙げられ、これらは加熱により炭化ケイ素に変化す
る。金属元素含有化合物としては上記ケイ素化合物以外
にホウ素化合物、チタン化合物等もあり、使用環境に応
じて選択することができる。炭素を生成する有機化合物
としては、石油系ピッチ、石炭系ピッチ、合成高分子等
が挙げられる。これら有機化合物の加熱により生成する
炭素は、原料の種類、加熱条件により性状、特に黒鉛
度が異なるため、所望黒鉛化度の炭素を調製することが
可能である。さらに、本発明においては、場合により既
に炭素化処理を施した炭素質粉末を前述の金属元素化合
物と有機化合物の混合物に添加する。この炭素質粉末と
しては、コークス、黒鉛、カーボンブラック等が挙げら
れる。
First, a metal element-containing compound that forms a metal carbide by heating, an organic compound that forms carbon by heating, and optionally a carbonaceous powder that has already been carbonized are mixed and prepared to a predetermined composition. Examples of the metal element-containing compound include silicon-containing compounds such as polydimethylsilane, polymethylcarbosilane, and polycarboranylenesiloxane, which are converted into silicon carbide by heating. As the metal element-containing compound, there are a boron compound, a titanium compound and the like in addition to the above silicon compound, and they can be selected according to the use environment. Examples of organic compounds that generate carbon include petroleum pitch, coal pitch, and synthetic polymers. The carbon generated by heating these organic compounds has different properties, particularly the degree of graphitization , depending on the type of raw material and the heating conditions, and therefore carbon having a desired degree of graphitization can be prepared. Further, in the present invention, carbonaceous powder which has already been subjected to carbonization treatment is added to the above-mentioned mixture of the metal element compound and the organic compound. Examples of the carbonaceous powder include coke, graphite and carbon black.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】 炭化物の原料としてはジメチルクロロ
シランのナトリウムによる脱塩素反応で合成したポリシ
ラン、ポリシランを熱変成させて合成したポリカルボシ
ラン、フェニルジクロロボランのナトリウムによる脱塩
素反応で合成したポリフェニルボラン及びポリカルボラ
ニレンシロキサン(以下、ポリカルボラニレンと略す)
である。
The polycarbosilane polysilane as the starting material for the carbide synthesized in dechlorination reaction with sodium dimethyl chloro <br/> silane, polysilane was synthesized by thermally denatured, synthesized by dechlorination reaction with sodium phenyl dichloroborane Polyphenylborane and polycarboranylene siloxane (hereinafter abbreviated as polycarboranylene)
Is.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】 炭化物原料と炭素原料はアセトン溶媒中
で所定濃度に調整し、母材炭素材料に塗布し加熱乾燥で
脱溶媒を行った。この試料を1500℃で3時間、窒素
ガス雰囲気中で加熱処理を行った。加熱後、被膜断面を
走査型電子顕微鏡で金属元素の強度を測定することによ
り、被膜中の炭化物の割合を測定した。なお、炭化物の
確認は断面のX線回折により確認した。表1にその結果
を示す。いずれの場合も母材炭素材料表面に炭化物があ
る濃度で形成できることがわかった。また、炭化物原料
の濃度が高い程、被膜中の炭化物割合も多くなった。
The carbide raw material and carbon raw material were adjusted to a predetermined concentration in an acetone solvent, applied to a base carbon material, and dried by heating to remove the solvent. This sample was heat-treated at 1500 ° C. for 3 hours in a nitrogen gas atmosphere. After heating, the cross section of the coating film was measured for the strength of the metal element with a scanning electron microscope to measure the ratio of carbides in the coating film. The carbide was confirmed by X-ray diffraction of the cross section. The results are shown in Table 1. In each case, it was found that carbide could be formed at the concentration of carbide on the surface of the base carbon material. Further, the higher the concentration of the carbide raw material, the greater the proportion of carbide in the coating.

【手続補正6】[Procedure Amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】 表1のNo.1の条件でまず黒鉛に炭素
のみの層を形成させた。次に、No.2の条件、No.
3の条件で被覆中での炭化物濃度を上げてゆき、最後に
No.4の条件で炭化物のみを層を形成させた。塗布、
加熱の方法は上述した条件と同じである。このようにし
て形成させた黒鉛上の被膜を空気雰囲気中で1500
まで上げ、次に室温まで冷却する熱サイクルを10回行
ったが、試験後の被膜には外観上亀裂は認められず、走
査型電子顕微鏡による断面観察でも亀裂、剥離は認めら
れなかった。
No. 1 in Table 1 Under the condition of No. 1, first, a carbon-only layer was formed on graphite. Next, No. 2 condition, No.
Under the conditions of No. 3, the concentration of carbide in the coating was increased, and finally No. Under the conditions of No. 4, a layer was formed only with carbide. Application,
The heating method is the same as the above-mentioned conditions. The graphite coating thus formed was placed in an air atmosphere at 1500 ° C.
The film was heated up to 10 ° C. and then cooled to room temperature 10 times, but no cracks were visually observed in the coating film after the test, and no cracks or peeling were observed by cross-sectional observation with a scanning electron microscope.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素質を基材とし、その表面に金属炭化
物が被覆された炭素材料であって、炭素と金属炭化物と
の混合物が基材の表面に被覆されており、かつ上記炭素
と金属炭化物との混合物が基材側で炭素の割合が多く、
順次表面側に向けて炭素の割合が減少し、金属炭化物の
割合が増加していることを特徴とする耐酸化性炭素材
料。
1. A carbon material having a carbonaceous material as a base material, the surface of which is coated with metal carbide, wherein the surface of the base material is coated with a mixture of carbon and metal carbide, and The mixture with carbide has a large proportion of carbon on the substrate side,
An oxidation resistant carbon material, characterized in that the proportion of carbon gradually decreases toward the surface side and the proportion of metal carbide increases.
【請求項2】 加熱により金属炭化物を生成する金属元
素含有化合物と、加熱により炭素を生成する有機化合物
とを組成調整してなる混合物を、炭素質を基材とする炭
素材料に塗布し加熱する工程を繰り返し、生成される上
記炭素と金属炭化物との混合物が基材側で炭素の割合が
高く、順次表面側に向けて炭素の割合が減少し、金属炭
化物の割合を増加させることを特徴とする耐酸化性炭素
材料の製造方法。
2. A mixture of a metal element-containing compound that produces a metal carbide by heating and an organic compound that produces carbon by heating is applied to a carbonaceous material having a carbonaceous base material and heated. Repeating the process, the mixture of carbon and metal carbide produced is characterized in that the ratio of carbon on the base material side is high, the ratio of carbon is reduced toward the surface side in sequence, and the ratio of metal carbide is increased. A method for producing an oxidation resistant carbon material.
【請求項3】 炭素質を基材としその表面に金属炭化物
が被覆された炭素材料であって、炭素と炭素質粉末と金
属炭化物との混合物が基材の表面に被覆されており、か
つ炭素と金属炭化物との混合物が基材側で炭素の割合が
多く、順次表面側に向けて炭素の割合が減少し、金属炭
化物の割合が増加していることを特徴とする耐酸化性炭
素材料。
3. A carbon material having a carbonaceous material as a base material, the surface of which is coated with a metal carbide, wherein the surface of the base material is coated with a mixture of carbon, carbonaceous powder and metal carbide, and carbon. An oxidation resistant carbon material, characterized in that a mixture of a metal carbide and a metal carbide has a large proportion of carbon on the substrate side, the proportion of carbon gradually decreases toward the surface side, and the proportion of the metal carbide increases.
【請求項4】 加熱により金属炭化物を生成する金属元
素含有化合物と加熱により炭素を生成する有機化合物と
炭素化処理を施した炭素質粉末とを組成調整してなる混
合物を、炭素質を基材とする炭素材料に塗布し加熱する
工程を繰り返し、生成される上記炭素と金属炭化物との
混合物が基材側で炭素の割合が高く、順次表面側に向け
て炭素の割合が減少し、金属炭化物の割合を増加させる
ことを特徴とする耐酸化性炭素材料の製造方法。
4. A carbonaceous base material is a mixture obtained by adjusting the composition of a metal element-containing compound that produces a metal carbide by heating, an organic compound that produces carbon by heating, and a carbonized carbonaceous powder. Repeating the step of applying to a carbon material and heating, the resulting mixture of carbon and metal carbide has a high proportion of carbon on the base material side, and the proportion of carbon gradually decreases toward the surface side. A method for producing an oxidation resistant carbon material, characterized by increasing the ratio of
JP3038679A 1990-09-25 1991-03-05 Oxidation resistant carbon material and method for producing the same Expired - Fee Related JP2792749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3038679A JP2792749B2 (en) 1990-09-25 1991-03-05 Oxidation resistant carbon material and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-251753 1990-09-25
JP25175390 1990-09-25
JP3038679A JP2792749B2 (en) 1990-09-25 1991-03-05 Oxidation resistant carbon material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05319963A true JPH05319963A (en) 1993-12-03
JP2792749B2 JP2792749B2 (en) 1998-09-03

Family

ID=17227413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038679A Expired - Fee Related JP2792749B2 (en) 1990-09-25 1991-03-05 Oxidation resistant carbon material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2792749B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255421A (en) * 2004-03-09 2005-09-22 Sec Corp Oxidation-resistant carbon material and manufacturing method therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312378A (en) * 1989-06-07 1991-01-21 Sumitomo Electric Ind Ltd Coated structural material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0312378A (en) * 1989-06-07 1991-01-21 Sumitomo Electric Ind Ltd Coated structural material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255421A (en) * 2004-03-09 2005-09-22 Sec Corp Oxidation-resistant carbon material and manufacturing method therefor

Also Published As

Publication number Publication date
JP2792749B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
US4476164A (en) Deposition of improved SiC coatings on carbon-base materials
Cao et al. High-temperature behavior and degradation mechanism of SiC fibers annealed in Ar and N 2 atmospheres
JPS6221867B2 (en)
Greenough et al. Low/intermediate temperature pyrolyzed polysiloxane derived ceramics with increased carbon for electrical applications
US11148978B2 (en) Method for producing silicon-carbide-based composite
US4544412A (en) Deposition of improved SiC coatings on carbon-base materials
US6187705B1 (en) Creep-resistant, high-strength silicon carbide fibers
JP2004175605A (en) Oxidation-resistant c/c composite material and its manufacturing process
JP2792749B2 (en) Oxidation resistant carbon material and method for producing the same
Wang et al. SiC fiber with low electrical resistivity and oxygen content
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
KR20110111754A (en) Process for silicon carbide coating on graphite
JPS60209017A (en) Ceramic coated graphite fiber and its production
JPH08109066A (en) Sintered body of zirconium carbide and its preparation
Kim Preparation of electrically conducting SiC/MoSi2 composites from metal mixtures of preceramic polymer
JP2000507647A (en) Method of forming pyrolytic SiBN coating
JP3076914B2 (en) Method for producing fiber-reinforced ceramic composite material
KR102529546B1 (en) Producing method of graphene using organic compound having low molecular weight
JPH05105561A (en) Oxidation-resistant carbon material and its production
JPH0789776A (en) Production of boron nitride coated carbon material
JPH02275709A (en) Heat-and corrosion-resistant inorganic material and production thereof
JP2000272987A (en) Glassy carbon-coated carbon material
Shul’pekov et al. Current-conducting coatings based on heat-resistant titanium compounds obtained by self-propagating high-temperature synthesis
JP2000272986A (en) Production of glassy carbon-coated carbon material
JP3182907B2 (en) Method for producing boron carbide converted carbon material and boron carbide converted carbon material produced by the method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980519

LAPS Cancellation because of no payment of annual fees