JPH05105561A - Oxidation-resistant carbon material and its production - Google Patents

Oxidation-resistant carbon material and its production

Info

Publication number
JPH05105561A
JPH05105561A JP4047791A JP4779192A JPH05105561A JP H05105561 A JPH05105561 A JP H05105561A JP 4047791 A JP4047791 A JP 4047791A JP 4779192 A JP4779192 A JP 4779192A JP H05105561 A JPH05105561 A JP H05105561A
Authority
JP
Japan
Prior art keywords
carbon
carbonaceous
carbon layer
heating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4047791A
Other languages
Japanese (ja)
Inventor
Yuzo Sanada
雄三 真田
Takashi Ueda
隆 上田
Tatsuo Morimoto
立男 森本
Ken Ogura
謙 小椋
Masayuki Kondo
雅之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of JPH05105561A publication Critical patent/JPH05105561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide an oxidation-resistant carbon material and its production process. CONSTITUTION:The objective oxidation-resistant carbon material is produced by coating the surface of a carbonaceous substrate with (a) an organic material, (b) a polymer and then an organic material, (c) a polymer and then a mixture of an organic material and carbonaceous powder and/or carbon fiber or (d) a polymer and then an organic material, carbonaceous powder and/or carbon fiber and a metal-containing compound capable of forming a metal carbide, heating the coated surface to form a carbon layer and converting the carbon layer to a metal carbide layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は断熱用炭素材料、炭素繊
維、炭素/炭素複合材料等の炭素質を基材とする炭素材
料の耐酸化防止に関し、更に詳しくは耐酸化性炭素材料
及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the prevention of oxidation of carbonaceous carbon materials such as heat insulating carbon materials, carbon fibers and carbon / carbon composite materials, and more particularly to oxidation resistant carbon materials and the like. Regarding manufacturing method.

【0002】[0002]

【従来の技術】炭素材料は耐熱性のある軽量材料として
断熱壁、炭素繊維使用の複合材料等に多く利用されてお
り、低熱膨張率、良熱伝導性、高電気伝導性等の物理的
特徴を生かした機能製品への用途も増加している。中で
も高温構造材料である炭素/炭素複合材料(以下C/C
コンポジットと略す)は金属やセラミックスでは耐えら
れない温度領域での材料として非常に注目されている。
2. Description of the Related Art Carbon materials are widely used as heat-resistant and lightweight materials for heat insulating walls, composite materials using carbon fibers, etc., and have physical characteristics such as low coefficient of thermal expansion, good thermal conductivity, and high electrical conductivity. Applications for functional products that make the most of this are also increasing. Among them, carbon / carbon composite materials (hereinafter C / C) that are high-temperature structural materials
Composite is abbreviated as a material in the temperature range that metal and ceramics cannot withstand.

【0003】このように炭素材料は数多くの長所を有し
ている反面、空気等酸化性ガス雰囲気下では酸化減肉す
るという致命的な欠点を有するため、種々の耐酸化手段
が講じられている。耐酸化物質としては一般に炭化ケイ
素、炭化ホウ素、二酸化ケイ素等の炭化物、酸化物等が
あげられる。これら物質を炭素材料表面に被覆する手段
としては、化学蒸着法(CVD法)などにより直接被覆
することもあるし、炭素質基材を金属化合物と反応させ
ることにより表面を改質させる方法もある。前者のCV
D法では、例えばメタン、ベンゼン等の炭化水素ガスと
シランガスのようなケイ素含有ガスを気相中で加熱反応
させ、炭素質基材表面に炭化ケイ素を数十〜数百μmの
厚さで蒸着させることが可能である。後者の改質法では
種々の方法があり、例えば金属化合物としてシリコンテ
トラエチラートを使用し、シリコンテトラエチラートの
熱分解によりシリコンラジカルを発生させ、これと母材
の炭素と反応させて炭化ケイ素に変換させるような方
法、シリコンテトラエチラートのかわりに二酸化ケイ素
と酸化アルミニウムとの混合物を使用し、同様に熱分解
により二酸化ケイ素を還元して、一酸化ケイ素とし、こ
れと炭素と反応させて炭化ケイ素に最終的に変換される
方法もある。
As described above, the carbon material has many advantages, but on the other hand, it has a fatal drawback that the thickness of the carbon material is reduced in an oxidizing gas atmosphere such as air. Therefore, various measures against oxidation are taken. .. Examples of the oxidation resistant substance generally include carbides such as silicon carbide, boron carbide and silicon dioxide, oxides and the like. As a means for coating the surface of the carbon material with these substances, there is a method of directly coating by a chemical vapor deposition method (CVD method) or a method of modifying the surface by reacting a carbonaceous substrate with a metal compound. .. CV of the former
In the method D, for example, a hydrocarbon gas such as methane or benzene and a silicon-containing gas such as a silane gas are heated and reacted in a vapor phase to deposit silicon carbide on the surface of the carbonaceous substrate at a thickness of several tens to several hundreds of μm. It is possible to There are various methods for the latter reforming method. For example, silicon tetraethylate is used as a metal compound, a silicon radical is generated by thermal decomposition of silicon tetraethylate, and this reacts with carbon of a base material to form silicon carbide. A method of converting into silicon tetraethylate, using a mixture of silicon dioxide and aluminum oxide instead of silicon tetraethylate, similarly reducing silicon dioxide by thermal decomposition to give silicon monoxide, which is reacted with carbon. Some methods are ultimately converted to silicon carbide.

【0004】[0004]

【発明が解決しようとする課題】CVD法では緻密な炭
化物等の耐酸化物層を形成させることが可能であるが、
高温時に亀裂を発生させない信頼性の高い膜厚数百μm
以上の層を形成させることは困難である。特に炭素質と
耐酸化物層との熱膨張の差により熱応力が発生し、界面
剥離が生じる恐れがあり、亀裂から侵入した酸素により
炭素質の酸化が起こるという欠点があった。さらに、C
VD法では大型部材への被覆は装置の制約があり問題が
あった。
Although it is possible to form a dense oxide-resistant layer of carbide or the like by the CVD method,
Highly reliable film thickness of hundreds of μm that does not cause cracks at high temperatures
It is difficult to form the above layers. In particular, there is a risk that thermal stress is generated due to the difference in thermal expansion between the carbonaceous material and the oxide resistant layer, and interfacial delamination may occur, and the carbonaceous material is oxidized by oxygen that has entered through the cracks. Furthermore, C
In the VD method, there is a problem in covering a large-sized member due to restrictions of the device.

【0005】一方、改質法では炭素の物理・化学性状が
改質後の改質層性状にも影響し、特に複合材料のように
細孔径の大きな空隙を有するような材料に対しては、緻
密な炭化物層を改質深さを制御して形成することは困難
である。また、改質に伴う性状変化により、炭素質その
ものの強度が低下するといった懸念があった。
On the other hand, in the reforming method, the physical and chemical properties of carbon also affect the properties of the reformed layer after reforming, and particularly for materials such as composite materials having large pores, It is difficult to form a dense carbide layer by controlling the modification depth. In addition, there was a concern that the strength of the carbonaceous material itself would decrease due to the change in properties accompanying the modification.

【0006】本発明は上記技術水準に鑑み、被覆材の熱
ひずみによる剥離、過度の改質による炭素母材強度が低
下しない耐酸化性炭素材料及びその製造方法を提供しよ
うとするものである。
In view of the above-mentioned state of the art, the present invention is to provide an oxidation resistant carbon material which does not reduce the strength of the carbon base material due to peeling due to thermal strain of the coating material and excessive modification, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明は (1)炭素質を基材とする炭素材料であって、基材表面
に炭素の層が形成されていると共に、該炭素の層の表面
が金属炭化物で改質されていることを特徴とする耐酸化
性炭素材料。(以下、第一の発明という)
MEANS FOR SOLVING THE PROBLEMS The present invention is (1) a carbonaceous material having a carbonaceous base material, wherein a carbon layer is formed on the surface of the base material, and the surface of the carbon layer is metallic. An oxidation resistant carbon material characterized by being modified with a carbide. (Hereinafter referred to as the first invention)

【0008】(2)炭素質を基材とする炭素材料の表面
に有機物を塗布し、加熱することにより新たな炭素の層
を設け、該炭素層に反応により金属炭化物を生成する金
属酸化物を接触させて該炭素層を改質することを特徴と
する耐酸化性炭素材料の製造法。(以下、第二の発明と
いう)
(2) A new carbon layer is formed by applying an organic substance on the surface of a carbonaceous material having a carbonaceous base material and heating it, and a metal oxide which produces a metal carbide by reaction is formed on the carbon layer. A method for producing an oxidation resistant carbon material, which comprises contacting to modify the carbon layer. (Hereinafter referred to as the second invention)

【0009】(3)炭素質を基材とする炭素材料の表面
に、加熱工程でピッチ状溶融物を経由して炭素を生成す
るポリマーを塗布し、さらに、加熱工程で炭素を生成す
る有機物を塗布し、加熱することにより新たな炭素の層
を設け、該炭素層に反応により金属炭化物を生成する金
属酸化物を接触させて該炭素層を改質することを特徴と
する耐酸化性炭素材料の製造法。(以下、第三の発明と
いう)
(3) The surface of a carbonaceous material having a carbonaceous base material is coated with a polymer that produces carbon via a pitch-like melt in the heating step, and an organic substance that produces carbon in the heating step is further applied. A new carbon layer is provided by applying and heating, and the carbon layer is modified by bringing a metal oxide that produces a metal carbide by a reaction into contact with the carbon layer to modify the carbon layer. Manufacturing method. (Hereinafter referred to as the third invention)

【0010】(4)炭素質を基材とする炭素材料の表面
に、加熱工程でピッチ状溶融物を経由して炭素を生成す
るポリマーを塗布し、さらに、加熱工程で炭素を生成す
る有機物と炭化処理を施した炭素質粉末及び/又は炭素
繊維との混合物を塗布し、加熱することにより新たな炭
素の層を設け、該炭素層に反応により金属炭化物を生成
する金属酸化物を接触させて該炭素層を改質することを
特徴とする耐酸化性炭素材料の製造法。(以下、第四の
発明という)
(4) A polymer that produces carbon through a pitch-like melt in the heating step is applied to the surface of a carbonaceous material having a carbonaceous base material, and further, an organic substance that produces carbon in the heating step. A mixture of carbonized carbonaceous powder and / or carbon fiber is applied, and a new carbon layer is provided by heating, and the carbon layer is contacted with a metal oxide that produces a metal carbide by reaction. A method for producing an oxidation resistant carbon material, which comprises modifying the carbon layer. (Hereinafter referred to as the fourth invention)

【0011】(5)炭素質を基材とする炭素材料の表面
に、加熱工程でピッチ状溶融物を経由して炭素を生成す
るポリマーを塗布し、さらに、加熱工程で炭素を生成す
る有機物と炭化処理を施した炭素質粉末及び/又は炭素
繊維及び加熱により金属炭化物を生成する金属含有化合
物との混合物を塗布し、加熱することにより新たな炭素
の層を設け、該炭素層に反応により金属炭化物を生成す
る金属酸化物を接触させて該炭素層を改質することを特
徴とする耐酸化性炭素材料の製造法。(以下、第五の発
明という)である。
(5) A polymer that produces carbon via a pitch-like melt in the heating step is applied to the surface of a carbonaceous material having a carbonaceous base material, and further, an organic substance that produces carbon in the heating step. A mixture of carbonized carbonaceous powder and / or carbon fibers and a metal-containing compound that produces a metal carbide by heating is applied, and a new carbon layer is provided by heating, and the carbon layer reacts with the metal by reaction. A method for producing an oxidation-resistant carbon material, which comprises modifying a carbon layer by contacting a metal oxide that forms a carbide. (Hereinafter referred to as the fifth invention).

【0012】本発明はこれまでの耐酸化性炭素材料及び
その製造方法の問題点を解決すべく鋭意検討した結果、
熱膨張の違いに伴う亀裂、剥離に対して、まず炭素質基
材表面に接触する部分には加熱によりピッチ状溶融物を
経由して炭素を生成するポリマーを塗布し、さらにその
上に加熱により炭素を生成する有機物及び場合により更
に既に炭素化処理を施した炭素質粉末及び/又は炭素繊
維及び必要に応じて更に加熱により炭化物を生成する金
属元素含有化合物を使用することにより、亀裂、剥離せ
ずに上記第一の発明の構成の耐酸化性炭素材料の製造を
可能としたものである。また、母材自身の改質に伴う材
料強度低下防止に対しては母材炭素の表面に新たに炭化
物/炭素の層を設け、母材にまで改質が及ばないように
することにより対処可能としたものである。具体的には
以下の通りである。
The present invention has been earnestly studied to solve the problems of the conventional oxidation resistant carbon materials and the manufacturing method thereof.
To prevent cracks and peeling due to differences in thermal expansion, first apply a polymer that generates carbon via a pitch-like melt by heating to the part that comes into contact with the surface of the carbonaceous substrate, and then heat it. Cracking and peeling can be achieved by using an organic substance that produces carbon and optionally a carbonaceous powder and / or carbon fiber that has already been carbonized, and a metal element-containing compound that optionally produces carbide by further heating. Without this, it is possible to manufacture the oxidation resistant carbon material having the constitution of the first invention. Also, to prevent material strength deterioration due to modification of the base metal itself, it is possible to deal with it by providing a new carbide / carbon layer on the surface of the base material carbon so that the base material is not modified. It is what Specifically, it is as follows.

【0013】本発明の耐酸化性炭素材料の製造法の第二
の発明をより具体的に説明する。まず、黒鉛、炭素繊
維、C/Cコンポジット等の炭素質基材の上に有機物を
塗布する。有機物としては、石油系ピッチ、石炭系ピッ
チ、合成高分子等があげられ、これらは加熱溶融塗布し
てもよいし、有機溶剤で溶解又は分散させて塗布し、そ
の後脱溶剤してもよい。このように有機物を塗布した炭
素質基材は電気炉等の中で不活性ガス雰囲気で加熱する
ことにより、該基材の上に炭素で形成される層を被覆す
る。加熱時は脱ガスを行い、極力緻密な炭素の層を形成
させるため加圧、減圧等の操作を加えてもよく、又、同
操作を何回繰り返してもよい。
The second invention of the method for producing an oxidation resistant carbon material of the present invention will be described more specifically. First, an organic material is applied onto a carbonaceous substrate such as graphite, carbon fiber, C / C composite. Examples of the organic substance include petroleum pitch, coal pitch, synthetic polymer, and the like. These may be melt-coated by heating, or may be dissolved or dispersed in an organic solvent and coated, and then the solvent may be removed. The carbonaceous substrate coated with the organic material in this manner is heated in an inert gas atmosphere in an electric furnace or the like to coat a layer formed of carbon on the substrate. During heating, degassing may be performed, and operations such as pressurization and depressurization may be applied to form a dense carbon layer, and the operations may be repeated many times.

【0014】このようにして緻密な炭素層を表面に形成
した炭素質基材は次に表面に金属炭化物を生成させるた
め、金属酸化物と接触させる。ここで金属炭化物とは炭
化ケイ素(SiC)、炭化チタン(TiC)、炭化ハフ
ニウム(HfC)等であり、各々相当する金属酸化物と
しては一酸化ケイ素(SiO)、一酸化チタン(Ti
O)、一酸化ハフニウム(HfO)等である。これら金
属酸化物は気相状態で炭素質基材と接触させてもよい
し、固体原料を用いて炭素質との反応により金属炭化物
を発生させ、該基材と接触させてもよい。この反応によ
り、被覆された炭素層は表面から炭化物に変化するが、
反応条件を調整することにより、炭化物層の厚みは適宜
変化させることが可能である。
The carbonaceous substrate having the dense carbon layer formed on the surface thereof is then brought into contact with a metal oxide in order to form a metal carbide on the surface. Here, the metal carbide is silicon carbide (SiC), titanium carbide (TiC), hafnium carbide (HfC), or the like, and corresponding metal oxides are silicon monoxide (SiO) and titanium monoxide (Ti).
O), hafnium monoxide (HfO), and the like. These metal oxides may be brought into contact with the carbonaceous substrate in a gas phase, or may be brought into contact with the substrate by using a solid raw material to generate a metal carbide by reaction with carbonaceous material. This reaction causes the coated carbon layer to change from surface to carbide,
The thickness of the carbide layer can be appropriately changed by adjusting the reaction conditions.

【0015】次に、本発明の耐酸化性炭素材料の製造法
の第三、第四及び第五の発明をより具体的に説明する。
まず、上記第二の発明の説明したような炭素質基材上
に、加熱によりピッチ状溶融物を経由して炭素を生成す
るポリマーを塗布する。こゝに用いられるポリマーとし
てはポリ塩化ビニル、ポリ酢酸ビニル等があげられ、こ
れらのポリマーは有機溶剤で溶解して溶液状で塗布して
もよいし、又粉末状で塗布してもよい。
Next, the third, fourth and fifth inventions of the method for producing an oxidation resistant carbon material of the present invention will be explained more specifically.
First, a polymer that produces carbon by heating via a pitch-like melt is applied onto the carbonaceous substrate as described in the second invention. Examples of the polymer used here include polyvinyl chloride, polyvinyl acetate and the like. These polymers may be dissolved in an organic solvent and applied as a solution, or may be applied as a powder.

【0016】このように塗布したポリマーの上に炭素を
生成する有機化合物を塗布する。有機化合物としては、
前記第二の発明で説明したようになものがあげられ、こ
れら有機化合物の加熱により生成する炭素は、原料の種
類、加熱条件により性状、特に黒鉛化性が異なるため、
原料の選択、製造条件を適宜選定することにより所望黒
鉛化度の炭素を調製することが可能である(第三の発
明)。
An organic compound that produces carbon is applied onto the polymer thus applied. As an organic compound,
As described in the second invention, the carbon produced by heating these organic compounds has different properties, particularly graphitization property, depending on the type of raw material and heating conditions,
It is possible to prepare carbon having a desired degree of graphitization by appropriately selecting raw materials and manufacturing conditions (third invention).

【0017】また、場合により既に炭素化処理を施した
炭素質粉末及び/又は炭素繊維を前述の有機化合物に添
加する。この場合、炭素質粉末としては、コークス、黒
鉛、カーボンブラック等があげられる。炭素繊維は長繊
維織物でも短繊維でもよい(第四の発明)。
In addition, carbonaceous powder and / or carbon fibers which have already been subjected to carbonization treatment are added to the above-mentioned organic compound. In this case, examples of the carbonaceous powder include coke, graphite and carbon black. The carbon fiber may be a long fiber woven fabric or a short fiber (fourth invention).

【0018】さらに、また場合により加熱により金属炭
化物を生成する金属元素含有化合物を前述の有機化合
物、炭素質粉末及び/又は炭素繊維混合物に添加する。
この場合金属元素含有化合物としてはポリジメチルシラ
ン、ポリメチルカルボシラン、ポリカルボラニレンシロ
キサン等のケイ素含有化合物があげられ、これらは加熱
により炭化ケイ素に変化する。金属元素含有化合物とし
ては上記ケイ素化合物以外にホウ素化合物、チタン化合
物等もあり、使用環境に応じて選択することができる。
これら混合物は濃度調製した後、ポリマーを塗布した炭
素質基材の上にさらに塗布して、アルゴン等の不活性ガ
ス雰囲気下で加熱することにより、炭素質基材表面に金
属炭化物も含む場合もあるが炭素の層が形成される。
(第五の発明)
Further, optionally and optionally, a metal element-containing compound which forms a metal carbide upon heating is added to the aforementioned organic compound, carbonaceous powder and / or carbon fiber mixture.
In this case, examples of the metal element-containing compound include silicon-containing compounds such as polydimethylsilane, polymethylcarbosilane, and polycarboranylenesiloxane, which are converted to silicon carbide by heating. As the metal element-containing compound, there are a boron compound, a titanium compound and the like in addition to the above silicon compound, and they can be selected according to the use environment.
After adjusting the concentration of these mixtures, the mixture may be further coated on a carbonaceous substrate coated with a polymer and heated in an atmosphere of an inert gas such as argon, so that the surface of the carbonaceous substrate may also contain metal carbides. However, a carbon layer is formed.
(Fifth invention)

【0019】以上、第三〜第五の発明の説明によって生
成した緻密な炭素層を表面に形成した炭素質基材は次
に、表面を金属炭化物に変化させるため、前記第二の発
明で説明したように、金属酸化物と接触させる。
The carbonaceous substrate having the dense carbon layer formed on the surface of the third to fifth inventions on its surface is converted into metal carbide on the surface. Contact with the metal oxide as described above.

【0020】[0020]

【作用】炭素質基材の上に形成した炭素層は基材と同質
の物質であるため、熱膨張差が少なく、剥離や亀裂の発
生が防止できる(第一、第二発明)。
Since the carbon layer formed on the carbonaceous substrate is the same substance as the substrate, the difference in thermal expansion is small and peeling and cracking can be prevented (first and second inventions).

【0021】また、ポリマーを炭素質基材と、加熱工程
で炭素を生成する有機物と炭素質粉末及び/又は炭素繊
維との混合物の間に挿入して加熱処理するのは、ポリマ
ーが熱分解によりピッチ状の溶融物になり、微細孔にま
で侵入し基材表面全体を完全に覆い、かつ化学結合によ
り密着性のよい層に仕上げるためである。例えば、ポリ
塩化ビニルポリマーを使用する場合、ポリ塩化ビニルは
加熱により溶融し、さらに加熱すると脱塩化水素反応を
起こし、発生する塩化水素、塩素ラジカルおよびアルキ
ルラジカルが炭素表面の含酸素官能基やベンゼン環と反
応して、ポリ塩化ビニルの熱分解で生じたポリエンや芳
香環と炭素との結合に寄与するものと思われる。
The polymer is inserted between the carbonaceous base material and the mixture of the organic substance which produces carbon in the heating step and the carbonaceous powder and / or carbon fiber, and the heat treatment is carried out by the thermal decomposition of the polymer. This is because it becomes a pitch-like melt, penetrates even into the fine pores and completely covers the entire surface of the substrate, and finishes a layer having good adhesion by chemical bonding. For example, when a polyvinyl chloride polymer is used, polyvinyl chloride is melted by heating, and when it is further heated, a dehydrochlorination reaction occurs, and the generated hydrogen chloride, chlorine radicals and alkyl radicals generate oxygen-containing functional groups on the carbon surface and benzene. It is considered that it reacts with the ring and contributes to the bond between carbon and the polyene or aromatic ring generated by the thermal decomposition of polyvinyl chloride.

【0022】また、被覆炭素質の黒鉛化性は原料有機物
の種類及び加熱条件により選定できるため、例えば炭化
物への改質深さや傾斜的な改質層構成も制御可能であ
る。この場合、原料有機物の他に加熱により金属炭化物
を生成する金属元素含有化合物を加えておけば、改質層
構成の制御はより容易になる。さらに改質反応は炭素質
基材まで及ばないため、基材の強度低下の懸念もなく酸
化性ガスの侵入を被覆材で遮断することが可能である。
Further, since the graphitization property of the coated carbonaceous material can be selected depending on the kind of the raw material organic material and the heating conditions, it is possible to control, for example, the modification depth to the carbide and the gradient modification layer structure. In this case, if a metal element-containing compound that produces a metal carbide by heating is added in addition to the raw material organic matter, the control of the modified layer configuration becomes easier. Further, since the reforming reaction does not extend to the carbonaceous substrate, it is possible to block the invasion of the oxidizing gas with the coating material without fear of the strength of the substrate decreasing.

【0023】また、上記被覆構成にするために塗布、加
熱時に炭素質粉末や炭素繊維を使用すれば、前述の有機
化合物や金属元素含有化合物の炭素収率(残渣収率)が
増加するという長所を有すると共に、層の強度保持の点
でも有効である。(第三〜第五発明)
Further, if carbonaceous powder or carbon fiber is used at the time of coating and heating to obtain the above-mentioned coating structure, the carbon yield (residue yield) of the above-mentioned organic compound or metal element-containing compound is increased. And is effective in maintaining the strength of the layer. (Third to fifth inventions)

【0024】[0024]

【実施例】【Example】

(実施例1) (処理1)耐酸化処理を施す対象となる炭素質基材とし
ては、X線回折によるC軸方向の黒鉛層積層厚みが15
0Åの異方性黒鉛と、ピッチ系炭素繊維/ピッチ原料マ
トリックス炭素の二次元織C/Cコンポジット(Vf
50%)を使用した。
(Example 1) (Process 1) As a carbonaceous substrate to be subjected to oxidation resistance treatment, a graphite layer lamination thickness in the C-axis direction by X-ray diffraction is 15
Two-dimensional woven C / C composite (V f value 50%) of 0Å anisotropic graphite and pitch-based carbon fiber / pitch raw material matrix carbon was used.

【0025】被覆炭素の原料としては、石油系ピッチ
(水素/炭素原子比0.54)及び石炭系ピッチ(水素
/炭素原子比0.57)を使用した。
Petroleum-based pitch (hydrogen / carbon atomic ratio 0.54) and coal-based pitch (hydrogen / carbon atomic ratio 0.57) were used as raw materials for the coated carbon.

【0026】まず炭素被膜の形成にあたっては、ピッチ
粉末を基材の上に添加し、真空加熱することによりピッ
チを溶融させて脱ガスを行った。次に、この試料を窒素
ガス雰囲気下で1500℃、3時間加熱処理を行った。
この一連の操作では揮発分発生により空隙が多いため、
同操作を3回繰り返した。
First, in forming the carbon coating, pitch powder was added onto the base material and heated in vacuum to melt the pitch and degas. Next, this sample was subjected to heat treatment at 1500 ° C. for 3 hours in a nitrogen gas atmosphere.
In this series of operations, since there are many voids due to volatile matter generation,
The same operation was repeated 3 times.

【0027】加熱後、試料断面を走査型電子顕微鏡で観
察し、被覆炭素の厚みを測定した。その結果を表1に示
す。いずれのピッチからも40〜60μmの炭素層の形
成が認められた。また、試料表面についてX線回折測定
を実施し、表1に示す黒鉛化度の炭素層になっているこ
とがわかった。
After heating, the cross section of the sample was observed with a scanning electron microscope to measure the thickness of the coated carbon. The results are shown in Table 1. The formation of a carbon layer having a thickness of 40 to 60 μm was observed at any pitch. Further, X-ray diffraction measurement was carried out on the sample surface, and it was found that a carbon layer having a graphitization degree shown in Table 1 was formed.

【0028】(処理2)前記処理1で調製したRUN
No.1の炭素層を表面に形成した基材試料について表
面を炭化物に変える改質試験を行った。まず、黒鉛るつ
ぼの中に炭化ケイ素、ケイ素及びアルミナの粉末を入
れ、次に処理1で調製した試料をこの粉末に浸るように
入れ、これを窒素雰囲気下で1500℃、30分間加熱
した。
(Process 2) RUN prepared in the above process 1
No. The base material sample having the carbon layer 1 formed on the surface was subjected to a modification test for changing the surface to a carbide. First, powders of silicon carbide, silicon and alumina were placed in a graphite crucible, then the sample prepared in Treatment 1 was placed so as to be immersed in this powder, and this was heated in a nitrogen atmosphere at 1500 ° C. for 30 minutes.

【0029】加熱後、試料断面を走査型電子顕微鏡でケ
イ素の分布を観察した結果、表面から30μmの深さで
改質層が形成していることがわかった。また試料表面に
ついてX線回折測定を実施し、炭化ケイ素の生成を確認
した。なお、別の実験を加熱過程で発生する物質を赤外
分光分析と走査型電子顕微鏡による元素分析で同定した
結果、一酸化ケイ素(SiO)であることが判明した。
After heating, the distribution of silicon was observed on the cross section of the sample with a scanning electron microscope. As a result, it was found that the modified layer was formed at a depth of 30 μm from the surface. In addition, X-ray diffraction measurement was performed on the sample surface to confirm the formation of silicon carbide. In another experiment, the substance generated during the heating process was identified by infrared spectroscopic analysis and elemental analysis by a scanning electron microscope, and was found to be silicon monoxide (SiO).

【0030】(処理3)処理2と同様の操作で黒鉛るつ
ぼの中に炭化チタン、チタン及びアルミナの組合せ、
又、炭化ハフニウム、ハフニウム及びアルミナの組み合
わせで、各々、改質試験を実施した。
(Process 3) A combination of titanium carbide, titanium and alumina was added in a graphite crucible in the same manner as in Process 2.
Further, a modification test was carried out for each of hafnium carbide, a combination of hafnium and alumina.

【0031】加熱後、試料断面及び表面を処理2と同様
に分析した結果、炭化チタン及び炭化ハフニウムが各々
25μm、20μmの深さで形成されていることが判明
した。この場合も一酸化チタン及び一酸化ハフニウムの
生成を確認した。
After heating, the cross section and the surface of the sample were analyzed in the same manner as in Treatment 2. As a result, it was found that titanium carbide and hafnium carbide were formed to a depth of 25 μm and 20 μm, respectively. Also in this case, formation of titanium monoxide and hafnium monoxide was confirmed.

【0032】処理2及び処理3で調製した試料を各々空
気雰囲気中で1500℃まで上げ、次に室温まで冷却す
る熱サイクル操作を10回行ったが、試験後の被膜には
外観上、亀裂は認められず、走査型電子顕微鏡による断
面観察でも亀裂、剥離は認められなかった。
Each of the samples prepared in the treatments 2 and 3 was subjected to a heat cycle operation of raising the temperature to 1500 ° C. in an air atmosphere and then cooling it to room temperature 10 times. Neither was observed, nor was cracking or peeling observed by cross-sectional observation with a scanning electron microscope.

【表1】 [Table 1]

【0033】(実施例2)耐酸化処理を施す対象となる
炭素質基材としては実施例1と同じものを使用した。
(Example 2) As the carbonaceous substrate to be subjected to the oxidation resistance treatment, the same one as in Example 1 was used.

【0034】加熱時にピッチ状溶融物を経由して炭素を
生成するポリマーとしては分子量約3万のポリ塩化ビニ
ル及び分子量約2万のポリ酢酸ビニルを使用した。
Polyvinyl chloride having a molecular weight of about 30,000 and polyvinyl acetate having a molecular weight of about 20,000 were used as polymers for producing carbon via the pitch-like melt during heating.

【0035】また、被覆炭素の原料となる有機化合物と
しては、石油系ピッチ(水素/炭素原子比0.54)、
石炭系ピッチ(水素/炭素原子比0.57)及びフラン
樹脂を使用した。
Further, as an organic compound as a raw material of coated carbon, petroleum pitch (hydrogen / carbon atom ratio 0.54),
Coal-based pitch (hydrogen / carbon atomic ratio 0.57) and furan resin were used.

【0036】まず、炭素皮膜の形成にあたってはポリマ
ーをテトラヒドロフランに溶解して炭素質基材の上に塗
布し、乾燥することによりポリマーのフィルムを調製す
る。次にピッチ粉末又は樹脂粉末を塗布する。その際、
緻密性を上げるために200℃で200kgf/cm2
・G.の圧力をかけた。この試料をアルゴンガス雰囲気
下で1400℃、5時間熱処理を行った。この一連の操
作では揮発分発生により炭素皮膜には空隙が多いため、
ピッチ又は樹脂の含浸と熱処理操作を更に1回行った。
First, in forming the carbon film, the polymer is dissolved in tetrahydrofuran, coated on a carbonaceous substrate, and dried to prepare a polymer film. Next, pitch powder or resin powder is applied. that time,
200 kgf / cm 2 at 200 ° C to increase compactness
-G. Was applied. This sample was heat-treated at 1400 ° C. for 5 hours in an argon gas atmosphere. In this series of operations, there are many voids in the carbon film due to the generation of volatiles,
The pitch or resin impregnation and the heat treatment operation were performed once more.

【0037】加熱後、試料断面を走査型電子顕微鏡で観
察し、被覆炭素の厚みを測定した。その結果を表2に示
す。いずれのケースからも厚み140μm以上の炭素層
の形成が認められ、基材と炭素層の界面の密着性も良好
であった。
After heating, the cross section of the sample was observed with a scanning electron microscope to measure the thickness of the coated carbon. The results are shown in Table 2. In all cases, formation of a carbon layer having a thickness of 140 μm or more was recognized, and the adhesiveness at the interface between the base material and the carbon layer was good.

【0038】このように調製したRUN No.1の炭
素層を表面に形成した基材試料について表面を炭化物に
変える改質試験を行った。まず、黒鉛るつぼの中に炭化
ケイ素、ケイ素及びアルミナの粉末を入れ、次に前述の
処理を施した基材試料をこの粉末に浸るように入れ、こ
れを窒素雰囲気下で1500℃、30分間加熱した。
The RUN No. The base material sample having the carbon layer 1 formed on the surface was subjected to a modification test for changing the surface to a carbide. First, a powder of silicon carbide, silicon and alumina is put into a graphite crucible, and then a base material sample subjected to the above-mentioned treatment is put so as to be immersed in this powder, and this is heated in a nitrogen atmosphere at 1500 ° C. for 30 minutes. did.

【0039】加熱後、試料断面を走査型電子顕微鏡でケ
イ素の分布を観察した結果、表面から約100μmの深
さで改質層が形成していることがわかった。また試料表
面についてX線回折測定を実施し、炭化ケイ素の生成を
確認した。なお、別の実験で加熱過程で発生する物質を
赤外分光分析と走査型電子顕微鏡による元素分析で同定
した結果、一酸化ケイ素(SiO)であることが判明し
た。
After heating, the cross section of the sample was observed by a scanning electron microscope for distribution of silicon. As a result, it was found that the modified layer was formed at a depth of about 100 μm from the surface. In addition, X-ray diffraction measurement was performed on the sample surface to confirm the formation of silicon carbide. In another experiment, the substance generated in the heating process was identified by infrared spectroscopic analysis and elemental analysis by a scanning electron microscope, and was found to be silicon monoxide (SiO).

【0040】このように調製した試料を各々空気雰囲気
中で1500℃まで上げ、次に室温まで冷却する熱サイ
クル操作を3回行ったが、試験後の皮膜には外観上、亀
裂は認められず、走査型電子顕微鏡による断面観察でも
亀裂、剥離は認められなかった。
The samples thus prepared were each subjected to a heat cycle operation of raising the temperature to 1500 ° C. in an air atmosphere and then cooling to room temperature three times. No cracks were visually recognized in the film after the test. No crack or peeling was observed even when the cross-section was observed with a scanning electron microscope.

【表2】 [Table 2]

【0041】(実施例3)実施例2における改質反応
で、炭化ケイ素、ケイ素のかわりに、炭化チタン、チタ
ン又は炭化ハフニウム、ハフニウムを使用して各々改質
試験を実施した。
(Example 3) In the reforming reaction of Example 2, instead of silicon carbide and silicon, titanium carbide, titanium or hafnium carbide and hafnium were used to carry out a reforming test.

【0042】加熱後、試料断面及び表面を実施例2と同
様に分析した結果、炭化チタン及び炭化ハフニウムが各
々25μm、20μmの深さで形成されていることが判
明した。この場合も実施例2の一酸化ケイ素に対応して
一酸化チタン及び一酸化ハフニウムの生成を確認した。
After heating, the cross section and the surface of the sample were analyzed in the same manner as in Example 2. As a result, it was found that titanium carbide and hafnium carbide were formed to a depth of 25 μm and 20 μm, respectively. Also in this case, production of titanium monoxide and hafnium monoxide was confirmed corresponding to silicon monoxide of Example 2.

【0043】さらに、実施例2と同様の熱サイクル操作
を実施した結果、亀裂、剥離のないことを確認した。
Furthermore, as a result of carrying out the same heat cycle operation as in Example 2, it was confirmed that neither cracking nor peeling occurred.

【0044】(実施例4)炭素質基材表面に被覆する炭
素層の原料として、実施例2の石炭系ピッチ及びフラン
樹脂の他に、炭素質粉末として、かさ比重480kg/
3 、粒径約5μmのコークス、C軸方向の黒鉛層積層
厚みが550Åで粒径約2μmの異方性黒鉛粉を、また
炭素繊維としてピッチ系でチョップ状のものを使用し
た。また実施例2と同一のポリ塩化ビニルを界面剥離防
止のために使用した。
Example 4 In addition to the coal-based pitch and furan resin of Example 2, as a raw material for the carbon layer coating the surface of the carbonaceous substrate, a carbonaceous powder having a bulk specific gravity of 480 kg /
m 3, the coke having a particle diameter of about 5 [mu] m, the graphite layer laminated thickness of the C axis direction of the anisotropic graphite powder having a particle diameter of about 2μm in 550 Å, also was used chopped form with a pitch system as carbon fiber. The same polyvinyl chloride as in Example 2 was used to prevent interfacial peeling.

【0045】実施例2と同様に、ポリマーを塗布した
後、石炭系ピッチ、フラン樹脂の有機化合物と炭素質粉
末又は炭素繊維を所定濃度で混合し、基材に加圧成型し
た。その後、熱処理を行い、試料断面を走査型電子顕微
鏡で観察した結果、図1の例に見られるように界面の密
着性が良好で、非常に緻密で頑丈な炭素層を形成するこ
とができた。図1においての部分は界面を示してお
り、より上部は被覆炭素層、より下部は炭素質
基材、この場合はC/Cコンポジットである。結果を表
3にまとめた。
After coating the polymer in the same manner as in Example 2, an organic compound such as coal-based pitch or furan resin and carbonaceous powder or carbon fiber were mixed at a predetermined concentration and pressure-molded on a substrate. After that, heat treatment was performed, and the cross section of the sample was observed with a scanning electron microscope. As a result, as shown in the example of FIG. 1, the adhesion of the interface was good, and a very dense and sturdy carbon layer could be formed. .. The part in FIG. 1 shows the interface, the upper part is the coated carbon layer, the lower part is the carbonaceous substrate, in this case the C / C composite. The results are summarized in Table 3.

【表3】 [Table 3]

【0046】次に、実施例2と同様の改質試験を実施
し、試料を分析した結果、表面から約100μmの深さ
で改質層が形成していることがわかった。さらに、同様
の熱サイクル操作を実施した結果、全く亀裂、剥離がな
いことを確認した。
Next, the same modification test as in Example 2 was conducted and the sample was analyzed. As a result, it was found that the modified layer was formed at a depth of about 100 μm from the surface. Further, as a result of carrying out the same heat cycle operation, it was confirmed that there was no crack or peeling at all.

【0047】(実施例5)炭素質基材表面に被覆する炭
素層の原料として、実施例2の石炭系ピッチ、実施例4
の異方性黒鉛粉及び金属元素含有化合物としてポリカル
ボラニレンシロキサンを使用した。
(Example 5) As a raw material for the carbon layer coating the surface of the carbonaceous substrate, the coal-based pitch of Example 2 and Example 4 were used.
Anisotropic graphite powder and polycarboralenylene siloxane were used as the metal element-containing compound.

【0048】実施例4と同様の要領で上記金属元素含有
化合物を所定濃度で混合し、基材に加圧成型した。その
後、熱処理を行い、試料断面を走査型電子顕微鏡で観察
した結果、界面の密着性が良好な厚み150μmの炭素
層で、かつ炭化ケイ素が均一に分布していることがわか
った。
In the same manner as in Example 4, the above metal element-containing compound was mixed at a predetermined concentration and pressure-molded on a substrate. After that, heat treatment was performed, and the cross section of the sample was observed with a scanning electron microscope. As a result, it was found that the carbon layer was 150 μm thick and had good adhesion at the interface, and silicon carbide was uniformly distributed.

【0049】さらに、これを実施例2と同様の改質試験
を実施し、試料を分析した結果、表面から約150μm
の深さで改質層が形成していることがわかった。また同
様の熱サイクル操作を実施したが、亀裂や剥離は認めら
れなかった。
Further, the same modification test as in Example 2 was conducted, and the sample was analyzed. As a result, about 150 μm from the surface was obtained.
It was found that the modified layer was formed at the depth of. Further, the same heat cycle operation was carried out, but no crack or peeling was observed.

【0050】[0050]

【発明の効果】本発明では、従来のCVD法や改質法で
は問題のあった被覆材の熱応力による剥離、亀裂、過度
の改質反応による炭素質基材の強度低下、緻密性不足を
防ぐため、炭素質基材表面上に新たに炭素層を設け、こ
の炭素層を改質することにより、高温ガス雰囲気でも剥
離、酸化のない材料に仕上げることが可能となった。
EFFECTS OF THE INVENTION In the present invention, the peeling and cracking of the coating material due to the thermal stress, which is a problem in the conventional CVD method and the reforming method, the deterioration of the strength of the carbonaceous base material due to the excessive reforming reaction, and the lack of the denseness are caused. In order to prevent this, a new carbon layer is provided on the surface of the carbonaceous substrate, and by modifying this carbon layer, it is possible to finish the material without peeling or oxidation even in a high temperature gas atmosphere.

【0051】特に、加熱工程でピッチ状溶融物を経由し
て炭素を生成するポリマーを使用することにより、界面
での密着性が非常に良好になり、また炭素質粉末を添加
することにより炭素層の緻密性は一層向上した。さらに
金属元素含有化合物の使用により改質の程度がより容易
に制御でき、酸化反応に弱い炭素表面の改質方法として
極めて有効であっことがわかった。
In particular, by using a polymer which produces carbon via a pitch-like melt in the heating step, the adhesion at the interface becomes very good, and the addition of carbonaceous powder improves the carbon layer. Has been further improved. Further, it was found that the degree of modification can be more easily controlled by using the metal element-containing compound, which is extremely effective as a method for modifying the carbon surface, which is weak in the oxidation reaction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の耐酸化性炭素材料の中間品
中の被覆炭素層とC/Cコンポジットの密着状態を示す
同中間品の断面の走査電子顕微鏡写真。
FIG. 1 is a scanning electron micrograph of a cross section of an intermediate product of an oxidation-resistant carbon material according to an embodiment of the present invention, showing a state of adhesion between a coated carbon layer and a C / C composite.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小椋 謙 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 (72)発明者 近藤 雅之 神奈川県横浜市金沢区幸浦一丁目8番地1 三菱重工業株式会社基盤技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Ogura 1-8-1, Koukiura, Kanazawa-ku, Yokohama, Kanagawa Pref. Mitsubishi Heavy Industries, Ltd. Basic Technology Research Institute (72) Masayuki Kondo 1-chome, Koura, Kanazawa, Yokohama, Kanagawa Address 8 Mitsubishi Heavy Industries, Ltd. Basic Technology Research Institute

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 炭素質を基材とする炭素材料であって、
基材表面に炭素の層が形成されていると共に、該炭素の
層の表面が金属炭化物で改質されていることを特徴とす
る耐酸化性炭素材料。
1. A carbonaceous material based on carbonaceous material, comprising:
An oxidation resistant carbon material, wherein a carbon layer is formed on the surface of a base material, and the surface of the carbon layer is modified with a metal carbide.
【請求項2】 炭素質を基材とする炭素材料の表面に有
機物を塗布し、加熱することにより新たな炭素の層を設
け、該炭素層に反応により金属炭化物を生成する金属酸
化物を接触させて該炭素層を改質することを特徴とする
耐酸化性炭素材料の製造法。
2. A new carbon layer is formed by applying an organic substance to the surface of a carbonaceous material having a carbonaceous base material and heating it, and the carbon layer is contacted with a metal oxide which produces a metal carbide by a reaction. A method for producing an oxidation resistant carbon material, characterized by modifying the carbon layer.
【請求項3】 炭素質を基材とする炭素材料の表面に、
加熱工程でピッチ状溶融物を経由して炭素を生成するポ
リマーを塗布し、さらに、加熱工程で炭素を生成する有
機物を塗布し、加熱することにより新たな炭素の層を設
け、該炭素層に反応により金属炭化物を生成する金属酸
化物を接触させて該炭素層を改質することを特徴とする
耐酸化性炭素材料の製造法。
3. The surface of a carbonaceous material having a carbonaceous base material,
In the heating step, a polymer that generates carbon via a pitch-like melt is applied, and further, an organic material that generates carbon in the heating step is applied, and a new carbon layer is provided by heating, and the carbon layer is formed. A method for producing an oxidation resistant carbon material, which comprises contacting a metal oxide which produces a metal carbide by a reaction to modify the carbon layer.
【請求項4】 炭素質を基材とする炭素材料の表面に、
加熱工程でピッチ状溶融物を経由して炭素を生成するポ
リマーを塗布し、さらに、加熱工程で炭素を生成する有
機物と炭化処理を施した炭素質粉末及び/又は炭素繊維
との混合物を塗布し、加熱することにより新たな炭素の
層を設け、該炭素層に反応により金属炭化物を生成する
金属酸化物を接触させて該炭素層を改質することを特徴
とする耐酸化性炭素材料の製造法。
4. A surface of a carbonaceous material having a carbonaceous base material,
In the heating step, a polymer that produces carbon is applied via a pitch-like melt, and further, a mixture of an organic substance that produces carbon in the heating step and carbonized carbonaceous powder and / or carbon fiber is applied. A method for producing an oxidation resistant carbon material, characterized in that a new carbon layer is provided by heating, and a metal oxide that produces a metal carbide by a reaction is brought into contact with the carbon layer to modify the carbon layer. Law.
【請求項5】 炭素質を基材とする炭素材料の表面に、
加熱工程でピッチ状溶融物を経由して炭素を生成するポ
リマーを塗布し、さらに、加熱工程で炭素を生成する有
機物と炭化処理を施した炭素質粉末及び/又は炭素繊維
及び加熱により金属炭化物を生成する金属含有化合物と
の混合物を塗布し、加熱することにより新たな炭素の層
を設け、該炭素層に反応により金属炭化物を生成する金
属酸化物を接触させて該炭素層を改質することを特徴と
する耐酸化性炭素材料の製造法。
5. The surface of a carbonaceous material having a carbonaceous base material,
In the heating step, a polymer that generates carbon is applied through a pitch-like melt, and further, an organic substance that generates carbon in the heating step, carbonized carbonaceous powder and / or carbon fiber, and metal carbide by heating. Forming a new carbon layer by applying a mixture with the resulting metal-containing compound and heating, and modifying the carbon layer by contacting the carbon layer with a metal oxide that produces a metal carbide by reaction. And a method for producing an oxidation resistant carbon material.
JP4047791A 1991-02-20 1992-02-05 Oxidation-resistant carbon material and its production Pending JPH05105561A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2628691 1991-02-20
JP3-26286 1991-02-20

Publications (1)

Publication Number Publication Date
JPH05105561A true JPH05105561A (en) 1993-04-27

Family

ID=12189057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4047791A Pending JPH05105561A (en) 1991-02-20 1992-02-05 Oxidation-resistant carbon material and its production

Country Status (1)

Country Link
JP (1) JPH05105561A (en)

Similar Documents

Publication Publication Date Title
US5045356A (en) Process for producing carbon/carbon composite having oxidation resistance
US6203904B1 (en) Silicon carbide fibers with boron nitride coatings
EP2543650A1 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
Maury et al. Chemical vapor co-deposition of C and SiC at moderate temperature for the synthesis of compositionally modulated SixC1-x ceramic layers
EP3597621B1 (en) Method for producing silicon-carbide-based composite
US5114749A (en) Method for manufacturing carbon material having good resistance to oxidation by coating the carbon material with an inorganic polysilazane and then heating
US6187705B1 (en) Creep-resistant, high-strength silicon carbide fibers
JPH05105561A (en) Oxidation-resistant carbon material and its production
JP3522810B2 (en) Carbon-ceramic composite and method for producing the same
Wang et al. SiC fiber with low electrical resistivity and oxygen content
KR101331403B1 (en) Process for silicon carbide coating on graphite
JP2792749B2 (en) Oxidation resistant carbon material and method for producing the same
US5523035A (en) Process for producing carbonaceous material
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JPH01104879A (en) Composite carbon fiber and its production
JPS60209017A (en) Ceramic coated graphite fiber and its production
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
KR20200072051A (en) Carbon material coated by a layer having improved oxidation stability, and a method therefor
JP3076914B2 (en) Method for producing fiber-reinforced ceramic composite material
JPH10209061A (en) Constitution member for semiconductor diffusion furnace
JPH11183677A (en) Method for manufacturing nuclear fuel
JP3663118B2 (en) Method for producing ceramic fiber reinforced ceramic composite material
JP2521795B2 (en) Method for producing carbon fiber reinforced composite material having oxidation resistance
JPH06345571A (en) Production of high-temperature oxidation resistant c/c composite material
JPH08504738A (en) Boron carbide coating

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020212