JPS643801B2 - - Google Patents

Info

Publication number
JPS643801B2
JPS643801B2 JP59049165A JP4916584A JPS643801B2 JP S643801 B2 JPS643801 B2 JP S643801B2 JP 59049165 A JP59049165 A JP 59049165A JP 4916584 A JP4916584 A JP 4916584A JP S643801 B2 JPS643801 B2 JP S643801B2
Authority
JP
Japan
Prior art keywords
film
carbon film
carrier
substrate
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59049165A
Other languages
Japanese (ja)
Other versions
JPS60195014A (en
Inventor
Susumu Yoshimura
Mutsuaki Murakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Panasonic Holdings Corp
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan, Matsushita Electric Industrial Co Ltd filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP59049165A priority Critical patent/JPS60195014A/en
Publication of JPS60195014A publication Critical patent/JPS60195014A/en
Publication of JPS643801B2 publication Critical patent/JPS643801B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

a 産業上の利用分野 本発明は各種エレクトロニクス用回路素子、抵
抗体、発熱体などとして使用される炭素皮膜の製
造方法に関する。 b 従来技術 純粋な炭素皮膜は半金属性の優れた性質と高い
安定性を有しており、炭素皮膜抵抗器や電気回路
素子として広く使用されている。 従来の炭素皮膜の製造方法としては、高温真空
炉中に置かれた素体磁器を1000℃以上に加熱し
て、これに炭化水素ガスを注入して熱分解させ、
磁器の表面に炭素皮膜を析出させる方法が知られ
ている。この方法によると、所定の抵抗値を得る
には高温真空炉の加熱温度、真空度及びガスの流
量を相関的に調整する必要があつた。通常は1100
℃、真空度10-5Torrの下で、ガス流量を調整す
る方法がとられ、炭化水素としてはベンゼンが最
も一般的に使用され、そのほかプロパン,メタン
も使用されていた。しかし、この方法では純粋な
炭素皮膜を生成する点では優れているが、(1)1000
℃以上の高温を必要とし、(2)余り高い電導性を有
する炭素皮膜が得られないこと、(3)得られた炭素
皮膜の硬度が比較的低いこと、また(4)担体基板上
に均一な膜厚の炭素皮膜を生成させる事が困難で
あると言う欠点があつた。 例えば、ベンゼンを使用し、1000℃に加熱した
基板上に生成させた炭素皮膜の電導度は約
500S/cmで、これより高い電導度の皮膜を得る
ためには基板温度を高くするか、あるいは生成し
た炭素皮膜を再度熱処理することが必要である。 本発明者の実験では1000S/cm以上の電導体と
するためには1400℃の温度を必要とし、得られた
炭素皮膜の硬度は鉛筆硬度値で7Hであつた。ま
た、本発明者の実験では、10cm×5cmのセラミツ
ク基板を使用して、同様にベンゼン原料から炭素
皮膜を作成した場合、その膜厚分布の差は通常60
%を超え、最良の条件でも20%以下におさえる事
は困難であつた。むろんこの様な傾向は基板がよ
り大きくなつたり、あるいは担体基板が平板状で
なく複雑な形状をもつたものである場合にはより
顕著になる。 c 発明の目的 本発明は従来法の炭素皮膜の製造法における前
記のような欠点を解消せんとするものであり、そ
の目的は比較的低温度でも製造可能で、しかも高
い電導性と高い硬度値をもち、さらに担体基板全
体にわたり均一な膜厚分布を有する炭素皮膜の製
造法を提供するにある。 d 発明の構成 本発明者らは前記目的を達成すべく鋭意研究の
結果、従来法における炭化水素に代え次下に述べ
る特定の高分子有機化合物を担体上に塗布する
か、あるいはその高分子フイルムを担体基板では
さんで、真空中あるいは化学的に不活性なガス雰
囲気中で加熱分解し、担体上に炭素皮膜を生成さ
せると、低い担体の加熱温度で、高い電導性と比
較的高い硬度値をもち、しかも担体上で一定の膜
厚を有する炭素皮膜を生成し得られることを知見
しその知見に基いて本発明を完成した。 本発明の要旨は次の様な構成になつている。(1)
ポリパラフエニレンオキサイド(以下PPOと記
す)、ポリパラフエニレンサルフアイド(以下
PPSと記す)、ポリパラキシレン(以下PPXと記
す)、ポリスルフオン(以下PSFと記す)ポリカ
ーボネート(以下PCと記す)、ポリエチレンテレ
フタレート(以下PET)と記す、芳香族ポリイ
ミド(以下PIと記す)、芳香族ポリアミドイミド
(以下PAIと記す)、芳香族ポリアミド(以下PA
と記す)、フエノール樹脂(以下PHPと記す)、
ポリオキサジアゾール(以下PODと記す)、ポリ
ベンツイミダゾール(以下PBIと記す)、ポリベ
ンツチアゾール(以下PBSと記す)及びポリチ
アジアゾール(PSD)構造を有する高分子化合
物から選べれた芳香族高分子化合物を、担体上に
塗布するか、あるいはこれらの高分子フイルムを
担体基板ではさむ。(2)これらの担体を、真空中あ
るいはアルゴン,ヘリウム,チツ素などの化学的
に不活性なガス又はこれらの混合ガスから選ばれ
たガス雰囲気中で700℃以上に加熱し、高分子化
合物を熱分解することを特徴とする方法である。
熱分解後冷却し、担体基板を取り出し、高分子の
炭化残留成分を物理的に取りのぞくことによつ
て、基板上に強固に接着した炭素薄膜を得ること
ができる。 一般に高分子有機化合物は不活性ガス中あるい
は真空中で加熱すると、熱分解して気化する成分
と炭化残留成分となる。しかし本発明の目的を達
成し得る高分子有機化合物はどのようなものでも
よいとするわけではなく、むしろ多くのものが不
適当である。 例えば、代表的な高分子有機化合物であるポリ
エチレンは加熱により水素ガス,エチレンガス,
メタンガスなどに分解するが、得られる炭素皮膜
は本質的にメタンガス等を原料とした炭素皮膜と
同じである。そのほか、ポリプロピレン,ポリビ
ニルアルコール,ポリビニルホルマール,ポリビ
ニルエーテル,メタアクリル酸メチル,塩化ビニ
ル,塩化ビニリデン,ポリビニルブチラール,ポ
リアセタール,脂肪族ポリアミド,セルローズ系
樹脂等も同様に本発明の目的を達成し得ない。こ
れらの高分子を使用した場合には本質的にスス状
の皮膜が沈澱し、その皮膜の電導度や硬度は低い
ものであつた。またその皮膜は担体上から簡単に
はがれ落ち皮膜の生成効率は著しくひくかつた。
また芳香族高分子化合物の代表的な化合物である
ポリパラフエニレンは加熱によつてガス化する成
分の量は非常に少なく1200℃に加熱しても炭素皮
膜は殆んど生成しない。このような範疇に属する
使用し得ない高分子有機化合物としては、尿素樹
脂、メラミン樹脂などが挙げられる。 本発明において使用される高分子有機化合物と
しては、(1)加熱分解によつてガス化する成分が比
較的多いこと。(2)高分子有機化合物中にベンゼン
環などの芳香族環を含んでいることが必要であ
る。本発明者らはこのような考察と実験を行つた
結果、PPO,PPS,PPX,PSF,PC,PET,
PI,PAT,PA,POD,PBI,PBS,PBD,
PHPが炭素皮膜の作成に最適であることが分つ
た。またこれらの化合物の芳香環にアルキル置換
基を持つ誘導体も同じ効果を有することが分つ
た。 これらの高分子有機化合物を使用すると高い電
導性を有する炭素皮膜が得られ、従来のベンゼン
などのものでは炭素皮膜の生成しない700〜900℃
においても良好な炭素皮膜が得られる。また同時
に高い硬度値を有する皮膜が得られ一般に鉛筆硬
度で9H以上の値が得られる。 高い電導性の炭素皮膜が得られる理由は明らか
ではないが、熱分解によつて、優先的にベンゼン
のパラ位バイラジカル
a. Field of Industrial Application The present invention relates to a method for manufacturing carbon films used as various electronic circuit elements, resistors, heating elements, etc. b. Prior Art Pure carbon films have excellent semimetallic properties and high stability, and are widely used as carbon film resistors and electric circuit elements. The conventional method for producing carbon films is to heat the porcelain body placed in a high-temperature vacuum furnace to over 1000℃, and then inject hydrocarbon gas into it to cause thermal decomposition.
A method of depositing a carbon film on the surface of porcelain is known. According to this method, in order to obtain a predetermined resistance value, it was necessary to adjust the heating temperature of the high-temperature vacuum furnace, the degree of vacuum, and the flow rate of the gas in a correlated manner. Usually 1100
℃ and a vacuum of 10 -5 Torr by adjusting the gas flow rate. Benzene was the most commonly used hydrocarbon, but propane and methane were also used. However, although this method is superior in producing a pure carbon film, (1) 1000
℃ or higher, (2) a carbon film with very high conductivity cannot be obtained, (3) the hardness of the obtained carbon film is relatively low, and (4) it cannot be uniformly spread on the carrier substrate. The drawback was that it was difficult to produce a carbon film with a certain thickness. For example, the conductivity of a carbon film formed on a substrate heated to 1000℃ using benzene is approximately
In order to obtain a film with higher conductivity than 500 S/cm, it is necessary to raise the substrate temperature or heat-treat the formed carbon film again. In experiments conducted by the present inventors, a temperature of 1400° C. was required to obtain a conductor of 1000 S/cm or more, and the hardness of the obtained carbon film was 7H on a pencil hardness value. In addition, in experiments conducted by the present inventor, when a carbon film was similarly created from a benzene raw material using a 10 cm x 5 cm ceramic substrate, the difference in film thickness distribution was usually 60 cm.
%, and it was difficult to keep it below 20% even under the best conditions. Of course, this tendency becomes more pronounced when the substrate becomes larger or when the carrier substrate is not flat but has a complicated shape. c. Purpose of the Invention The present invention aims to eliminate the above-mentioned drawbacks of the conventional method for producing a carbon film, and its purpose is to provide a carbon film that can be produced at a relatively low temperature and that also has high conductivity and high hardness. It is an object of the present invention to provide a method for producing a carbon film having a uniform film thickness distribution over the entire carrier substrate. d Structure of the Invention As a result of intensive research to achieve the above object, the present inventors have found that instead of hydrocarbons in the conventional method, a specific polymeric organic compound described below is coated on a carrier, or a polymeric film thereof is coated on a carrier. When sandwiched between carrier substrates and thermally decomposed in a vacuum or chemically inert gas atmosphere to generate a carbon film on the carrier, high conductivity and relatively high hardness values can be achieved at a low heating temperature of the carrier. It was discovered that it is possible to produce a carbon film having a constant thickness on a carrier, and based on this knowledge, the present invention was completed. The gist of the present invention is structured as follows. (1)
Polyparaphenylene oxide (hereinafter referred to as PPO), polyparaphenylene sulfide (hereinafter referred to as PPO)
PPS), polyparaxylene (hereinafter referred to as PPX), polysulfone (hereinafter referred to as PSF), polycarbonate (hereinafter referred to as PC), polyethylene terephthalate (hereinafter referred to as PET), aromatic polyimide (hereinafter referred to as PI), aromatic Polyamide-imide (hereinafter referred to as PAI), aromatic polyamide (hereinafter referred to as PAI)
), phenolic resin (hereinafter referred to as PHP),
Aromatic polymer compound selected from polymer compounds having polyoxadiazole (hereinafter referred to as POD), polybenzimidazole (hereinafter referred to as PBI), polybenzthiazole (hereinafter referred to as PBS), and polythiadiazole (PSD) structure. are coated on a carrier, or these polymer films are sandwiched between carrier substrates. (2) These carriers are heated to 700°C or higher in a vacuum or in an atmosphere of a chemically inert gas such as argon, helium, or nitrogen, or a gas mixture thereof to release the polymer compound. This method is characterized by thermal decomposition.
By cooling after thermal decomposition, taking out the carrier substrate, and physically removing the carbonized residual components of the polymer, a carbon thin film firmly adhered to the substrate can be obtained. Generally, when a polymeric organic compound is heated in an inert gas or vacuum, it thermally decomposes into a vaporized component and a carbonized residual component. However, this does not mean that any high-molecular organic compound can achieve the object of the present invention; rather, many are unsuitable. For example, polyethylene, a typical high-molecular organic compound, can be heated to generate hydrogen gas, ethylene gas, etc.
Although it decomposes into methane gas, etc., the resulting carbon film is essentially the same as a carbon film made from methane gas or the like as a raw material. In addition, polypropylene, polyvinyl alcohol, polyvinyl formal, polyvinyl ether, methyl methacrylate, vinyl chloride, vinylidene chloride, polyvinyl butyral, polyacetal, aliphatic polyamide, cellulose resin, etc. similarly cannot achieve the object of the present invention. When these polymers were used, an essentially soot-like film was precipitated, and the film had low electrical conductivity and hardness. Moreover, the film easily peeled off from the carrier, and the production efficiency of the film was significantly lower.
Furthermore, polyparaphenylene, which is a typical aromatic polymer compound, has a very small amount of components that gasify when heated, and almost no carbon film is formed even when heated to 1200°C. Examples of high-molecular organic compounds that belong to this category and cannot be used include urea resins and melamine resins. The polymeric organic compound used in the present invention has (1) a relatively large amount of components that are gasified by thermal decomposition. (2) It is necessary that the polymeric organic compound contains an aromatic ring such as a benzene ring. As a result of these considerations and experiments, the inventors found that PPO, PPS, PPX, PSF, PC, PET,
PI, PAT, PA, POD, PBI, PBS, PBD,
It turns out that PHP is ideal for creating carbon films. It was also found that derivatives of these compounds having an alkyl substituent on the aromatic ring have the same effect. By using these polymeric organic compounds, a carbon film with high conductivity can be obtained, and at temperatures of 700 to 900°C, where conventional materials such as benzene do not produce a carbon film.
A good carbon film can also be obtained. At the same time, a film with a high hardness value can be obtained, generally having a pencil hardness of 9H or more. The reason why a highly conductive carbon film is obtained is not clear, but thermal decomposition preferentially converts biradicals at the para-position of benzene.

【式】が生成 し、これが基板上で再結合化し生成皮膜の結晶性
とグラフアイト化の向上に役立つているものと考
えられる。皮膜のグラフアイト化率を正確に見積
るのは困難であるが、レーザーラマンスペクトル
の測定では高いグラフアイト化率となつている。 熱分解及びガス化成分を沈澱させる雰囲気とし
ては、真空中あるいはアルゴン,チツ素,ヘリウ
ム,もしくはこれらの混合ガス雰囲気を使用す
る。真空中とアルゴン等の不活性ガス雰囲気中で
は生成する炭素皮膜の特性には殆んど変りがな
い。一方水素ガスの存在は一般に皮膜の電導度を
低下させる傾向があるが、20%以下の水素ガスの
存在はあまり電導度を低下させず、皮膜の基板と
の接着性を向上させる場合がある。酸素の存在は
電導特性を低下させるが、数%以下ならばあまり
影響を与えない。 本発明において使用される担体基板としては、
加熱温度に耐えるものでなくてはならない。例え
ば、炭素,けい素,ほう素などの元素、アルミ
ナ,シリカ,マグネシアなどの酸化物、シリコン
カーバイド,ボロンカーバイト,タングステンカ
ーバイトなどのカーバイト、シリコンナイトライ
ド,ボロンナイトライドなどのナイトライド、ほ
う化タングステン,ほう化モリブデンなどのほう
化物、けい化チタンなどのけい化物などが挙げら
れる。 本発明による方法は基板上に上記高分子を塗布
し、それを熱処理する方法であるから、本質的に
担体の形状によらず任意の担体上に炭素質膜を作
成する事が出来る。すなわち複雑な形状の担体で
も、その表面に高分子を塗布しそれを熱処理すれ
ば良い。通常のガス化成分を沈澱させる方法では
皮膜の出来にくいくぼみを有する様な形状の担体
にも皮膜を作る事が出来る。またもちろん高分子
を塗布した担体を連続的に炉の中へ送り込んでや
る事も可能であるから連続的な炭素質皮膜の製造
にも適した方法である。 e 実施例 実施例 1 各種の高分子原料を溶媒にとかし100×50×1
mmのアルミナセラミツク基板上にスピナーを使用
して塗布した。膜厚はいずれの高分子でもほぼ
30μmとなる様にした。この様にして作成した試
料を炉にセツトしアルゴン雰囲気中毎分20℃の速
度で1000℃まで昇温した。1000℃で1時間保持し
た後毎分40℃の速度で降温した。室温に達した後
試料を取り出し、基板上の炭化残留成分をピンセ
ツトで取りのぞき、基板上に強固に接着した炭素
薄膜を得た。なお、比較評価のためにベンゼン,
ポリパラフエニレン及びポリエチレンを使用した
場合を併記した。ベンゼンの場合はアルゴンガス
と共にベンゼンガスを1000℃のセラミツク基板上
に導き炭素皮膜を作成した。又ポリパラフエニレ
ンは適当な溶媒がないためペレツト状のポリパラ
フエニレンをセラミツク基板ではさんで評価し
た。膜厚分布の測定は基板上の9ケ所(3個3
列)を、4探針法(電極間隔0.25mm)を使用して
表面抵抗を測定し、電導度が一定であると仮定し
て膜厚分布を計算した。また、電導度の値はタリ
ステツプによる厚さの測定と上記表面抵抗値より
計算した。 実験の結果を表1に示す。ベンゼンの場合には
電導度は600s/cmであり、膜厚分布は60%であつ
た。また、ポリパラフエニレン、ポリエチレンで
は着膜量が極端に少なく、事実上使用し得ない事
が分る。これに対して本発明で使用される高分子
では電導度は、いずれもベンゼンの場合より大き
くなつており硬度も高くなつている。又膜厚分布
はいずれも4%以下であり非常に均一な厚さの膜
が得られる事が分つた。
[Formula] is generated, which is recombined on the substrate and is considered to be useful for improving the crystallinity and graphitization of the formed film. Although it is difficult to accurately estimate the graphitization rate of the film, laser Raman spectrum measurements indicate a high graphitization rate. The atmosphere in which the thermal decomposition and gasification components are precipitated is a vacuum or an atmosphere of argon, nitrogen, helium, or a mixed gas thereof. There is almost no difference in the characteristics of the carbon film produced in a vacuum or in an inert gas atmosphere such as argon. On the other hand, the presence of hydrogen gas generally tends to reduce the conductivity of the film, but the presence of less than 20% hydrogen gas does not significantly reduce the conductivity and may improve the adhesion of the film to the substrate. The presence of oxygen reduces the electrical conductivity, but if it is less than a few percent, it does not have much effect. The carrier substrate used in the present invention includes:
It must be able to withstand heating temperatures. For example, elements such as carbon, silicon, and boron, oxides such as alumina, silica, and magnesia, carbides such as silicon carbide, boron carbide, and tungsten carbide, nitrides such as silicon nitride, and boron nitride, Examples include borides such as tungsten boride and molybdenum boride, and silicides such as titanium silicide. Since the method according to the present invention is a method of applying the above-mentioned polymer onto a substrate and heat-treating it, a carbonaceous film can be essentially created on any carrier regardless of the shape of the carrier. In other words, even if the carrier has a complicated shape, it is sufficient to coat the surface of the carrier with a polymer and then heat-treat it. A film can also be formed on carriers having depressions that are difficult to form using the usual method of precipitating gasified components. Furthermore, since it is of course possible to continuously feed the carrier coated with the polymer into the furnace, this method is also suitable for continuous production of carbonaceous films. e Examples Example 1 Various polymer raw materials are dissolved in a solvent and 100×50×1
It was coated onto a 3 mm alumina ceramic substrate using a spinner. The film thickness is approximately the same for all polymers.
The thickness was set to 30 μm. The sample thus prepared was placed in a furnace and heated to 1000°C at a rate of 20°C per minute in an argon atmosphere. After holding at 1000°C for 1 hour, the temperature was lowered at a rate of 40°C per minute. After reaching room temperature, the sample was taken out and the remaining carbonized components on the substrate were removed with tweezers to obtain a carbon thin film firmly adhered to the substrate. For comparative evaluation, benzene,
The cases where polyparaphenylene and polyethylene were used are also shown. In the case of benzene, a carbon film was created by introducing benzene gas together with argon gas onto a ceramic substrate at 1000°C. Furthermore, since there is no suitable solvent for polyparaphenylene, polyparaphenylene in the form of pellets was sandwiched between ceramic substrates for evaluation. The film thickness distribution was measured at 9 locations on the substrate (3
The surface resistance was measured using the four-probe method (electrode spacing: 0.25 mm), and the film thickness distribution was calculated assuming that the conductivity was constant. Further, the conductivity value was calculated from the thickness measurement using Talystep and the above-mentioned surface resistance value. The results of the experiment are shown in Table 1. In the case of benzene, the conductivity was 600 s/cm and the film thickness distribution was 60%. Furthermore, it can be seen that polyparaphenylene and polyethylene have an extremely small amount of film deposited, making them practically unusable. On the other hand, the polymers used in the present invention all have higher electrical conductivity and higher hardness than benzene. It was also found that the film thickness distribution was 4% or less in all cases, and that a film with a very uniform thickness could be obtained.

【表】【table】

【表】【table】

【表】 実施例 2 実施例1と同様な方法で処理温度,処理時間を
変え電導度,膜厚,膜厚分布の関係を測定した。
結果は次の表2、表3、表4の通りであつた。
[Table] Example 2 The relationship between electrical conductivity, film thickness, and film thickness distribution was measured in the same manner as in Example 1 by changing the treatment temperature and treatment time.
The results were as shown in Tables 2, 3 and 4 below.

【表】【table】

【表】【table】

【表】 これらの結果が示すように本発明による方法を
使用すれば700℃以上の温度で炭素皮膜を作成す
る事が出来、同一処理条件で比較した場合にはベ
ンゼンよりも高い電導度の皮膜が出来る。また、
さらに得られた皮膜は著しく均一な膜厚となつて
いる。膜厚の制御は表3の様に処理温度と時間に
よつて行う事が出来る。 実施例 3 実施例1と同様の方法で高分子フイルムをセラ
ミツク基板ではさんだ試料を熱処理した。実施例
1と同様な炭素膜が析出する事が認められ、その
特性もほとんど同じであつた。したがつて高分子
フイルムをセラミツクではさむ事によつても同じ
効果が得られる事が分つた。 比較例 1 第1図に示した装置を使用し、熱分解炉1には
高分子原料を基板加熱炉2には石英及びアルミナ
より成る基板6をセツトした。熱分解炉1中にお
かれた高分子原料をアルゴン気流(毎分0.4l)中
で毎分10℃の速度で1000℃まで昇温し、1000℃に
達した後ただちに毎分40℃の速度で降温した。熱
分解炉1中の高分子は昇温中にそれぞれの高分子
に特有な温度で分解ガス化し、そのガス化成分
は、アルゴンガスと共に基板加熱炉に運ばれる。
ガス化成分はあらかじめ1000℃に加熱された基板
上に沈澱する。生成した皮膜は1000℃で1時間熱
処理し、その後毎分40℃の速度で降温した。この
ようにして得られた炭素皮膜の比抵抗値及び膜の
状態を示すと表5の通りであつた。膜厚は使用し
た高分子の種類によつて異なるため、同一条件下
でのほぼ1000Åの膜厚の試料を選び出した。
[Table] As these results show, by using the method of the present invention, it is possible to create a carbon film at a temperature of 700°C or higher, and when compared under the same processing conditions, the film has a higher conductivity than benzene. I can do it. Also,
Furthermore, the resulting film has a significantly uniform thickness. The film thickness can be controlled by the treatment temperature and time as shown in Table 3. Example 3 A sample in which a polymer film was sandwiched between ceramic substrates was heat-treated in the same manner as in Example 1. It was observed that a carbon film similar to that of Example 1 was deposited, and its characteristics were almost the same. Therefore, it was found that the same effect can be obtained by sandwiching a polymer film between ceramics. Comparative Example 1 Using the apparatus shown in FIG. 1, a polymer raw material was placed in the pyrolysis furnace 1, and a substrate 6 made of quartz and alumina was placed in the substrate heating furnace 2. The polymer raw material placed in the pyrolysis furnace 1 is heated to 1000°C at a rate of 10°C per minute in an argon flow (0.4 liters per minute), and immediately after reaching 1000°C, the temperature is increased to 40°C per minute. The temperature dropped. The polymers in the pyrolysis furnace 1 are decomposed and gasified at a temperature specific to each polymer during heating, and the gasified components are conveyed to the substrate heating furnace together with argon gas.
The gasified components are precipitated on a substrate that has been previously heated to 1000°C. The resulting film was heat treated at 1000°C for 1 hour, and then the temperature was lowered at a rate of 40°C per minute. Table 5 shows the specific resistance value and condition of the carbon film thus obtained. Since the film thickness varies depending on the type of polymer used, we selected samples with a film thickness of approximately 1000 Å under the same conditions.

【表】 表5の結果より明らかな様に本比較例1の方法
によつて得られた皮膜の電導度値は表1に示され
たベンゼンを原料として得られた炭素皮膜よりも
一般に大きく、その値は本発明の方法によつて得
られた炭素皮膜(実施例1,表1)に比べほぼ同
じ値である。すなわち炭素皮膜の電導度は主とし
て出発原料によつて決定されている事が分る。一
方、本発明の実施例1と本比較例を比べると、比
較例の方法では膜厚の厚い皮膜が得られるが、膜
厚の均一性と言う点では本発明の方法に比べはる
かに劣つている。本比較例の方法を使用し表5に
示した皮膜よりさらに膜厚のうすい皮膜(一般に
200〜400Å)を作成した場合には、膜厚分布はさ
らに大きくなり、300〜100%となつた。すなわ
ち、本発明の様にあらかじめ高分子材料を塗布し
た後に熱処理を行なう方法の方が均一な厚さの皮
膜を作成する方法としてははるかにすぐれた方法
である事が分る。 f 発明の効果 以上のように、本発明の方法によると、従来法
におけるベンゼン等の炭化水素を熱分解して基板
上に沈澱させて炭素皮膜を作成する方法に比べ
て、基板の加熱温度が低い温度で皮膜が形成し得
られ、しかも得られる炭素皮膜ははるかに高い電
導度とすぐれた硬度を有している。又、本発明に
なる方法では、本発明になる特定の高分子化合物
を原料とし加熱分解して得たガス化成分を加熱し
た基板上にみちびいて沈澱させる方法よりもはる
かに均一な膜厚の皮膜が得られる。本発明では本
質的に基板の大きさによらず任意の大きさの基板
上に炭素皮膜を作成する事が出来、連続的な炭素
皮膜の製造にも適している。
[Table] As is clear from the results in Table 5, the electrical conductivity value of the film obtained by the method of Comparative Example 1 is generally larger than that of the carbon film obtained using benzene as a raw material shown in Table 1. The value is almost the same as that of the carbon film obtained by the method of the present invention (Example 1, Table 1). In other words, it can be seen that the electrical conductivity of the carbon film is mainly determined by the starting materials. On the other hand, when comparing Example 1 of the present invention and this comparative example, the method of the comparative example yields a thick film, but it is far inferior to the method of the present invention in terms of uniformity of film thickness. There is. Using the method of this comparative example, a thinner film than the film shown in Table 5 (generally
200 to 400 Å), the film thickness distribution became even larger, reaching 300 to 100%. In other words, it can be seen that the method of applying a polymeric material in advance and then performing heat treatment as in the present invention is a much better method for creating a film of uniform thickness. f. Effects of the Invention As described above, according to the method of the present invention, the heating temperature of the substrate is lower than that of the conventional method of thermally decomposing hydrocarbons such as benzene and precipitating them on the substrate to create a carbon film. The film can be formed at a lower temperature, and the resulting carbon film has much higher conductivity and excellent hardness. Furthermore, the method of the present invention provides a much more uniform film thickness than the method of the present invention, in which a specific polymer compound is used as a raw material, and a gasified component obtained by thermal decomposition is precipitated on a heated substrate. A film is obtained. The present invention essentially allows the creation of a carbon film on a substrate of any size regardless of the size of the substrate, and is also suitable for continuous production of carbon films.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭素皮膜製造装置の原理図である。 1:加熱分解炉、2:基板加熱炉、3:反応
管、4:キヤリヤーガス、5:原料高分子有機化
合物、6:基板。
FIG. 1 is a diagram showing the principle of a carbon film manufacturing apparatus. 1: thermal decomposition furnace, 2: substrate heating furnace, 3: reaction tube, 4: carrier gas, 5: raw material polymeric organic compound, 6: substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリパラフエニレンオキサイド、ポリパラフ
エニレンサルフアイド、ポリパラキシリレン、ポ
リスルフオン、ポリカーボネート、ポリエチレン
テレフタレート、芳香族ポリイミド、芳香族ポリ
アミドイミド、芳香族ポリアミド、フエノール樹
脂ポリオキサジアゾール、ポリベンツイミダゾー
ル、ポリベンツチアゾール及びポリチアジアゾー
ル構造を有する高分子化合物から選ばれた芳香族
高分子化合物を、担体上に塗布するかあるいは上
記高分子フイルムを担体基板ではさみ、不活性ガ
ス中または真空中で700℃以上の温度で熱分解し、
該担体上に炭素皮膜を析出させる事を特徴とする
炭素皮膜の製造方法。
1 Polyparaphenylene oxide, polyparaphenylene sulfide, polyparaxylylene, polysulfone, polycarbonate, polyethylene terephthalate, aromatic polyimide, aromatic polyamideimide, aromatic polyamide, phenolic resin polyoxadiazole, polybenzimidazole, An aromatic polymer compound selected from polybenzthiazole and polymer compounds having a polythiadiazole structure is coated on a carrier, or the polymer film is sandwiched between carrier substrates and heated at 700°C in an inert gas or vacuum. Pyrolyzed at temperatures above
A method for producing a carbon film, which comprises depositing a carbon film on the carrier.
JP59049165A 1984-03-16 1984-03-16 Production of carbon coating film Granted JPS60195014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59049165A JPS60195014A (en) 1984-03-16 1984-03-16 Production of carbon coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59049165A JPS60195014A (en) 1984-03-16 1984-03-16 Production of carbon coating film

Publications (2)

Publication Number Publication Date
JPS60195014A JPS60195014A (en) 1985-10-03
JPS643801B2 true JPS643801B2 (en) 1989-01-23

Family

ID=12823466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59049165A Granted JPS60195014A (en) 1984-03-16 1984-03-16 Production of carbon coating film

Country Status (1)

Country Link
JP (1) JPS60195014A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015111A (en) * 1999-04-30 2001-01-19 Hydro Quebec New high surface conductivity electrode material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3680824D1 (en) * 1985-05-30 1991-09-19 Matsushita Electric Ind Co Ltd METHOD FOR PRODUCING GRAPHITE.
DE68911810D1 (en) * 1988-09-20 1994-02-10 Matsushita Electric Ind Co Ltd Process for the production of graphite blocks.
JP4714371B2 (en) * 2001-06-06 2011-06-29 ポリマテック株式会社 Thermally conductive molded body and method for producing the same
JP5601039B2 (en) * 2009-06-08 2014-10-08 三菱化学株式会社 Thiadiazole-containing polymer
JP5849745B2 (en) * 2012-02-03 2016-02-03 三菱商事株式会社 Method for producing organic carbon film and method for producing laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015111A (en) * 1999-04-30 2001-01-19 Hydro Quebec New high surface conductivity electrode material
JP2008186807A (en) * 1999-04-30 2008-08-14 Acep Inc Novel electrode material with high surface conductivity
JP2014026989A (en) * 1999-04-30 2014-02-06 Acep Inc New electrode materials with high surface conductivity

Also Published As

Publication number Publication date
JPS60195014A (en) 1985-10-03

Similar Documents

Publication Publication Date Title
US5476679A (en) Method for making a graphite component covered with a layer of glassy carbon
KR101685100B1 (en) Formation method of hexagonal boron nitride thick film on a substrate and hexagonal boron nitride thick film laminates thereby
JPH05509132A (en) Materials for chemical vapor deposition
JP2001521045A5 (en)
JPS6221867B2 (en)
JPS643801B2 (en)
EP0529593B1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
EP0201696B1 (en) Production of carbon films
JPH0826863A (en) Formed body of pyrolized boron nitride-coated double layers and method for producing the same
EP0296409A1 (en) Process for the preparation of reflective pyrolytic graphite
JPS6147904B2 (en)
JP4595153B2 (en) Silicon carbide body and method for producing the same
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JP2779052B2 (en) Multilayer ceramic heater
JP3142886B2 (en) Method for producing SiC-based ceramic precursor
JPH039945B2 (en)
JPH05105523A (en) Production of pyrolytic boron nitride compact
JPS6355183A (en) Manufacture of glassy carbon coated body
KR100358527B1 (en) Susceptor and its manufacturing method
RU2286617C2 (en) Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film
JP2002246451A (en) Electrostatic chuck
JPS62292611A (en) Production of glassy carbon film
JPH0714806B2 (en) Carbon film coated graphite material
JPH0246550B2 (en)
JPH11180788A (en) Oxidation resistant carbon-silicon carbide composite material and heating part using the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term