JPH0394219A - Manufacture of liquid crystal electrooptical device - Google Patents

Manufacture of liquid crystal electrooptical device

Info

Publication number
JPH0394219A
JPH0394219A JP23230889A JP23230889A JPH0394219A JP H0394219 A JPH0394219 A JP H0394219A JP 23230889 A JP23230889 A JP 23230889A JP 23230889 A JP23230889 A JP 23230889A JP H0394219 A JPH0394219 A JP H0394219A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
wiring
crystal panel
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23230889A
Other languages
Japanese (ja)
Inventor
Akira Mase
晃 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP23230889A priority Critical patent/JPH0394219A/en
Priority to US07/575,442 priority patent/US5130833A/en
Publication of JPH0394219A publication Critical patent/JPH0394219A/en
Priority to US07/851,659 priority patent/US5710612A/en
Priority to US08/962,448 priority patent/US6404476B1/en
Priority to US09/988,408 priority patent/US6956635B2/en
Priority to US11/250,426 priority patent/US20060033873A1/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the lightweight, inexpensive device which has a large aperture rate by connecting conductors on a liquid crystal panel and conductors on a 3rd substrate by irradiating an ultraviolet-ray setting adhesive with ultraviolet rays while the substrates are put one over the other across the adhesive and pressed. CONSTITUTION:Electrodes are formed on the couple of substrates 1 and 3 which constitute a liquid crystal panel by forming a conductive films on the surfaces of the substrates, and then irradiating them with laser light and cutting the conductive films. Further, semiconductor chips for driving liquid crystal are mounted on a 3rd substrate 3 different from the 1st and 2nd substrates 1 and 2. The conductors on the substrate where the semiconductor chips are mounted and the conductors on the substrates which constitute the liquid crystal panel are connected by interposing the ultraviolet-ray setting adhesive 8 with which conductive particulates are mixed between the substrates 1 and 3 and irradiating the adhesive with ultraviolet rays while applying pressure. Consequently, the lightweight, inexpensive liquid crystal electrooptical device which has a high aperture rate, high contrast, and high yield is obtained.

Description

【発明の詳細な説明】 〔従来の技術] 液晶電気光学装置は、従来の表示素子に比較して軽い,
消費電力が小さい等の利点を有しているため種々の方面
、例えば電卓.時計.ワープロ.ポケットテレビ等に用
いられている。
[Detailed Description of the Invention] [Prior Art] A liquid crystal electro-optical device is lighter than a conventional display element.
Because it has advantages such as low power consumption, it is used in various fields, such as calculators. clock. word processor. Used in pocket TVs, etc.

ところで液晶電気光学装置における液晶を駆動させるた
めの半導体素子の配置については、当初はパッケージI
Cの状態でガラスエボキシのプリント基板上に搭載され
ているものが主であった。
By the way, the arrangement of semiconductor elements for driving the liquid crystal in a liquid crystal electro-optical device was initially
Most of them were mounted on glass epoxy printed circuit boards in state C.

この場合パッケージICが搭載されたプリント基板の電
極と、液晶パネルに形成されている電極との接続は、例
えばF P C (Flexible Print C
ircuit)によって行われていた。
In this case, the connection between the electrodes of the printed circuit board on which the package IC is mounted and the electrodes formed on the liquid crystal panel is made using, for example, FPC (Flexible Print C).
It was carried out by ircuit.

最近になってT A B (Tape Automat
ed Bonding)法も用いられてきた。これは、
Cu等で配線が形成されたポリイミドフィルム上に、パ
ッド部にバンプが形成された半導体チップをフエイスダ
ウンボンディング( I L B : Inner L
ead Bondingという)して、さらに前記フィ
ルムと液晶パネルに作製されている電極とを接続する(
O L B : OuterLead Bonding
という)方法である。
Recently, T A B (Tape Auto
ed Bonding) methods have also been used. this is,
A semiconductor chip with bumps formed on the pad portion is bonded onto a polyimide film on which wiring is formed using Cu or the like by face down bonding (ILB: Inner L).
(referred to as ead bonding), and further connects the film and the electrodes fabricated on the liquid crystal panel (
OLB: Outer Lead Bonding
) method.

また液晶パネルを構戒する基板上に半導体チップを直接
搭載する方法もある。例えば、液晶パネルを構成する基
板上に、半導体チップへ信号を人力させるための配線と
半導体チップからの出力信号を液晶パネルの表示部の電
極へ供給するための配線を形成し、該配線と半導体チッ
プとをAuワイヤーを用いてワイヤーボンデイングする
方法または、ICチップのパッド部にバンプを形成し、
前記配線とフエイスダウンボンディングを行う方法等も
ある。
Another method is to directly mount a semiconductor chip on the substrate that hosts the liquid crystal panel. For example, wiring for manually transmitting signals to a semiconductor chip and wiring for supplying output signals from the semiconductor chip to the electrodes of the display section of the liquid crystal panel are formed on a substrate constituting a liquid crystal panel, and the wiring and the semiconductor A method of wire bonding with the chip using Au wire, or a method of forming bumps on the pad part of the IC chip,
There is also a method of performing face-down bonding with the wiring.

〔従来の技術の問題点〕[Problems with conventional technology]

しかしながら上記の方法のうち、ガラスエボキシのプリ
ン1〜基板上にパッケージICを搭載し、該プリント基
板と液晶パネルとをFPCを用いて接続する方法は、パ
ッケージICが大きい上にそれを重いガラスエポキシの
プリント基板上に配置するため、液晶電気光学装置の「
軽い」という利点が生かされないばかりでなく、プリン
ト基板と液晶パネルとを接続させるためにFPCを用い
るので、一方でFPCにプリント基板の接続、他方でF
PCと液晶パネルの接続を行わなければならず、接続す
る配線の本数の2倍の個所の接続が必要なため、歩留ま
りも低下する。
However, among the above methods, the method of mounting a package IC on a glass epoxy printed circuit board and connecting the printed circuit board and a liquid crystal panel using an FPC requires a large package IC and a heavy glass epoxy board. Because it is placed on the printed circuit board of the LCD electro-optical device,
Not only is the advantage of "light weight" not being utilized, but since FPC is used to connect the printed circuit board and the liquid crystal panel, the connection of the printed circuit board to the FPC on the one hand, and the FPC on the other hand
Since the PC and the liquid crystal panel must be connected, and the number of connections is twice as many as the number of wires to be connected, the yield is also lowered.

また、FPCは一般に熱圧着によって接続されるため、
接続の際にFPCが熱膨張し、加熱前のアライメントが
加熱によって微妙にずれてしまう場合がある。これは1
枚のFPC中の配線数が多くなると顕著に現れる現象で
あるため、配線数の多い液晶パネルを作製する場合には
多くのFPCを用いなければならない。そうすると当然
のことながらアライメントにかかる時間、手間も増大す
るため結局コスト上昇となる。
In addition, since FPCs are generally connected by thermocompression bonding,
The FPC thermally expands during connection, and the alignment before heating may shift slightly due to heating. This is 1
This phenomenon becomes more noticeable when the number of wires in a single FPC increases, so a large number of FPCs must be used when manufacturing a liquid crystal panel with a large number of wires. Naturally, this increases the time and effort required for alignment, resulting in an increase in cost.

さらに、通常液晶パネルにはガラス基板が用いられるが
、この場合、FPCとガラスとの熱膨張率が違うため、
圧着時に接続ができていても温度が変化することにより
応力が働いて信頼性低下の原因となる。
Furthermore, glass substrates are usually used for liquid crystal panels, but in this case, the thermal expansion coefficients of FPC and glass are different, so
Even if a connection is established during crimping, changes in temperature will cause stress and reduce reliability.

またTAB法においては、液晶駆動用半導体素子を配置
するプリント基板を必要としないので、「軽さ」の面で
は改善されているが、ポリイミドテープが非常に高価に
なってしまうため好ましくない。
Furthermore, the TAB method does not require a printed circuit board on which a semiconductor element for driving a liquid crystal is placed, so it is improved in terms of "lightness," but it is not preferable because the polyimide tape becomes extremely expensive.

さらにボリイξドテープを用いるため、前に述べた熱膨
張による問題も生ずる。
Furthermore, since the ξ-d tape is used, the problem of thermal expansion mentioned above also arises.

また液晶パネルを搭載する基板上に半導体チップを搭載
する場合には、半導体チップと配線との接続工程の製造
歩留まりと液晶パネル自体の歩留まりとの積が液晶電気
光学装置全体の製造歩留まりとなるため、全体の製造歩
留まりの低下が著しく、好ましくない。
Furthermore, when mounting a semiconductor chip on a substrate on which a liquid crystal panel is mounted, the manufacturing yield of the entire liquid crystal electro-optical device is the product of the manufacturing yield of the connection process between the semiconductor chip and wiring and the yield of the liquid crystal panel itself. , the overall production yield is significantly lowered, which is not preferable.

〔発明の構成〕[Structure of the invention]

上記問題点を解決するため本発明は、液晶電気光学装置
の液晶パネルを構戒する一対の基板に形成されている電
極は基板表面に導電膜を形成した後にレーザー光を照射
して導電膜を切断することにより作製され、さらに液晶
を駆動させるための半導体チップが、液晶パネルを構成
する第1,第2の一対の基板とは別の第3の基板上に搭
載されていて、半導体チップが搭載された基板上の配線
と、液晶パネルを構戒する基板上の配線とが導電性微粒
子を混合した紫外線硬化接着剤を基板間に介在せしめ、
圧力を加えながら紫外線を照射することにより接続を行
うことを特徴とする。
In order to solve the above-mentioned problems, the present invention provides that the electrodes formed on a pair of substrates that control the liquid crystal panel of a liquid crystal electro-optical device are formed by forming a conductive film on the surface of the substrate and then irradiating the conductive film with a laser beam. A semiconductor chip for driving the liquid crystal is mounted on a third substrate different from the pair of first and second substrates constituting the liquid crystal panel, and the semiconductor chip is manufactured by cutting. The wiring on the mounted board and the wiring on the board that controls the liquid crystal panel are interposed between the boards with an ultraviolet curing adhesive mixed with conductive fine particles.
The feature is that the connection is made by irradiating ultraviolet light while applying pressure.

特に本発明において、前記紫外線硬化接着剤中に導電性
の微粒子とそれよりもやや小さい微粒子とが混合されて
いる場合には、さらに配線の接続の歩留りが上昇するた
め好ましい。
In particular, in the present invention, it is preferable that conductive fine particles and slightly smaller fine particles are mixed in the ultraviolet curable adhesive because the yield of wiring connections is further increased.

本発明においては液晶を駆動させるため、パッケージさ
れた半導体素子ではなく半導体チップを用いるため、該
チップを搭載するためのガラスエポキシのプリント基板
は必要でなく、そのため「軽い」という液晶電気光学装
置の特長を生かすことができる。
In the present invention, a semiconductor chip is used instead of a packaged semiconductor element to drive the liquid crystal, so a glass epoxy printed circuit board on which the chip is mounted is not required. You can make the most of your strengths.

またFPCを用いずに液晶パネルと駆動回路部とを接続
するため、前に述べたような接続個所が配線数の2倍に
なる問題やFPCの熱膨張の問題をなくすことができる
Furthermore, since the liquid crystal panel and the drive circuit section are connected without using an FPC, it is possible to eliminate the problem of the number of connection points being twice as many as the number of wiring lines and the problem of thermal expansion of the FPC, as described above.

さらに本発明においてはTAB法のような高価なポリイ
ミドテープを必要としないので、安価に液晶電気光学装
置を作製することができる。
Furthermore, the present invention does not require an expensive polyimide tape as in the TAB method, so a liquid crystal electro-optical device can be manufactured at low cost.

さらに本発明においては、液晶パネルを構成する基板と
半導体チップを搭載する基板とを別々に作製したため、
半導体チップを基板上の配線と接続した後、液晶パネル
との接続を行う前に半導体チップと配線との接続につい
て電気テストを行う工程を設けることができ、その結果
半導体チップの接続が完全でないものについて液晶パネ
ルとの接続を行う必要がなくなるので、歩留りが大幅に
上昇する。
Furthermore, in the present invention, since the substrate constituting the liquid crystal panel and the substrate mounting the semiconductor chip are manufactured separately,
After the semiconductor chip is connected to the wiring on the board, it is possible to conduct an electrical test on the connection between the semiconductor chip and the wiring before connecting it to the liquid crystal panel, and as a result, the connection of the semiconductor chip is not perfect. Since there is no need to connect the liquid crystal panel to the liquid crystal panel, the yield can be greatly increased.

また、特に本発明においてはレーザー光を用いて導電膜
を切断することにより液晶パネルの電極を作製するため
、フォトリソグラフィーによって作製する場合に比較し
l電極の間隔を小さくすることが容易である。しかし仮
に半導体素子を搭載した基板とこの電極間隔の小さい液
晶パネルとの接続をFPCを用いて行うとすると、前に
述べたような熱膨張が生じ隣同士の配線がショートして
しまうため好ましくない。従ってレーザーを用いて電極
を作製する工程と、半導体チップを搭載した基板上の配
線と液晶パネル上の配線とを紫外線硬化接着剤を用いて
接続する工程とをともに有する本発明においてのみ液晶
パネルの電極間隔を小さく、言い換えれば液晶パネルの
開口率を大きくした上に前に述べた問題点を解決できる
Further, in particular, in the present invention, since the electrodes of the liquid crystal panel are manufactured by cutting the conductive film using laser light, it is easier to reduce the interval between the l electrodes compared to the case where the electrodes are manufactured by photolithography. However, if we were to use FPC to connect a substrate on which semiconductor elements are mounted and a liquid crystal panel with a small electrode spacing, this would be undesirable because thermal expansion would occur as described earlier and adjacent wiring would short-circuit. . Therefore, only in the present invention, which has both the process of fabricating electrodes using a laser and the process of connecting the wiring on the substrate on which the semiconductor chip is mounted and the wiring on the liquid crystal panel using an ultraviolet curing adhesive, The above-mentioned problems can be solved by reducing the electrode spacing, in other words by increasing the aperture ratio of the liquid crystal panel.

以下、実施例を示し本発明を説明する。The present invention will be explained below with reference to Examples.

〔実施例1〕 本実施例については第1図(a), (b).第2図,
第3図を用いて説明する。
[Example 1] This example is shown in Figs. 1(a) and (b). Figure 2,
This will be explained using FIG.

まず液晶パネルを作製する。First, a liquid crystal panel is manufactured.

第1の基板(1)として1.1mm厚のソーダガラス上
にDCマグネトロンスバッタ法を用いてITO(Ind
ium Tin Oxide)を1200人戒膜した。
As the first substrate (1), ITO (Ind.
ium Tin Oxide).

モしてエキシマレーザーを用いて640本のストライプ
状の電極(9)を作製する(第1図(a))。ただし、
第工図(a)には電極は数本のみ記載する。そして第2
の基板(2)として同様に1.1mm厚のソーダガラス
上に■T○をl200人戊膜し、やはりエキシマレーザ
ーにより400本の電極を作製する(図示しない)。こ
こで、エキシマレーザーの照射条件はビームのエネルギ
ーが250mJ ,パルス幅2On秒,ビームの断面の
形状が15 u m X 400mm.繰り返し周波数
が10 H zであった。
Then, 640 striped electrodes (9) are produced using an excimer laser (FIG. 1(a)). however,
Only a few electrodes are shown in the construction drawing (a). and the second
As a substrate (2), 200 layers of ■T◯ were similarly deposited on a 1.1 mm thick soda glass, and 400 electrodes were also formed using an excimer laser (not shown). Here, the excimer laser irradiation conditions are: beam energy of 250 mJ, pulse width of 2 On seconds, and beam cross-sectional shape of 15 um x 400 mm. The repetition frequency was 10 Hz.

こうしてITO膜を切断した後、再度エキシマレーザー
を用いてITOの端部を切断する(第1図(b))。こ
の場合のエキシマレーザーの照射条件はビームの断面の
形状を30μmX400mmとし、基板の中心部(IT
○を切断しない部分)にはマスクを置いてIT○が切断
されないようにする。その他の条件は前と同じで良い。
After cutting the ITO film in this manner, the ends of the ITO are cut again using an excimer laser (FIG. 1(b)). In this case, the excimer laser irradiation conditions are such that the cross-sectional shape of the beam is 30 μm x 400 mm, and the central part of the substrate (IT
Place a mask on the part where ○ is not to be cut to prevent IT○ from being cut. Other conditions may be the same as before.

その後、第1,第2の基板上にボリアξツク酸をオフセ
ット印刷法を用いて塗布し、クリーンオーブン中で35
0゜C3時間の加熱を行いポリイミド薄膜を得る。そし
て第1の基板(1)上のポリイミド薄膜形成面を綿布を
用いてラビング処理した後、スベーサーとして直径8μ
mのSiOz粒子を散布した。第2の基板(2)上には
スクリーン印刷機を用いてエボキシ系の接着剤を印刷し
た。そして第1,第2の基板を貼りあわせた後、液晶を
公知の真空注入法により注入して液晶の注入口を紫外線
硬化接着剤を用いてシールした。これで液晶パネルは完
威した。
Thereafter, boria ξ tuccinic acid was applied onto the first and second substrates using an offset printing method, and was placed in a clean oven for 35 minutes.
Heating was performed at 0°C for 3 hours to obtain a polyimide thin film. After rubbing the polyimide thin film formation surface on the first substrate (1) using cotton cloth, a baser with a diameter of 8 μm was applied.
m of SiOz particles were sprinkled. An epoxy adhesive was printed on the second substrate (2) using a screen printer. After the first and second substrates were bonded together, liquid crystal was injected by a known vacuum injection method, and the liquid crystal injection port was sealed using an ultraviolet curing adhesive. The LCD panel is now complete.

次に、液晶駆動用1cチップ搭載用基板の作製について
説明する。
Next, the production of a substrate for mounting a liquid crystal driving 1c chip will be described.

第3の基板(3)として、幅50mm,長さ270mm
,厚さ1.1mmのソーダガラス上にITOを成膜した
後、フォトリソで配線09)を作製する。そして該配線
上にNiメッキを行いさらにAuメッキを行った。
As the third board (3), width 50mm, length 270mm
, After forming a film of ITO on soda glass having a thickness of 1.1 mm, wiring 09) is produced by photolithography. The wiring was then plated with Ni and further plated with Au.

この配線は半導体チップ(5)に信号を入力するための
配線(図示しない)と半導体チップ(5)からの出力信
号を液晶パネルに伝えるための配線とからなっている。
This wiring consists of wiring (not shown) for inputting signals to the semiconductor chip (5) and wiring for transmitting output signals from the semiconductor chip (5) to the liquid crystal panel.

そして、パッド部にAuバンプが形成された液晶駆動用
の半導体チップ(5)を接続する。この接続方法は、デ
ィスペンス法を用いて紫外線硬化接着剤を半導体チップ
上に滴下して、配線とパンブとの位置合わせを行った後
、■バンプあたり95gの圧力を印加した状態で150
゜Cに加熱して3分間紫外線を照射する。この方法によ
り必要な数の半導体チップと配線をコモン電極側、デー
タ電極側ともに接続した。
Then, a liquid crystal driving semiconductor chip (5) having Au bumps formed on the pad portion is connected. This connection method uses the dispensing method to drop UV-curable adhesive onto the semiconductor chip, aligns the wiring with the bump, and then
Heat to °C and irradiate with ultraviolet rays for 3 minutes. By this method, the required number of semiconductor chips and wiring were connected to both the common electrode side and the data electrode side.

ここで、半導体チップの接続に関しての電気テストを行
った。
Here, an electrical test was conducted regarding the connection of the semiconductor chip.

そして、基板上に配置したすべての半導体チップについ
て、完全に接続が行われているものについてのみ液晶パ
ネルを接続する。その方法として本実施例においては、
まず液晶パネルの第1の基板上であって第2の基板と重
なっていない部分(4)に形成された配線上に、導電性
微粒子(6)と導電性微粒子(6)よりやや小さい微粒
子(7)を混合した紫外線硬化接着剤(8)をディスペ
ンス法により塗布した後、液晶パネル上の接着剤が塗布
された部分の配線と、半導体チップを搭載した基板上の
配線とが向かい合うように重ね、約2.4kg/cm”
の圧力を加?ながら紫外線を3分間照射した。ここで用
いた導電性微粒子(6)は直径7.5μmのボリスチレ
ン粒子にAuメッキをiooo人施したものである。ま
た導電性微粒子(6)よりやや小さい微粒子(7)とし
ては直径5μmのSiO■粒子を用いた。また紫外線硬
化接着剤(8)と導電性微粒子(6)と微粒子(7)の
混合比は重量比で107:14:4である。
Then, a liquid crystal panel is connected only to those semiconductor chips arranged on the substrate that are completely connected. In this example, the method is as follows:
First, on the wiring formed on the first substrate of the liquid crystal panel and on the part (4) that does not overlap with the second substrate, conductive fine particles (6) and fine particles ( After applying the ultraviolet curing adhesive (8) mixed with 7) by the dispensing method, overlap the wiring on the liquid crystal panel so that the wiring on the part where the adhesive was applied and the wiring on the board on which the semiconductor chip is mounted face each other. , approx. 2.4kg/cm”
Apply pressure? UV rays were irradiated for 3 minutes. The conductive fine particles (6) used here are polystyrene particles having a diameter of 7.5 μm and are plated with Au. Further, as fine particles (7) slightly smaller than the conductive fine particles (6), SiO2 particles with a diameter of 5 μm were used. Further, the mixing ratio of the ultraviolet curable adhesive (8), the conductive fine particles (6), and the fine particles (7) is 107:14:4 by weight.

この後、−30゜C.70″C(各1時間)の条件で熱
ショック試験を行ったが、接続直後と同様全く不良は見
られなかった。
After this, -30°C. A heat shock test was conducted at 70''C (for 1 hour each), but no defects were observed, as was the case immediately after connection.

なお、液晶パネルの配線と半導体チップを搭載した基板
上の配線との接続の際には、導電性微粒子のみの使用で
も十分可能であるが、本実施例のように2種類の微粒子
を用いたほうがより確実な接続ができる。
It should be noted that when connecting the wiring of the liquid crystal panel and the wiring on the board on which the semiconductor chip is mounted, it is sufficient to use only conductive fine particles, but as in this example, two types of fine particles were used. This allows for a more secure connection.

本実施例において作製された液晶電気光学装置は、半導
体チップをガラス基板上に搭載したのでガラスエボキシ
のプリント基板を必要とせず非常に軽く、さらに半導体
チップを搭載する基板と液晶パネルを構成する基板とが
別であるため、半導体チップが完全に接続されているも
ののみ液晶パネルとの接続を行うことができ、製造歩留
りが大幅に上昇した。
The liquid crystal electro-optical device fabricated in this example has a semiconductor chip mounted on a glass substrate, so it is very light and does not require a glass epoxy printed circuit board, and it is also very light in weight. Since the semiconductor chips are separate from each other, only those whose semiconductor chips are completely connected can be connected to the liquid crystal panel, which greatly increases manufacturing yields.

さらに本実施例においては、一本の配線の接続について
接続個所が1カ所で良いのでFPCを用いた場合に比較
して工程が簡略化できる上に製造歩留りも上昇する。
Furthermore, in this embodiment, since only one connection point is required for connection of one wire, the process can be simplified and the manufacturing yield can be increased compared to the case where FPC is used.

特に本実施例においては液晶パネルの電極をエキシマレ
ーザーを用いて作製したために、電極間隔の非常に小さ
い液晶パネルが作製できた。
In particular, in this example, since the electrodes of the liquid crystal panel were produced using an excimer laser, a liquid crystal panel with a very small electrode interval could be produced.

また、本実施例ではエキシマレーザー光の照射を2回行
ったが、これによって半導体チップを搭載した基板との
接続部のITO電極を細くしてとなり合う電極の絶縁抵
抗を十分大きくすることができた。
In addition, in this example, irradiation with excimer laser light was performed twice, which made it possible to make the ITO electrode at the connection part with the substrate on which the semiconductor chip is mounted thinner and to sufficiently increase the insulation resistance of the adjacent electrodes. Ta.

〔実施例2〕 まず液晶パネルを作製する。[Example 2] First, a liquid crystal panel is manufactured.

第1の基板(1)として1.1mm厚のソーダガラス上
にDCマグネトロンスバッタ法を用いてITO (In
dium Tin Oxide)を1200人或膜した
。そしてエキシマレーザーを用いて640本のストライ
ブ状の電極(9)を作製する。本実施例においては第1
図(a)の状態で良い。そして第2の基板(2)として
同様に1.1mm厚のソーダガラス上にITOを120
0人或膜し、やはりエキシマレーザーにより400本の
電極を作製する。ここで、エキシマレーザーの照射条件
は実施例1と同様にビームのエネルギーが250mJ,
パルス幅20n秒,ビームの断面の形状カ15μmX4
00mm,繰り返し周波数が10Hzであった。
As the first substrate (1), ITO (In
1,200 people made a film of dium tin oxide). Then, 640 strip-shaped electrodes (9) are produced using an excimer laser. In this example, the first
The state shown in Figure (a) is fine. Then, as a second substrate (2), 120% of ITO was similarly placed on 1.1 mm thick soda glass.
400 electrodes were fabricated using an excimer laser using 0 people. Here, the excimer laser irradiation conditions are the same as in Example 1, with a beam energy of 250 mJ,
Pulse width: 20 ns, beam cross-sectional shape: 15 μm x 4
00 mm, and the repetition frequency was 10 Hz.

その後、第1,第2の基板上にポリアミック酸をオフセ
ット印刷法を用いて塗布し、クリーンオーブン中で35
0゜C3時間の加熱を行いボリイごド薄膜を得る。そし
て第1の基板(1)上のボリイξド薄膜形成面を綿布を
用いてラビング処理した後、スペーサーとして直径8μ
mのSi02粒子を散布した。第2の基板(2)上には
スクリーン印刷機を用いてエボキシ系の接着剤を印刷し
た。そして第1,第2の基板を貼りあわせた後、液晶を
公知の真空注入法により注入して液晶の注入口を紫外線
硬化接着剤を用いてシールした。これで液晶バネルは完
或した。
Thereafter, polyamic acid was coated on the first and second substrates using an offset printing method, and then heated in a clean oven for 35 minutes.
Heating was performed at 0°C for 3 hours to obtain a boiled iron thin film. After rubbing the surface of the first substrate (1) on which the polygonal thin film is formed using a cotton cloth, a spacer with a diameter of 8 μm is applied.
m of Si02 particles were sprinkled. An epoxy adhesive was printed on the second substrate (2) using a screen printer. After the first and second substrates were bonded together, liquid crystal was injected by a known vacuum injection method, and the liquid crystal injection port was sealed using an ultraviolet curing adhesive. The LCD panel is now complete.

次に、液晶駆動用ICチップ搭載用基板の作製について
説明する。
Next, the production of a substrate for mounting a liquid crystal driving IC chip will be described.

第3の基板(3)として、幅50mm ,長さ270m
m ,厚さ1.1mmのソーダガラス上にITOを戒膜
した後、フォトリソで配線09)を作製する。そして該
配線上にNiメッキを行いさらにAuメッキを行った。
As the third board (3), width 50mm, length 270m
After coating ITO on soda glass with a thickness of 1.1 mm, wiring 09) is produced by photolithography. The wiring was then plated with Ni and further plated with Au.

この配線は半導体チップ(5)に信号を入力するための
配線(図示しない)と半導体チップ(5)からの出力信
号を液晶パネルに伝えるための配線とからなっている。
This wiring consists of wiring (not shown) for inputting signals to the semiconductor chip (5) and wiring for transmitting output signals from the semiconductor chip (5) to the liquid crystal panel.

そして、パッド部にAuバンプが形成された液晶駆動用
の半導体チップ(5)を接続する。この接続方法は、デ
ィスペンス法を用いて紫外線硬化接着剤を半導体チップ
上に滴下して、配線とパンプとの位置合わせを行った後
、1バンプあたり95gの圧力を印加した状態で150
゜Cに加熱して3分間紫外線を照射する。この方法によ
り必要な数の半導体チップと配線をコモン電極側、デー
タ電極側ともに接続した。
Then, a liquid crystal driving semiconductor chip (5) having Au bumps formed on the pad portion is connected. This connection method uses a dispensing method to drop UV-curable adhesive onto the semiconductor chip, aligns the wiring with the bumps, and then applies a pressure of 95g per bump to the semiconductor chip.
Heat to °C and irradiate with ultraviolet rays for 3 minutes. By this method, the required number of semiconductor chips and wiring were connected to both the common electrode side and the data electrode side.

ここで、半導体チップの接続に関しての電気テストを行
った。
Here, an electrical test was conducted regarding the connection of the semiconductor chip.

そして、基板上に配置したすべての半導体チップについ
て、完全に接続が行われているものについてのみ液晶パ
ネルを接続する。その方法として本実施例においては、
まず液晶パネルの第1の基板上であって第2の基板と重
なっていない部分(4)に形成された配線上に、導電性
微粒子(6)と導電性微粒子(6)よりやや小さい微粒
子(7)を混合した紫外線硬化接着剤(8)をディスペ
ンス法により塗布した後、液晶パネル上の接着剤が塗布
された部分の配線と、半導体チップを搭載した基板上の
配線とが向かい合うように重ね、約2.4kg/cm”
の圧力を加えながら紫外線を3分間照射した。ここで用
いた導電性微粒子(6)は直径2.5μmのボリスチレ
ン粒子にAuメッキを1000λ施したものである。ま
た導電性微粒子(6)よりやや小さい微粒子(7)とし
ては直径2μmのSi02粒子である。また紫外線硬化
接着剤(8)と導電性微粒子(6)と微粒子(7)の混
合比は重量比で98:13:3である。
Then, a liquid crystal panel is connected only to those semiconductor chips arranged on the substrate that are completely connected. In this example, the method is as follows:
First, on the wiring formed on the first substrate of the liquid crystal panel and on the part (4) that does not overlap with the second substrate, conductive fine particles (6) and fine particles ( After applying the ultraviolet curing adhesive (8) mixed with 7) by the dispensing method, overlap the wiring on the liquid crystal panel so that the wiring on the part where the adhesive was applied and the wiring on the board on which the semiconductor chip is mounted face each other. , approx. 2.4kg/cm”
Ultraviolet rays were irradiated for 3 minutes while applying pressure. The conductive fine particles (6) used here were boristyrene particles with a diameter of 2.5 μm and were plated with Au to a thickness of 1000λ. Further, the fine particles (7) slightly smaller than the conductive fine particles (6) are Si02 particles with a diameter of 2 μm. The mixing ratio of the ultraviolet curable adhesive (8), the conductive fine particles (6), and the fine particles (7) is 98:13:3 by weight.

この後、−30゜C,70゜C(各1時間)の条件で熱
ショック試験を行ったが、接続直後と同様全く不良は見
られなかった。
Thereafter, a heat shock test was conducted at -30°C and 70°C (for 1 hour each), but no defects were found, as was the case immediately after connection.

本実施例においては、実施例1で得られた効果は当然得
られる上に、液晶パネルの電極作製時にエキシマレーザ
ー光の照射回数がl回であるため実施例1の場合に比較
して、より工程が短縮できた。ただし、となり合う電極
間の絶縁抵抗を十分得るために本実施例では実施例1よ
りかなり小さい導電性微粒子を用いた。
In this example, not only the effects obtained in Example 1 can be obtained, but also the excimer laser beam is irradiated one time when manufacturing the electrodes of the liquid crystal panel, so it is more effective than in Example 1. The process was shortened. However, in order to obtain sufficient insulation resistance between adjacent electrodes, conductive fine particles much smaller than those in Example 1 were used in this example.

〔実施例3〕 実施例1と全く同様に作製した液晶パネルと半導体チノ
プを搭載した基板との接続の際に、第4図に示すように
、液晶パネルのコモン電極側と接続した基板と、液晶パ
ネルのデータ電極側と接続した基板とをそれらの交差部
GO)において紫外線硬化接着剤を用いて接着すること
により、実施例lの場合と比較して機械的強度にも優れ
た液晶電気光学装置を作製することができた。
[Example 3] When connecting a liquid crystal panel manufactured in exactly the same manner as in Example 1 to a substrate on which a semiconductor chip is mounted, as shown in FIG. 4, the substrate connected to the common electrode side of the liquid crystal panel, By bonding the data electrode side of the liquid crystal panel and the connected substrate at their intersections GO) using an ultraviolet curing adhesive, a liquid crystal electro-optic device with superior mechanical strength compared to the case of Example 1 can be obtained. We were able to create the device.

本実施例において交差部00)で接着することができた
のは、液晶パネルのコモン電極側基板と、データ電極側
基板に接続した半導体チップが搭載された基板とが同一
平面を形成し、さらに液晶バ不ルのデータ電極側基板と
、コモン電極側基板に接続した半導体チップが搭載され
た基板とが同一平面を形成するからである。そのため、
第5図のように液晶パネルを構戒する一方の基板と半導
体チップを搭載する基板とをまたぐように1枚の基板0
8)を接着することができ、こうすることによりさらに
機械的強度を上昇させることができる。
In this example, bonding at the intersection 00) was possible because the common electrode side substrate of the liquid crystal panel and the substrate on which the semiconductor chip connected to the data electrode side substrate is mounted form the same plane, and This is because the data electrode side substrate of the liquid crystal panel and the substrate on which the semiconductor chip connected to the common electrode side substrate is mounted form the same plane. Therefore,
As shown in Figure 5, one board 0 is placed across one board holding the liquid crystal panel and the board mounting the semiconductor chip.
8) can be bonded, thereby further increasing the mechanical strength.

なお、第5図において基板側は半導体チップを搭載した
2枚の基板のうちの一方の基板と基板(1)との間にの
み記載されているが、半導体チップを搭載した他方の基
板と基板(2)の間にも同様に設けている。
In Figure 5, the substrate side is shown only between one of the two substrates on which the semiconductor chip is mounted and the substrate (1), but the substrate side is shown between the other substrate on which the semiconductor chip is mounted and the substrate. A similar arrangement is also provided between (2).

基板08)は、液晶パネルと半導体チップを搭載した基
板との接続部の補強材としてるので、その材質について
は特に指定しない。形状も補強材としての役割を果たす
ことができる程度であれば十分であり、特に指定するも
のではない。
Since the substrate 08) is used as a reinforcing material for the connection between the liquid crystal panel and the substrate on which the semiconductor chip is mounted, its material is not particularly specified. The shape is not particularly specified, as long as it can function as a reinforcing material.

〔効果〕〔effect〕

以上述べたように本発明を用いることにより、軽量で安
価、さらには開口率が高く高コントラストが得られ、な
おかつ歩留りの高い液晶電気光学装置を作製することが
できる。
As described above, by using the present invention, it is possible to manufacture a liquid crystal electro-optical device that is lightweight, inexpensive, has a high aperture ratio, provides high contrast, and has a high yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a), (b)は電極形状を示す。 第2図二傘車鉾は本発明を用いた場合の液晶電気光学装
置の接続部の断面の概略を示す。 第3図,第4図,第5図は本発明を用いた場合の液晶電
気光学装置の全体の概略図を示す。 基板 半導体チップ 導電性微粒子 微粒子 紫外線硬化接着剤 FPC ^−一 朱 2 図 ,−9 (徒) (b) 第 4 図 /0 第 ケ 図 /r
Figures 1(a) and 1(b) show the electrode shapes. FIG. 2 shows a schematic cross-section of a connecting portion of a liquid crystal electro-optical device using the present invention. 3, 4, and 5 show schematic diagrams of the entire liquid crystal electro-optical device using the present invention. Substrate Semiconductor Chip Conductive Fine Particle Fine Particle Ultraviolet Curing Adhesive FPC ^-Ichishu 2 Figure, -9 (Unused) (b) Figure 4/0 Figure ke/r

Claims (1)

【特許請求の範囲】 1、基板表面に導電性薄膜を形成した後、レーザー光を
照射して該導電性薄膜を切断することにより電極が形成
された第1、第2の一対の前記基板の間に液晶を介在せ
しめた液晶電気光学装置の作製方法であって、液晶パネ
ルを作製する工程と、液晶パネルを構成する基板とは別
の第3の基板上に配線を形成する工程と、液晶駆動用の
半導体チップを前記第3の基板上の配線と接続する工程
と、液晶パネル上の配線と前記第3の基板上の配線とを
導電性微粒子を混合した紫外線硬化接着剤を介して液晶
パネル上の配線と第3の基板上の配線とが向かい合うよ
うに基板同士を重ね合わせ、圧力を加えた状態で紫外線
を照射することにより接続する工程を有することを特徴
とする液晶電気光学装置の作製方法。 2、特許請求の範囲第1項において、紫外線硬化接着剤
中には少なくとも表面が導電性の第1の微粒子と、第1
の微粒子よりやや小さい第2の微粒子とが混合されてい
ることを特徴とする液晶電気光学装置の作製方法。
[Claims] 1. A conductive thin film is formed on the surface of the substrate, and then the conductive thin film is irradiated with laser light to cut the conductive thin film, thereby forming electrodes on the first and second substrates. A method for manufacturing a liquid crystal electro-optical device with a liquid crystal interposed therebetween, comprising the steps of manufacturing a liquid crystal panel, forming wiring on a third substrate different from the substrate constituting the liquid crystal panel, and A step of connecting a driving semiconductor chip to the wiring on the third substrate, and connecting the wiring on the liquid crystal panel and the wiring on the third substrate to the liquid crystal via an ultraviolet curable adhesive mixed with conductive fine particles. A liquid crystal electro-optical device characterized by having a step of stacking the substrates so that the wiring on the panel and the wiring on the third substrate face each other and connecting them by irradiating ultraviolet rays while applying pressure. Fabrication method. 2. In claim 1, the ultraviolet curable adhesive contains first fine particles having at least a conductive surface;
A method for manufacturing a liquid crystal electro-optical device, characterized in that second fine particles slightly smaller than the fine particles are mixed therein.
JP23230889A 1989-09-01 1989-09-06 Manufacture of liquid crystal electrooptical device Pending JPH0394219A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23230889A JPH0394219A (en) 1989-09-06 1989-09-06 Manufacture of liquid crystal electrooptical device
US07/575,442 US5130833A (en) 1989-09-01 1990-08-30 Liquid crystal device and manufacturing method therefor
US07/851,659 US5710612A (en) 1989-09-01 1992-03-16 Liquid crystal device and manufacturing method therefor with anisotropic conductive adhesive connecting glass substrate and glass auxiliary substrate
US08/962,448 US6404476B1 (en) 1989-09-01 1997-10-31 Device having an improved connective structure between two electrodes
US09/988,408 US6956635B2 (en) 1989-09-01 2001-11-19 Liquid crystal device and manufacturing method therefor
US11/250,426 US20060033873A1 (en) 1989-09-01 2005-10-17 Liquid crystal device and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23230889A JPH0394219A (en) 1989-09-06 1989-09-06 Manufacture of liquid crystal electrooptical device

Publications (1)

Publication Number Publication Date
JPH0394219A true JPH0394219A (en) 1991-04-19

Family

ID=16937172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23230889A Pending JPH0394219A (en) 1989-09-01 1989-09-06 Manufacture of liquid crystal electrooptical device

Country Status (1)

Country Link
JP (1) JPH0394219A (en)

Similar Documents

Publication Publication Date Title
US6404476B1 (en) Device having an improved connective structure between two electrodes
US6320691B1 (en) Electrode connection method
JP4820372B2 (en) Circuit member, electrode connection structure, and display device including the same
JPH06118441A (en) Display cell
JPH04212495A (en) Circuit component mounting method for substrate and circuit board used therein
JP2893070B2 (en) Liquid crystal electro-optical device
JPH0394219A (en) Manufacture of liquid crystal electrooptical device
JP5648266B2 (en) Method for manufacturing electrophoretic display device
JP2001264794A (en) Method for manufacturing liquid crystal display device
JP2000111939A (en) Liquid crystal display device
JP2995392B2 (en) Liquid crystal electro-optical device
JP2009115942A (en) Liquid crystal display device
JP2995390B2 (en) Liquid crystal electro-optical device
JPH0127424B2 (en)
JPH10319419A (en) Liquid crystal display device
JPH087636Y2 (en) Film connector with electronic components
JPH05100238A (en) Packaging structure for liquid crystal panel
JP2002076208A (en) Packaging structure of semiconductor device and display of structure and its manufacturing method
JP2007329321A (en) Electronic component mounting substrate, display panel, display device, and its manufacturing method
JPH03261916A (en) Manufacture of liquid crystal electrooptic device
JPH10123557A (en) Liquid crystal display device and its production
JPH08271869A (en) Production of liquid crystal display panel
JP2617203B2 (en) IC chip lead bonding method
KR101100133B1 (en) Chip On Glass mode LCD device
JPH06168981A (en) Method of mounting semiconductor element