JPH039391B2 - - Google Patents

Info

Publication number
JPH039391B2
JPH039391B2 JP57053165A JP5316582A JPH039391B2 JP H039391 B2 JPH039391 B2 JP H039391B2 JP 57053165 A JP57053165 A JP 57053165A JP 5316582 A JP5316582 A JP 5316582A JP H039391 B2 JPH039391 B2 JP H039391B2
Authority
JP
Japan
Prior art keywords
gas
adsorption
purification device
pipe
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57053165A
Other languages
Japanese (ja)
Other versions
JPS58168876A (en
Inventor
Akira Wakaizumi
Tooru Tanaka
Hiroshi Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Original Assignee
Japan Oxygen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd filed Critical Japan Oxygen Co Ltd
Priority to JP57053165A priority Critical patent/JPS58168876A/en
Publication of JPS58168876A publication Critical patent/JPS58168876A/en
Publication of JPH039391B2 publication Critical patent/JPH039391B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はコークス炉ガスから該ガスに含まれる
不純物を除去して水素を回収する方法に関するも
のである。更に詳しくは水素を汚染して極めて好
ましくない、コークス炉ガス中に含まれる微量の
不純物を吸着により除去した後に、続いて吸着あ
るいは深冷分離により更に精製分離して水素を回
収する方法に関するものである。 近年、資源事情により、エネルギー源に使用さ
れる原料を可能な限り有効に利用することが種々
検討されている。そしてその一つとしてコークス
炉より排出されるガスに水素が含まれていること
より、これを原料として水素を回収することが提
案されている。 即ち、コークス炉廃ガスの組成は水素を主成分
としてCH4、CO、CO2、N2、O2、軽質炭化水
素、水分の外に、アンモニア、硫黄化合物、ダス
ト、タールミスト等の多種類の不純物を含有して
いる。そしてこれらの不純物は種々な手段によつ
て除去することが試みられているが、このうち一
般に吸着により除去する方法が採用されているの
が実状である。この吸着によつて不純物を除去す
る方法では前記不純物を吸着する吸着剤を用いる
ことが必要なことは勿論であるが、コークス炉排
ガスは前記した如く極めて多くの種類の不純物が
含まれているため、全ての不純物を一つの吸着剤
で除去することは極めて困難であり数種の吸着剤
を用いて前記不純物を順次段階的に除去する方法
が行なわれている。即ち沸点が高く吸着性が強い
不純物は、吸着剤より脱着するには極めて困難で
あり、この種の不純物として微量であるが前記し
たうち軽質炭化水素、硫黄化合物、タールミス
ト、ダスト、水分等がこれに属する。一方、沸点
が低く吸着性の弱い不純物は、吸着剤よりの脱着
が容易であり、これに属するものはCH4、CO、
CO2、N2、O2等である。 そしてこれらの不純物の除去は、まづ前記吸着
性の強い不純物を吸着装置よりなる予備浄化装置
で除去し、続いて前記吸着性の弱い不純物を吸着
装置あるいは深冷分離装置よりなる主浄化装置で
除去し高純な水素を回収している。 しかる予備浄化装置や、主浄化装置で使用され
る吸着装置では、該吸着装置に充填されている吸
着剤は、不純物を吸着して捕集することによつて
漸次この不純物で満され、吸着剤の吸着容量の限
界に達すると、吸着能が失なわれるため、吸着工
程を停止して、再使用し得るよう脱着再生する必
要がある。そしてこの脱着再生の方法としては、
吸着装置を減圧にする圧力変動法や、加熱する加
熱法とがあり、吸着性の弱い不純物は前記した如
く比較的脱着が容易であるので、圧力変動による
脱着で充分再生が出来るが、吸着性の強い不純物
を吸着剤より脱着するには圧力変動法では再生が
困難であり、このため加熱したガスを吸着床に流
通せしめて再生している。そしてこの加熱再生用
のガスは一般にガス供給設備を別に設置して得て
いると共に、又電気ヒーター等加熱源も必要であ
つて、装置の設備費が嵩むばかりでなく、運転コ
ストを上昇せしめる等の不都合があつた。 本発明は上述の如き現状に鑑みなされたもの
で、その特徴はコークス炉排出ガスを複数の吸着
床がそれぞれ吸着−再生−予冷の各工程を同時に
異つた工程を行ないかつ前記順序をくり返し操作
されてなる予備浄化装置に導入し、該床を流通せ
しめ続いてゼオライト等を充填した吸着床あるい
は深冷分離よりなる主浄化装置を経て、水素ガス
を回収する方法において、前記予備浄化装置を流
通した後のコークス炉排ガスを触媒反応器に導び
き該器での触媒発熱反応により高温ガスを得、続
いてこれを主浄化装置より分解除去して排出され
る一部のガスと熱交換して該ガスを加熱した後主
浄化装置に供給すると共に、主浄化装置より分離
して排出ガスの一部を前記熱交換器を経て加熱し
た後予備浄化装置の再生工程にある吸着床に、又
残部は予備浄化装置の予冷工程にある吸着床にそ
れぞれ供給するようにしたコークス炉ガスより水
素を回収する方法である。以下図面により本発明
を詳細に説明する。 第1図は本発明の方法の一実施例を説明する系
統略図である。水素(H2):60%、メタン
(CH4):26%、一酸化炭素(CO):5%、軽質炭
化水素:2%、二酸化炭素(CO2):1.5%、窒素
(N2):4%、酸素(O2):0.5%その外硫化水素、
窒素酸化物、アンモニア、タールミスト、ダス
ト、トルエン、キシレン、ベンゼン、水分等1%
よりなるコークス炉よりの排ガス1000Nm3/hは
圧縮機1で約11Kg/cm2Gに圧縮されて管2より予
備浄化装置3に供給される。予備浄化装置3は活
性炭が充填された複数の吸着床たとえば3塔の吸
着床4A,4B,4Cよりなり、それぞれは吸着
工程−再生工程−予冷工程のうち同時に異つた一
つの工程を行ないかつ順次前記工程に従つて切り
換えて操作されている。そして現在たとえば吸着
床4Aが吸着工程に、吸着床4Bが再生工程に、
吸着床4Cが予冷工程にあると、前記圧縮機1で
11Kg/cm2で圧縮された1000Nm3/hのコークス炉
ガスは、管2、管5A、弁6Aを介して吸着床4
Aに導入され、該吸着床4Aで吸着し易いH2S、
NOx、アンモニア、タールミスト、ダスト、ト
ルエン、キシレン、ベンゼン、水分等の不純成分
が除去され、990Nm3/hが弁7A、管8Aを介
して導出し、ついで管9より触媒反応器10に導
びかれる。触媒反応器10にはパラジウム(Pd)
白金(Pt)等の貴金属触媒や、あるいはニツケ
ル(Ni)等の卑金属触媒が装填されている。そ
して該器10に導入された990Nm3/h、のコー
クス炉排ガスは、該ガスに含まれている約0.5%
の酸素ガスによつて、水素(H2)、メタン
(CH4)、一酸化炭素(CO)が前記触媒下で効果
的にその当量分だけ反応し、その時発熱して約
200〜450℃に昇温する。ついでこの昇温した
990Nm3/hの高温ガスは管11を介して熱交換
器12に導びかれ、該器12で後述する主浄化装
置14よりの分離排ガスを加熱し、自身はほぼ常
温近く迄冷却されて管13を介して、主浄化装置
14へと導入される。 主浄化装置14は、CH4、CO、CO2、軽質炭
化水素、N2等低沸点成分を除去するもので、ゼ
オライトの如き吸着剤を充填した、複数の吸着床
が吸着工程、再生工程を切換え操作されて連続運
転し得る吸着装置や、あるいは沸点差によつて分
離除去する深冷分離装置から構成されている。そ
してこの主浄化装置14で前記不純物が分離除去
されて約99.9%の水素300Nm3/h.が管15より回
収して採取される。 一方主浄化装置よりH2、CH4、CO、CO2、軽
質炭化水素、N2の混合ガス690Nm3/h.が管16
よりほぼ大気圧で排出される。このガスは前記し
た如く予備浄化装置3を経たものであるので、予
備浄化装置3の吸着床4A,4B,4C、を汚す
成分が存在していない。この混合ガスを予備浄化
装置3の吸着床4A,4B,4Cのそれぞれ再生
工程と予冷工程のガスとして使用する点に特徴を
有するものである。即ち管16で主浄化装置14
より導出したこのほぼ大気圧の混合ガス690N
m3/h.は管17、管18で2分され管17に
300Nm3/hの流量が流れるよう弁19で調整さ
れ、ついで前記熱交換器12に導入して、前記主
浄化装置14に導入される前の約250℃の高温
ガスと熱交換して加熱されて管20より熱交換器
12を出て、管21B、弁22Bを介して再生工
程にある吸着床4Bに供給される。該床4Bは前
工程の吸着工程で吸着されたH2S等の高沸点成分
である不純物がこの高温の加熱ガスにより加熱さ
れて吸着剤より効果的に離脱して、加熱ガスと同
伴して弁23B、管24Bを経て吸着床4Bより
排出され、更に管25を経て外気に放出される。 又管18を分岐したほぼ常温の混合ガス390N
m3/h.は管26C、弁27Cを介して前工程で再
生工程にあつて加熱状態にあつた吸着床4Cに導
入される。そして該床4Cを冷却して弁28C、
管29Cを介して導出され更に管30を経て外部
に導出され、吸着床4Cを常温まで冷却する。な
お管30より外部に導出される予冷に使用された
混合ガス390Nm3/h.は約44%の水素を含みかつ、
H2S等の高沸点成分を包含していないので、これ
を圧縮機1の吸引口に導き、コークス炉排ガスと
合流すれば有効に使用し得る。 このようにして吸着床4A,4B,4Cは以後
弁6A,6B,6C、弁7A,7B,7C、弁2
2A,22B,22C、弁23A,23B,23
C、弁27A,27B,27C、弁28A,28
B,28Cを第1表の通り開閉操作して、それぞ
れ床が吸着工程、再生工程、予冷工程の各工程の
うち同時に異つた工程で運転され常にいづれかの
床が前記工程の一つの工程を行なつて連続運転を
するものである。 なお上記実施例は予備浄化装置の吸着床を3床
として説明したが吸着床は2床以上あれば同様に
吸着−再生−予冷の各工程を適宜組合せることに
よつて、充分に運転し得ることは勿論である。従
つて該吸着床はこの3床に限定されるものでな
い。
The present invention relates to a method for recovering hydrogen from coke oven gas by removing impurities contained in the gas. More specifically, it relates to a method for removing trace impurities contained in coke oven gas by adsorption, which contaminates hydrogen and is extremely undesirable, and then further purifying and separating hydrogen by adsorption or cryogenic separation to recover hydrogen. be. In recent years, due to resource circumstances, various studies have been made to utilize raw materials used as energy sources as effectively as possible. As one such method, since hydrogen is contained in the gas discharged from a coke oven, it has been proposed to recover hydrogen using this as a raw material. In other words, the composition of coke oven waste gas is mainly composed of hydrogen, but also CH 4 , CO, CO 2 , N 2 , O 2 , light hydrocarbons, moisture, and many other things such as ammonia, sulfur compounds, dust, and tar mist. Contains impurities. Attempts have been made to remove these impurities by various means, but in reality, removal by adsorption is generally adopted. In this method of removing impurities through adsorption, it is of course necessary to use an adsorbent that adsorbs the impurities, but coke oven exhaust gas contains many types of impurities as mentioned above. It is extremely difficult to remove all impurities with one adsorbent, and methods have been used to remove the impurities in a stepwise manner using several types of adsorbents. In other words, impurities with high boiling points and strong adsorption properties are extremely difficult to desorb from adsorbents, and among these impurities mentioned above, light hydrocarbons, sulfur compounds, tar mist, dust, moisture, etc. It belongs to this. On the other hand, impurities with low boiling points and weak adsorptivity are easily desorbed from adsorbents, and these include CH 4 , CO,
These include CO 2 , N 2 , O 2 , etc. In order to remove these impurities, first the strongly adsorbable impurities are removed by a preliminary purification device consisting of an adsorption device, and then the weakly adsorbable impurities are removed by a main purification device consisting of an adsorption device or cryogenic separation device. The hydrogen is removed and highly pure hydrogen is recovered. In such a preliminary purification device or an adsorption device used in the main purification device, the adsorbent filled in the adsorption device is gradually filled with impurities by adsorbing and collecting impurities, and the adsorbent is gradually filled with impurities. When the limit of adsorption capacity is reached, the adsorption capacity is lost, so it is necessary to stop the adsorption process and perform desorption regeneration so that it can be reused. And as a method for this desorption and regeneration,
There are two methods: a pressure fluctuation method that reduces the pressure in the adsorption device, and a heating method that heats the adsorption device. Impurities with weak adsorption properties are relatively easy to desorb as described above, so desorption using pressure fluctuations can be sufficient for regeneration. It is difficult to regenerate strong impurities from an adsorbent by using the pressure fluctuation method, so heated gas is passed through the adsorption bed for regeneration. The gas for heating and regeneration is generally obtained by separately installing gas supply equipment, and also requires a heating source such as an electric heater, which not only increases the equipment cost but also increases the operating cost. There were some inconveniences. The present invention was developed in view of the above-mentioned current situation, and its feature is that a plurality of adsorption beds simultaneously perform different processes of adsorption, regeneration, and precooling on coke oven exhaust gas, and the above-mentioned order is repeated. In this method, hydrogen gas is recovered through a main purification device consisting of an adsorption bed filled with zeolite or the like or cryogenic separation. The subsequent coke oven exhaust gas is led to a catalytic reactor, where a catalytic exothermic reaction is carried out to obtain high-temperature gas, which is then decomposed and removed from the main purification device and heat exchanged with a portion of the gas discharged. After the gas is heated, it is supplied to the main purification device, and a part of the exhaust gas is separated from the main purification device and heated through the heat exchanger, and then transferred to the adsorption bed in the regeneration process of the preliminary purification device. This is a method of recovering hydrogen from coke oven gas that is supplied to each adsorption bed in the pre-cooling stage of a pre-purification device. The present invention will be explained in detail below with reference to the drawings. FIG. 1 is a schematic system diagram illustrating one embodiment of the method of the present invention. Hydrogen (H 2 ): 60%, Methane (CH 4 ): 26%, Carbon monoxide (CO): 5%, Light hydrocarbons: 2%, Carbon dioxide (CO 2 ): 1.5%, Nitrogen (N 2 ) : 4%, oxygen (O 2 ): 0.5% and hydrogen sulfide,
Nitrogen oxides, ammonia, tar mist, dust, toluene, xylene, benzene, moisture, etc. 1%
Exhaust gas of 1000 Nm 3 /h from the coke oven is compressed to about 11 kg/cm 2 G by the compressor 1 and supplied to the preliminary purification device 3 through the pipe 2. The preliminary purification device 3 consists of a plurality of adsorption beds filled with activated carbon, for example, three adsorption beds 4A, 4B, and 4C, each of which simultaneously performs one different process among the adsorption process, regeneration process, and precooling process, and sequentially. The operation is performed by switching according to the steps described above. Currently, for example, adsorption bed 4A is in the adsorption process, adsorption bed 4B is in the regeneration process,
When the adsorption bed 4C is in the pre-cooling process, the compressor 1
Coke oven gas of 1000Nm 3 /h compressed at 11Kg/cm 2 is transferred to adsorption bed 4 via pipe 2, pipe 5A and valve 6A.
H 2 S introduced into A and easily adsorbed by the adsorption bed 4A,
Impurity components such as NOx, ammonia, tar mist, dust, toluene, xylene, benzene, and moisture are removed, and 990 Nm 3 /h is led out through valve 7A and pipe 8A, and then led to catalytic reactor 10 through pipe 9. I'm scared. Palladium (Pd) is used in the catalytic reactor 10.
It is loaded with a noble metal catalyst such as platinum (Pt) or a base metal catalyst such as nickel (Ni). The coke oven exhaust gas of 990Nm 3 /h introduced into the vessel 10 contains approximately 0.5% of the coke oven exhaust gas contained in the gas.
Hydrogen (H 2 ), methane (CH 4 ), and carbon monoxide (CO) effectively react under the catalyst by the amount of oxygen gas in their equivalent amounts, and at the same time generate heat and generate approximately
Raise the temperature to 200-450℃. Then this temperature rose
The high-temperature gas of 990Nm 3 /h is led to the heat exchanger 12 through the pipe 11, where it heats the separated exhaust gas from the main purification device 14, which will be described later. 13 into the main purification device 14. The main purification device 14 removes low-boiling components such as CH 4 , CO, CO 2 , light hydrocarbons, and N 2 . A plurality of adsorption beds filled with adsorbents such as zeolites perform the adsorption process and the regeneration process. It consists of an adsorption device that can be operated continuously by switching operations, or a cryogenic separator that separates and removes water based on the difference in boiling point. The impurities are separated and removed in the main purifier 14, and 300 Nm 3 /h of hydrogen containing approximately 99.9% is collected through the pipe 15. On the other hand, a mixed gas of 690Nm 3 /h of H 2 , CH 4 , CO, CO 2 , light hydrocarbons, and N 2 is pumped into pipe 16 from the main purification device.
It is discharged at almost atmospheric pressure. Since this gas has passed through the preliminary purification device 3 as described above, there are no components that would contaminate the adsorption beds 4A, 4B, and 4C of the preliminary purification device 3. This mixed gas is characterized in that this mixed gas is used as a gas for the regeneration process and the precooling process of the adsorption beds 4A, 4B, and 4C of the preliminary purification device 3, respectively. That is, the pipe 16 connects the main purifier 14.
This nearly atmospheric pressure mixed gas 690N derived from
m 3 /h. is divided into two by pipe 17 and pipe 18, and then into pipe 17.
A flow rate of 300 Nm 3 /h is adjusted by a valve 19, and then introduced into the heat exchanger 12, where it is heated by exchanging heat with the high temperature gas of about 250° C. before being introduced into the main purification device 14. It exits the heat exchanger 12 through the pipe 20 and is supplied to the adsorption bed 4B in the regeneration process via the pipe 21B and valve 22B. In the bed 4B, impurities such as high boiling point components such as H 2 S adsorbed in the previous adsorption step are heated by the high-temperature heated gas, are effectively separated from the adsorbent, and are entrained with the heated gas. It is discharged from the adsorption bed 4B through the valve 23B and the pipe 24B, and further through the pipe 25 to the outside air. Also, 390N of mixed gas at almost room temperature branched off from pipe 18.
m 3 /h. is introduced via pipe 26C and valve 27C into adsorption bed 4C which has been heated in the regeneration process in the previous step. Then, the bed 4C is cooled, and the valve 28C,
It is led out through the pipe 29C and further out through the pipe 30 to cool the adsorption bed 4C to room temperature. The mixed gas 390Nm 3 /h used for precooling and led out from the pipe 30 contains about 44% hydrogen and
Since it does not contain high boiling point components such as H 2 S, it can be effectively used if it is led to the suction port of the compressor 1 and combined with the coke oven exhaust gas. In this way, the adsorption beds 4A, 4B, 4C are subsequently connected to valves 6A, 6B, 6C, valves 7A, 7B, 7C, and valve 2.
2A, 22B, 22C, valve 23A, 23B, 23
C, valves 27A, 27B, 27C, valves 28A, 28
B and 28C are opened and closed as shown in Table 1, and each bed is simultaneously operated in different processes among the adsorption process, regeneration process, and precooling process, and one of the beds is always performing one of the above processes. It operates continuously. Although the above embodiment has been described with three adsorption beds in the preliminary purification device, if there are two or more adsorption beds, sufficient operation can be achieved by suitably combining the adsorption-regeneration-precooling steps. Of course. Therefore, the adsorption beds are not limited to these three beds.

【表】 ○印:開
×印:閉
以上のようにして予備浄化装置3での吸着工程
にある吸着床より導出される高沸点不純物が除去
されたコークス炉排ガスは、触媒反応器10で前
記排ガス中に含まれるO2によつて発熱反応を行
なわしめて酸素を除去すると共に高温ガスとし
て、この高温ガスは主浄化装置14へ導入する前
で主浄化装置14より分離除去されて排出される
ガスと熱交換してこれを加熱するが、熱交換器1
2に管11を介して導入する高温ガスの量は、主
浄化装置14より分離除去されて排出して管17
を経て加熱されるため熱交換器12に導入するガ
スの量より多く、そして熱交換されるこれらのガ
スの比熱はほぼ等しいので、前記高温ガスは主浄
化装置14に入る前に充分に常温迄に冷却されな
かつたり、又、管20を介して再生工程にある吸
着床に送給する再生ガスの温度を適正に制御する
必要がある場合は第2図〜第5図の如き各種手段
を適宜採用することによつて、より適切な運転を
することが出来る。 即ち第2図は熱交換器12より管13を介して
導出される高温ガスを主浄化装置14に入る前に
管13にアフタクーラ20を設け、主浄化装置1
4に入るガスを充分に冷却するようにしたもので
あり、又第3図は熱交換器12内に冷却流体を流
す管30を設けて、管20より再生工程に送られ
る再生ガス温度と、管13を介して主浄化装置1
4に導入される原料ガスの温度が適切になるよう
にしたものであり、又第4図は触媒反応器10を
導出して熱交換器12に導びかれる高温ガスを予
かじめ、管13より主浄化装置14に導びかれる
温度が常温になるよう冷却するインタークーラ4
0を設けたり、更には熱交換器12より管20で
導出される加温された再生ガスが吸着床に充填さ
れた吸着剤に適した温度にするよう第5図の如き
管20にアフタークーラ50を設ける等、の各種
手段を適宜組合せることによつて本発明の方法を
適切に運転することが出来る。 本発明は以上のようにコークス炉排ガスより
H2を回収して採取する方法で、高沸点で吸着し
易く、かつH2製品に混入して好ましくない汚染
不純物を吸着による予備浄化装置で除去し、続い
て残りの低沸点で吸着性が弱くかつ脱着が容易な
不純物を吸着あるいは深冷分離方法よりなる主浄
化装置で除去するよう、個々に分けてかつ段階的
に分離除去したので、極めて高純度のH2製品が
回収し得る。しかもこのように分けて分離除去し
たので主浄化装置に製品を汚染しかつ除去し難い
高沸点不純物が流入しないので分離除去の操作が
極めて安全かつ容易に行ない得る。又予備浄化装
置の吸着床の再生及び予冷を、主浄化装置より分
離除去される低沸点不純物混合ガスを使用するの
で、別途に再生ガスや予冷ガスを用意することが
なく、これらのガスの供給設備が省略し得るし、
更に予備浄化装置の吸着床を充分効果的に再生す
るに必要な高温度は、予備浄化装置より主浄化装
置に導入する高沸点不純物を除去したガスを、途
中触媒反応器に流通せしめて、該ガスに含まれる
O2とH2、CH4等とを触媒反応せしめてこの時発
生する熱を利用するようにしたので、別途に電気
エネルギーやエネルギー発生用燃料を用意するこ
とがないので、エネルギーの消費がなく極めて経
済的であると共に、これらに伴う付帯設備が省略
し得るので必要装置規模を縮小出来かつ経済的効
果をより一層助長する。又、この触媒反応器への
流通によりガス中に含まれるO2が使用されて除
去されるので、主浄化装置でゼオライトを使用し
た吸着装置を使用した場合、一般にO2が吸着除
去されないにもかかわらず、これによつて、O2
が回収するH2製品に混入することがなく、より
高純度の製品H2ガスが得られる等々極めて多数
の効果を発揮する。
[Table] ○ mark: open Oxygen is removed by an exothermic reaction with O 2 contained in the exhaust gas, and the high-temperature gas is separated and removed from the main purification device 14 before being introduced into the main purification device 14, and the gas is discharged. This is heated by exchanging heat with heat exchanger 1.
The amount of high-temperature gas introduced into 2 through pipe 11 is separated and removed from main purifier 14 and discharged to pipe 17.
Since the amount of gas introduced into the heat exchanger 12 is larger than that of the gas introduced into the heat exchanger 12, and the specific heat of these gases to be heat exchanged is almost equal, the high temperature gas is sufficiently brought to room temperature before entering the main purification device 14. If the temperature of the regeneration gas is not sufficiently cooled, or if it is necessary to properly control the temperature of the regeneration gas fed to the adsorption bed in the regeneration process via the pipe 20, various means as shown in FIGS. 2 to 5 may be used as appropriate. By adopting it, you can drive more appropriately. That is, in FIG. 2, an aftercooler 20 is provided in the pipe 13 before the high temperature gas led out from the heat exchanger 12 through the pipe 13 enters the main purifier 14.
Fig. 3 shows that a pipe 30 is provided in the heat exchanger 12 to flow a cooling fluid, and the temperature of the regenerated gas sent from the pipe 20 to the regeneration process is changed. Main purifier 1 via pipe 13
4, the temperature of the raw material gas introduced into the tube 13 is adjusted to be appropriate. In addition, in FIG. An intercooler 4 that cools the main purifier 14 so that the temperature led to the main purifier 14 becomes room temperature.
Furthermore, an aftercooler is installed in the pipe 20 as shown in FIG. 5 so that the heated regeneration gas led out from the heat exchanger 12 through the pipe 20 has a temperature suitable for the adsorbent packed in the adsorption bed. By appropriately combining various means such as providing 50, the method of the present invention can be operated appropriately. As described above, the present invention utilizes coke oven exhaust gas.
This is a method of recovering and collecting H2 , in which contaminant impurities that are easily adsorbed at high boiling points and are mixed into the H2 product and are undesirable are removed by a preliminary purification device by adsorption, and then the remaining low boiling point and adsorbable impurities are removed. Since impurities that are weak and easily desorbed are removed by the main purification device using adsorption or cryogenic separation, the H 2 product can be recovered in an extremely high purity. Furthermore, since the product is separated and removed in this manner, high-boiling point impurities that contaminate the product and are difficult to remove do not flow into the main purification device, making the separation and removal operation extremely safe and easy. In addition, since the adsorption bed of the pre-purification device is regenerated and pre-cooled using the low-boiling point impurity mixed gas separated and removed from the main purification device, there is no need to separately prepare regeneration gas or pre-cooling gas, and the supply of these gases can be reduced. Equipment can be omitted,
Furthermore, the high temperature required to fully and effectively regenerate the adsorption bed in the prepurifier can be achieved by passing the gas from which high-boiling point impurities have been removed from the prepurifier to the main purifier, by passing it through a catalytic reactor midway through the main purifier. contained in gas
By catalytically reacting O 2 with H 2 , CH 4 , etc., and using the heat generated during this reaction, there is no need to separately prepare electrical energy or fuel for energy generation, so there is no energy consumption. It is extremely economical, and since the accompanying equipment can be omitted, the scale of the necessary equipment can be reduced and the economic effect is further enhanced. In addition, O 2 contained in the gas is used and removed by this flow to the catalytic reactor, so if an adsorption device using zeolite is used in the main purification device, generally O 2 will not be adsorbed and removed. Regardless of this, O 2
The H 2 gas will not be mixed into the recovered H 2 product, and it will produce a highly purified H 2 gas product, among other benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を説明する系統図、第2
図〜第5図は熱交換器での高温ガスと再生ガスと
の温度を制御するための各種手段を説明する部分
系統図である。 3……予備浄化装置、10……触媒反応器、1
2……熱交換器、14……主浄化装置、18,2
0……管。
FIG. 1 is a system diagram explaining the method of the present invention, and FIG.
Figures 5 to 5 are partial system diagrams illustrating various means for controlling the temperatures of high temperature gas and regeneration gas in the heat exchanger. 3...Preliminary purification device, 10...Catalytic reactor, 1
2...Heat exchanger, 14...Main purification device, 18,2
0...Tube.

Claims (1)

【特許請求の範囲】[Claims] 1 コークス炉より排出するガスを原料として、
これを複数の吸着床がそれぞれ吸着−再生−予冷
の各工程のいづれかを行ない、かつ前記工程順序
に従つてくり返し操作されている予備浄化装置に
導入して、前記吸着床のうち吸着工程にある吸着
床に流通せしめ、続いて吸着手段あるいは深冷分
離手段よりなる主浄化装置を経て水素ガスを回収
する方法において、前記予備浄化装置の吸着工程
にある吸着床を流通した後の原料ガスを触媒反応
器に導びき、該器での触媒反応により高温ガスを
得、続いてこれを主浄化装置で分離除去されて排
出されるガスの一部と熱交換して、該ガスを加熱
せしめて自身を常温とした後に主浄化装置に供給
すると共に主浄化装置で分離除去される排出ガス
の一部を前記熱交換によつて加熱した後予備浄化
装置の再生工程にある吸着床に、又残部は予備浄
化装置の予冷工程にある吸着床にそれぞれ供給す
るようにしたことを特徴とするコークス炉ガスよ
り水素を回収する方法。
1 Using gas discharged from a coke oven as raw material,
This is introduced into a pre-purification device in which a plurality of adsorption beds each perform one of the adsorption-regeneration-precooling steps and are repeatedly operated in accordance with the order of the steps. In a method in which hydrogen gas is recovered by passing through an adsorption bed and then passing through a main purification device consisting of adsorption means or cryogenic separation means, the raw gas that has passed through the adsorption bed in the adsorption step of the preliminary purification device is treated with a catalyst. A high-temperature gas is obtained through a catalytic reaction in the reactor, and then heat exchanged with a part of the gas separated and removed in the main purification device to heat the gas and generate its own After bringing the gas to room temperature, it is supplied to the main purification device, and a part of the exhaust gas that is separated and removed in the main purification device is heated by the heat exchange described above, and then transferred to the adsorption bed in the regeneration process of the preliminary purification device, and the remainder is A method for recovering hydrogen from coke oven gas, characterized in that hydrogen is supplied to each adsorption bed in the pre-cooling process of a pre-purification device.
JP57053165A 1982-03-31 1982-03-31 Method of recovering hydrogen from coke oven gas Granted JPS58168876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57053165A JPS58168876A (en) 1982-03-31 1982-03-31 Method of recovering hydrogen from coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57053165A JPS58168876A (en) 1982-03-31 1982-03-31 Method of recovering hydrogen from coke oven gas

Publications (2)

Publication Number Publication Date
JPS58168876A JPS58168876A (en) 1983-10-05
JPH039391B2 true JPH039391B2 (en) 1991-02-08

Family

ID=12935242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57053165A Granted JPS58168876A (en) 1982-03-31 1982-03-31 Method of recovering hydrogen from coke oven gas

Country Status (1)

Country Link
JP (1) JPS58168876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160137622A (en) 2014-03-28 2016-11-30 스미토모 세이카 가부시키가이샤 Purification method and purification device for target gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160137622A (en) 2014-03-28 2016-11-30 스미토모 세이카 가부시키가이샤 Purification method and purification device for target gas

Also Published As

Publication number Publication date
JPS58168876A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
JP3279585B2 (en) Method for producing purified air
US3594983A (en) Gas-treating process and system
JP4315666B2 (en) Syngas purification method
TW201231639A (en) Methane recycling method and methane recycling apparatus
JP3844540B2 (en) Carbon monoxide production facility including cryogenic separator
JP2010042381A (en) Xenon sorbent, method for enriching xenon, xenon concentrator, and air liquefaction separation apparatus
CA2731185C (en) Method for the removal of moisture in a gas stream
JPH0313161B2 (en)
JP5896467B2 (en) Argon gas purification method and purification apparatus
JP6667362B2 (en) Hydrogen gas production method
WO2021130530A1 (en) Regeneration schemes for a two-stage adsorption process for claus tail gas treatment
JP5683390B2 (en) Helium gas purification method and purification apparatus
JPH0624962B2 (en) Method for recovering high-purity argon from exhaust gas from a single crystal manufacturing furnace
KR940004626B1 (en) Process for helium purification
JPH039391B2 (en)
CN108557787A (en) A kind of recycling crude argon method of purification again
JPH039392B2 (en)
JP5500650B2 (en) Argon gas purification method and purification apparatus
JP2012254421A (en) Siloxane removal method and methane recovery method
JP2645137B2 (en) Equipment for purifying raw material air for nitrogen production equipment
JP3201923B2 (en) Method and apparatus for producing high-purity nitrogen gas
JP6585545B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP2007245111A (en) Preprocessing method and apparatus for air liquefaction separation
JPH0243684B2 (en)
CN105597518A (en) Low-temperature methanol washing unit CO2 tail gas and CO2 product gas combined treatment process