JPH0393686A - Metallizing of ceramics - Google Patents

Metallizing of ceramics

Info

Publication number
JPH0393686A
JPH0393686A JP23198189A JP23198189A JPH0393686A JP H0393686 A JPH0393686 A JP H0393686A JP 23198189 A JP23198189 A JP 23198189A JP 23198189 A JP23198189 A JP 23198189A JP H0393686 A JPH0393686 A JP H0393686A
Authority
JP
Japan
Prior art keywords
layer
metal layer
metal
metallic layer
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23198189A
Other languages
Japanese (ja)
Inventor
Norio Sugiyama
杉山 範雄
Yoshinao Kato
加藤 由尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP23198189A priority Critical patent/JPH0393686A/en
Publication of JPH0393686A publication Critical patent/JPH0393686A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Landscapes

  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To firmly make adhere a metallizing layer having high reliability to the surface of ceramics in forming a second metallic layer on a first metallic layer made on the surface of ceramics by depositing a constituent metal of the second metallic layer and irradiating an inert gas ion. CONSTITUTION:In forming a second metallic layer 22 on a first metallic layer 21 (e.g. ceramic substrate 1 is metallized with Ti and irradiated with Ar ion), the metallic layer is metallized with a constituent metal (e.g. Ni) of the second metallic layer 22 and irradiated with ions of an inert gas (e.g. Ar). For example, by irradiation with Ar ion, a mixed layer of blended Ti, Ni and Ar is formed in the vicinity of the interlace of the Ti metallic layer 21 and the Ni metallic layer 22 and consequently the Ni metallic layer 22 is firmly bonded to the Ti metallic layer 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、たとえばICパッケージやプリント基板な
どの製造において、たとえば窒化アル逅ニウム(A j
! N)セラミックスやアルミナ(Aj!gos)セラ
ミックスなどの基板表面に電極を形或する場合などに好
適に実施されるセラミックスのメタライズ方法に関する
ものである. 〔従来の技術〕 Aj!Nセラミックスは、金属材料との熱膨張率の差が
大きく、したがって高温でのメタライズを行うとその冷
却時に歪みが生じるとともに、大多数の金属に対して濡
れ性が悪いため、表面のメタライズは一般に困難である
.本件発明者らは先に、室温処理で強固な密着強度を有
するメタライズ層を/INセラ竃ツクス表面に形戒させ
るために、いわゆるイオン4キシング法を用いたメタラ
イズ方法を提案している(たとえば特願平1 −717
6号)すなわち、たとえばTi金属の蒸着を行うととも
に、不活性ガスイオンを照射して、界面にTi金属,不
活性ガスおよびAlNセラミックスが混合された混合層
を有するTi金属層をAINセラξックス表面に形成し
、このTi金属層上にNi金属層などを蒸着法などで形
成して厚膜化したメタライズ層を形成する.このメタラ
イズ層では、上記混合層の働きによりTi金属層はAj
!Nセラミックス表面に強固に密着することとなる.〔
発明が解決しようとする課題〕 上述のようなメタライズ方法では、第1層目の金属層で
あるTi金属層とAlNセラミックス表面との間は上記
混合層の働きにより強固に密着するが、TI金属層と第
2層目の金属層であるNi金属層との間には両者の混合
層などは存在せず、Niの蒸着などによる密着強度を有
しているに過ぎない.このため、Ti金属層とNi金属
層との界面での剥離が生じやすく、メタライズ層の信頼
性が悪いという問題があった.同様の問題は、第2層目
の金属層にさらに第3,第4.・・・・の金属層を蒸着
により積層させる場合にも生じる.この発明の目的は、
上述の技術的課題を解決し、セラ果ツクス表面に信頼性
の高いメタライズ層を強固に密着させることができるセ
ラミックスのメタライズ方法を提供することである. 〔!IIII!Iを解決するための手段〕この発明のセ
ラミックスのメタライズ方法は、セラ逅ツクス表面に形
成した第1の金属層上に第2の金属層を形成するに当た
り、前記第2の金属層の構成金属の蒸着と、不活性ガス
イオンの照射とを併用することを特徴とする. (作用) この発明の構成によれば、第1の金属層上に形成される
第2の金属層は、その構成金属の蒸着と不活性ガスイオ
ンの照射とを併用したいわゆるイオンξキシング法によ
り行われる.この結果、第1,第2の金属層相互間の界
面近傍には、第1の金属層の構成金属,第2の金属層の
構成金属.および不活性ガスが混合された混合層が形成
され、この混合層の働きにより、第2の金属層は第1の
金属層に強固に密着することとなる.この結果、メタラ
イズ層は全体としてセラ逅ツクス基板に強固に密着する
こととなり、またその信頼性も良好なものとなる. 〔実施例〕 第2図はこの発明の一実施例に従う薄膜形成装置の基本
的な構成を示す概念図である.メタライズすべきAlN
セラミックス基板1は真空チャンバ2内で軸線ffil
まわりに回転駆動される試料ホルダ3の表面に固定され
る.この試料ホルダ3に対向してパケット型イオン源4
が設けられており、中間には電子ビーム加熱式蒸発源5
が設けられている. イオン源4は不活性ガスであるArガスがガス導入口6
から導入されるアークチャンバ9を備え、このアークチ
ャンバ9内でフィラメント7とプラズマ電極8とでアー
ク放電を起こさせることによりArプラズマを生威させ
、このArプラズマからArイオンを抑制電極lOおよ
び引出電極1lによって前記試料ホルダ3に向けて加速
して取り出すようにしたものである. l2は基板1表面に堆積したメタライズ層の膜厚を測定
するための膜厚モニタであり、13はイオン源4からの
イオンビームのビーム電流を検出するイオン電流モニタ
である. このような薄膜形成装置によって、第1図に簡略化して
示す手順によりメタライズ層20が形成される.すなわ
ち、先ず第l図(1)に示すように基板lに向けて蒸発
源5からTi金属を蒸発させ、これと同時または交互に
イオン源4からのArイオンを照射する.このとき真空
チャンバ2内の真空度はI X 1 0−’〜I X 
1 0−’Torrとされ、Arガスのガス圧はI X
 l O−’〜l X 1 0−’Torrとされる.
そしてA『イオンの加速エネルギーは10e V〜5 
0 keVとされ、その照射量はIXIO17個/cm
”程度とされる.このような条件のもとての薄膜形成処
理により、基板1表面には第1図(2)に示すように第
1の金属層であるTi金属層2lが形成される.このT
i金属層2lと基#H.lとの界面近傍にはTi金属,
 Ar,およびAn!Nセラミックス基板材料が混合さ
れた混合層(第l図では図示が省略されている.)が形
成される.このTi金属層2lの形成の後には、蒸発源
5からはNi金属の蒸発が行われ、これと同時または交
互にイオン源4からのArイオンの照射が行われる(第
1図(2)参照.).これにより、第1図(3)に示す
ようにTi金属層21上に第2の金属層であるNi金属
層22が積層される,Arイオンが照射されることによ
り、Ti金属層2lとNi金属層22との界面近傍には
、Ti,Ni,およびArが混合された混合層(第1図
では図示が省略されている.)が形成される. 第3図は上記Ti金属層2lが形成される様子を簡略化
して示す説明図である.図中aは,INセラミックス基
板l..bは前述の混合層、CはArイオンとTi金属
とが混合した蒸着層である.なお、dはArイオン、e
はTi蒸発物である.任意の速度で蒸発したTi蒸発物
eは、10eV〜50keVで加速されたArイオンd
と基板1表面で混合される.このときTi原子は前記加
速されたArイオンdによってスパッタされもしくは基
板lの内部に押し込まれる.このようにして上述の混合
層bが形成される.この混合層bは基板1に対して強固
に密着し、また蒸着層Cは混合層bに対して強固に密着
する.このようにして、混合層bの働きにより、Ti金
属層21が基板l表面に強固に密着する. Ti金属層2l上へのNi金属層22の形成もまた同様
に行われ、両者の界面近傍に形成されるTi,Ni,お
よびArが混合された混合層の働きにより、Ni金属層
22はTi金属層21に強固に密着することとなる. 基板lに対するTiまたはNi金属の蒸着と、Arイオ
ンの照射とは、同時に行われてもよく、また交互に行わ
れてもよい.すなわち、TiまたはNi金属の蒸着とA
rイオンの照射とを併用することにより、上述のような
混合層を各界面に形成させて、基FLlとTi金属層2
lとの間.およびT1金属層21とNi金属層22との
間の各密着強度を向上することができる. このようにして、基板1,Ti金属層21,およびNi
金属層22は各界面で高い密着強度を有することができ
るので、Ti金属層2lおよびN1金属層22を含むメ
タライズ層20は全体として基板1に強固に密着し、し
かも第2層目の金属層であるNi金属層の剥離が生じる
こともないので良好な信頼性を有することができる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to the manufacture of IC packages, printed circuit boards, etc., for example, using aluminum nitride (A j
! N) This relates to a method of metallizing ceramics, which is preferably carried out when forming electrodes on the surface of a substrate such as ceramics or alumina (Aj!gos) ceramics. [Conventional technology] Aj! N-ceramics has a large difference in coefficient of thermal expansion from metal materials, so if metallized at high temperatures, distortion will occur when it is cooled, and it has poor wettability with most metals, so surface metallization is generally difficult. Have difficulty. The inventors of the present invention have previously proposed a metallization method using the so-called ion 4-xing method in order to form a metallized layer that has strong adhesion strength when treated at room temperature on the surface of /IN ceramics (for example, Patent application No. 1-717
No. 6) That is, for example, by vapor-depositing Ti metal and irradiating inert gas ions, a Ti metal layer having a mixed layer of Ti metal, inert gas, and AlN ceramics at the interface is formed into AIN ceramics. A thick metallized layer is formed by forming a Ni metal layer or the like on the Ti metal layer by vapor deposition or the like. In this metallized layer, the Ti metal layer has Aj
! This results in strong adhesion to the N ceramic surface. [
[Problems to be Solved by the Invention] In the metallization method as described above, the Ti metal layer, which is the first metal layer, and the AlN ceramic surface are firmly adhered to each other due to the function of the mixed layer. There is no mixed layer between the layer and the Ni metal layer, which is the second metal layer, and the adhesion strength is simply due to the vapor deposition of Ni. For this reason, there was a problem in that peeling easily occurred at the interface between the Ti metal layer and the Ni metal layer, resulting in poor reliability of the metallized layer. A similar problem occurs in the second metal layer as well as in the third, fourth, and so on. This also occurs when metal layers of ... are laminated by vapor deposition. The purpose of this invention is to
The object of the present invention is to provide a method for metallizing ceramics that solves the above-mentioned technical problems and allows a highly reliable metallized layer to firmly adhere to the surface of ceramics. [! III! Means for Solving Problem I] In the ceramic metallization method of the present invention, when forming a second metal layer on the first metal layer formed on the surface of the ceramic, the constituent metal of the second metal layer is It is characterized by the combined use of vapor deposition and irradiation with inert gas ions. (Function) According to the configuration of the present invention, the second metal layer formed on the first metal layer is formed by the so-called ion xing method, which combines vapor deposition of the constituent metal and irradiation with inert gas ions. It will be done. As a result, near the interface between the first and second metal layers, the constituent metal of the first metal layer and the constituent metal of the second metal layer. A mixed layer is formed in which the metal and inert gases are mixed, and the function of this mixed layer causes the second metal layer to firmly adhere to the first metal layer. As a result, the metallized layer as a whole firmly adheres to the ceramic substrate, and its reliability is also improved. [Embodiment] FIG. 2 is a conceptual diagram showing the basic configuration of a thin film forming apparatus according to an embodiment of the present invention. AlN to be metalized
The ceramic substrate 1 has an axis ffil in the vacuum chamber 2.
It is fixed to the surface of the sample holder 3, which is rotated around the periphery. A packet type ion source 4 is located opposite this sample holder 3.
is provided, and an electron beam heated evaporation source 5 is provided in the middle.
is provided. The ion source 4 has Ar gas, which is an inert gas, at the gas inlet 6.
The filament 7 and the plasma electrode 8 cause an arc discharge in the arc chamber 9 to generate Ar plasma, and the Ar ions are removed from the Ar plasma by the suppression electrode lO and the extraction electrode. The sample is accelerated toward the sample holder 3 and taken out by the electrode 1l. 12 is a film thickness monitor for measuring the thickness of the metallized layer deposited on the surface of the substrate 1, and 13 is an ion current monitor for detecting the beam current of the ion beam from the ion source 4. Using such a thin film forming apparatus, the metallized layer 20 is formed according to the procedure shown in simplified form in FIG. That is, as shown in FIG. 1(1), Ti metal is first evaporated from the evaporation source 5 toward the substrate 1, and at the same time or alternately, Ar ions from the ion source 4 are irradiated. At this time, the degree of vacuum in the vacuum chamber 2 is IX10-'~IX
1 0-'Torr, and the gas pressure of Ar gas is I
l O-'~l X 1 0-'Torr.
And A: The acceleration energy of ions is 10eV ~ 5
0 keV, and the irradiation amount is 17 IXIO/cm
By the thin film forming process under these conditions, a Ti metal layer 2l, which is the first metal layer, is formed on the surface of the substrate 1 as shown in FIG. 1 (2). .This T
i metal layer 2l and base #H. Ti metal near the interface with l,
Ar, and An! A mixed layer (not shown in FIG. 1) in which N ceramic substrate materials are mixed is formed. After the formation of the Ti metal layer 2l, Ni metal is evaporated from the evaporation source 5, and Ar ions are irradiated from the ion source 4 simultaneously or alternately (see FIG. 1 (2)). ). As a result, the Ni metal layer 22, which is the second metal layer, is stacked on the Ti metal layer 21 as shown in FIG. 1(3). A mixed layer (not shown in FIG. 1) in which Ti, Ni, and Ar are mixed is formed near the interface with the metal layer 22. FIG. 3 is a simplified explanatory diagram showing how the Ti metal layer 2l is formed. In the figure, a indicates the IN ceramics substrate l. .. b is the above-mentioned mixed layer, and C is a vapor deposited layer in which Ar ions and Ti metal are mixed. Note that d is Ar ion, e
is Ti evaporated product. Ti evaporated material e evaporated at an arbitrary rate is evaporated by Ar ion d accelerated at 10 eV to 50 keV.
are mixed on the surface of substrate 1. At this time, the Ti atoms are sputtered or pushed into the substrate l by the accelerated Ar ions d. In this way, the above-mentioned mixed layer b is formed. This mixed layer b firmly adheres to the substrate 1, and the vapor deposited layer C firmly adheres to the mixed layer b. In this way, the Ti metal layer 21 firmly adheres to the surface of the substrate l due to the action of the mixed layer b. Formation of the Ni metal layer 22 on the Ti metal layer 2l is also performed in the same manner, and due to the action of the mixed layer of Ti, Ni, and Ar formed near the interface between the two, the Ni metal layer 22 is formed of Ti. This results in strong adhesion to the metal layer 21. The deposition of Ti or Ni metal on the substrate l and the irradiation of Ar ions may be performed simultaneously or alternately. That is, the deposition of Ti or Ni metal and the
By using r ion irradiation together, a mixed layer as described above is formed at each interface, and the base FLl and the Ti metal layer 2
Between l. Also, the adhesion strength between the T1 metal layer 21 and the Ni metal layer 22 can be improved. In this way, the substrate 1, the Ti metal layer 21, and the Ni
Since the metal layer 22 can have high adhesion strength at each interface, the metallized layer 20 including the Ti metal layer 2l and the N1 metal layer 22 as a whole firmly adheres to the substrate 1, and moreover, the second metal layer Since the Ni metal layer does not peel off, good reliability can be achieved.

本件発明者らは、上述のようにしてAlNセラミックス
基板l表面にいわゆるイオンごキシング法によりTi金
属層2lおよびNi金属層22を形成して作威した試料
と、Ti金属層のみをイオンξキシング法で形成してN
i金属層は蒸着法で(すなわちArイオンの照射を併用
しないで)形成した比較用試料とを作威して、各メタラ
イズ層層の密着強度の測定を行っている,Arイオンの
加速エネルギーは25kallとし、イオン電流はlO
mAとした.密着強度の測定は、試料のメタライズ層表
面にエポキシ系接着剤を用いてアル亀ニウム製の棒状体
を接着して、引張試験により行った.第4図は試験結果
を示す図であり、この実施例に従って作威した試料のメ
タライズ層の密着強度のArイオンの照射量(個/cm
”)に対する依存性がシンボル“口”によって示されて
いる.また上記比較用試料に関する同様な測定結果はシ
ンボル“0″によって示されている.なお、第4図中、
記号“↑”は密着強度の測定の際に、上記接着剤が破断
したことを示しており、したがってメタライズ層の密着
強度が測定値よりも大きいことを示している,Arイオ
ンの照射量が0(個/c1)である場合の密着強度は、
AlNセラミックス基板表面にTI金属およびNi金属
を蒸着法により順に積層した場合の密着強度を示す. シンボル“0″で示された上記比較用試料の測定結果に
おいて、第4図において参照符合l1〜l3で示す測定
点での上記引張試験では、Ti金属層とNi金属層との
界面での剥離が生じたが、この実施例に従って作製した
試料では、基板−Ti金属層,Tl金属層一Ni金属層
のいずれの界面でも剥離が生じず、メタライズ層は高い
密着強度( 6 kg/一m”以上)で基板に密着し、
かつメタライズ層は良好な信頼性を有することが確認さ
れた.上述の実施例では、第1,第2の金属層としてそ
れぞれTi金属層、Ni金属層を適用した例について説
明したが、上記第1,第2の金属層には他の種類の金属
層が用いられてもよい.また上述の実施例では、Ti金
属層とN1金属層との2層の金属層によってメタライズ
層が構成される場合を例にとったが、3層以上の金属層
により構成されるメタライズ層を形成する場合にもこの
発明は容易に応用することができ、第3,第4,・・・
・の金属層の形成時に、各構成金属の蒸着と不活性ガス
イオンの照射とを併用するようにすればよい.この場合
に隣接する金属層間の界面近傍には混合層が形成されて
、隣接する金属層相互間の密着が強固なものとなる. さらにまた、上述の実施例では不活性ガスイオンとして
Arイオンを例にとったが、A『イオン以外の他の不活
性ガスイオン(He,Ne,Kr,Xe,Ntの各ガス
イオン)が用いられてもよい.また、セラミックスとし
ては、An!.Nセラミックスの他にアルミナ(Aj!
tOs),炭化珪素.窒化珪素などの他のセラミックス
が用いられてもよい。
The inventors of the present invention have prepared a sample in which a Ti metal layer 2l and a Ni metal layer 22 are formed on the surface of an AlN ceramic substrate l by the so-called ion-kissing method as described above, and a sample in which only the Ti metal layer is ion-kissed. Formed by law
The adhesion strength of each metallized layer was measured using a comparison sample formed by the metal layer by vapor deposition (that is, without Ar ion irradiation).The acceleration energy of Ar ions is 25 kall, and the ion current is lO
It was set as mA. Adhesion strength was measured by adhering an alkene rod to the surface of the metallized layer of the sample using an epoxy adhesive and performing a tensile test. FIG. 4 is a diagram showing the test results, and shows the adhesion strength of the metallized layer of the sample prepared according to this example in terms of Ar ion irradiation amount (number/cm).
”) is shown by the symbol “mouth”. Similar measurement results for the comparative sample mentioned above are shown by the symbol “0”.
The symbol "↑" indicates that the adhesive was broken during the measurement of adhesion strength, and therefore indicates that the adhesion strength of the metallized layer is greater than the measured value.The irradiation amount of Ar ions is 0. The adhesion strength when (number/c1) is,
This figure shows the adhesion strength when TI metal and Ni metal are sequentially laminated on the surface of an AlN ceramic substrate by vapor deposition. In the measurement results of the comparative sample indicated by the symbol "0", the tensile test at the measurement points indicated by reference symbols 11 to 13 in FIG. However, in the sample prepared according to this example, no peeling occurred at either the substrate-Ti metal layer or Tl metal layer-Ni metal layer interface, and the metallized layer had a high adhesion strength (6 kg/1 m"). (above) to ensure close contact with the board.
It was also confirmed that the metallized layer has good reliability. In the above embodiment, an example was explained in which a Ti metal layer and a Ni metal layer were applied as the first and second metal layers, respectively. However, other types of metal layers may be used as the first and second metal layers. May be used. Furthermore, in the above embodiment, the metallized layer is composed of two metal layers, the Ti metal layer and the N1 metal layer, but the metallized layer is formed of three or more metal layers. This invention can be easily applied to cases where the third, fourth,...
・When forming the metal layer, vapor deposition of each component metal and irradiation with inert gas ions may be used together. In this case, a mixed layer is formed near the interface between adjacent metal layers, and the adhesion between adjacent metal layers becomes strong. Furthermore, in the above embodiment, Ar ions were used as inert gas ions, but other inert gas ions (He, Ne, Kr, Xe, and Nt gas ions) other than A' ions were used. It is okay to be given. In addition, as for ceramics, An! .. In addition to N ceramics, alumina (Aj!
tOs), silicon carbide. Other ceramics such as silicon nitride may also be used.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明のセラ逅ツクスのメタライズ方法
によれば、第1,第2の金属層相互間の界面近傍には、
第1の金属層の構成金属,第2の金属層の構成金属.お
よび不活性ガスが混合された混合層が形成され、この混
合層の働きにより、第2の金属層は第1の金属層に強固
に密着することとなる.この結果、メタライズ層は全体
としてセラミックス基板に強固に密着することとなり、
またその信頼性も良好なものとなる.
As described above, according to the method of metallizing ceramics of the present invention, near the interface between the first and second metal layers,
Constituent metal of the first metal layer, constituent metal of the second metal layer. A mixed layer is formed in which the metal and inert gases are mixed, and the function of this mixed layer causes the second metal layer to firmly adhere to the first metal layer. As a result, the metallized layer as a whole firmly adheres to the ceramic substrate,
Moreover, its reliability is also good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例のセラミックスのメタライ
ズ方法の手順を簡略化して示す断面図、第2図は上記方
法の実施のための薄膜形成装置の基本的な構成を示す概
念図、第3図は/INセラミックス基板の表面近傍の様
子を簡略化して示す説明図、第4図はメタライズ層の密
着強度の測定結果を示す図である. 1・・・AINセラ果ツクス基板、4・・・イオン源、
5・・・蒸発源、20・・・メタライズ層、21・・・
Ti金属層(第1の金属層)、22・・・Ni金属層(
第2の金属層) 第 1 図 (1) (2) (3) 第 3 図 第 2 図
FIG. 1 is a cross-sectional view showing a simplified procedure of a ceramic metallization method according to an embodiment of the present invention, FIG. 2 is a conceptual diagram showing the basic configuration of a thin film forming apparatus for carrying out the above method, and FIG. Figure 3 is a simplified explanatory diagram showing the state near the surface of the /IN ceramic substrate, and Figure 4 is a diagram showing the measurement results of the adhesion strength of the metallized layer. 1... AIN ceramics substrate, 4... ion source,
5... Evaporation source, 20... Metallized layer, 21...
Ti metal layer (first metal layer), 22...Ni metal layer (
(second metal layer) Fig. 1 (1) (2) (3) Fig. 3 Fig. 2

Claims (1)

【特許請求の範囲】[Claims]  セラミックス表面に形成した第1の金属層上に第2の
金属層を形成するに当たり、前記第2の金属層の構成金
属の蒸着と、不活性ガスイオンの照射とを併用すること
を特徴とするセラミックスのメタライズ方法。
In forming the second metal layer on the first metal layer formed on the ceramic surface, vapor deposition of a constituent metal of the second metal layer and irradiation with inert gas ions are used in combination. How to metalize ceramics.
JP23198189A 1989-09-06 1989-09-06 Metallizing of ceramics Pending JPH0393686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23198189A JPH0393686A (en) 1989-09-06 1989-09-06 Metallizing of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23198189A JPH0393686A (en) 1989-09-06 1989-09-06 Metallizing of ceramics

Publications (1)

Publication Number Publication Date
JPH0393686A true JPH0393686A (en) 1991-04-18

Family

ID=16932075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23198189A Pending JPH0393686A (en) 1989-09-06 1989-09-06 Metallizing of ceramics

Country Status (1)

Country Link
JP (1) JPH0393686A (en)

Similar Documents

Publication Publication Date Title
US5382471A (en) Adherent metal coating for aluminum nitride surfaces
JPH0393686A (en) Metallizing of ceramics
US5028306A (en) Process for forming a ceramic-metal adduct
JP2743201B2 (en) Metal film formation method on ceramics surface by ion mixing method
JP2875892B2 (en) Method of forming cubic boron nitride film
JP2600336B2 (en) Method of manufacturing base material for high thermal conductive IC
US5496772A (en) Method of manufacturing film carrier type substrate
JPS6291483A (en) Metallization for ceramic
CN111424243B (en) Preparation method of heat dissipation coating
Anders et al. Joining of metal films to carbon-carbon composite material by metal plasma immersion ion implantation
JPH04346651A (en) Metallizing method
JP2560451B2 (en) Cu metallization method for Al ceramic material by O ion mixing
JPH02184577A (en) Ceramics joined member
JP3314405B2 (en) Film capacitor
JPS62139865A (en) Metallizing method for diamond
JPH02188481A (en) Method for metallizing aln ceramics
JPH02187053A (en) Integrated circuit component
JPS63255360A (en) Method for metallizing ceramic
Kemmerer et al. Adhesion of thin films of evaporated titanium–copper after electroplating
JPH02188480A (en) Method for metallizing aln ceramics
JPH0428853A (en) Formation of thin vacuum-deposited material metallic film having high adhesive strength on stainless steel surface
JPH03133101A (en) Platinum resistor and manufacture thereof
JPH07186324A (en) Method for sticking metal to polyimide
JPS6179767A (en) Formation of film
JPH05287503A (en) Film coated material and its production