JP2600336B2 - Method of manufacturing base material for high thermal conductive IC - Google Patents

Method of manufacturing base material for high thermal conductive IC

Info

Publication number
JP2600336B2
JP2600336B2 JP63254531A JP25453188A JP2600336B2 JP 2600336 B2 JP2600336 B2 JP 2600336B2 JP 63254531 A JP63254531 A JP 63254531A JP 25453188 A JP25453188 A JP 25453188A JP 2600336 B2 JP2600336 B2 JP 2600336B2
Authority
JP
Japan
Prior art keywords
layer
aln
ceramic material
ions
high thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63254531A
Other languages
Japanese (ja)
Other versions
JPH02302385A (en
Inventor
由尚 加藤
宏樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP63254531A priority Critical patent/JP2600336B2/en
Publication of JPH02302385A publication Critical patent/JPH02302385A/en
Application granted granted Critical
Publication of JP2600336B2 publication Critical patent/JP2600336B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は高熱伝導性を有し、且つ絶縁物であるAlNセ
ラミック材の表面にCu層を備えるIC用基材の作製方法に
関するものである。
Description: TECHNICAL FIELD [0001] The present invention relates to a method for producing an IC substrate having a high thermal conductivity and a Cu layer on the surface of an AlN ceramic material which is an insulator. .

[従来の技術と問題点] 高熱伝導率を有し、且つ絶縁物であるAlN(窒化アル
ミニウム)セラミック材はハイブリットIC基板やICパッ
ケージ用として有望視されている。例えばこれをIC基板
に適用するには、配線用電極等電極、配線等として、そ
の表面を低抵抗のCuでメタライズする必要がある。
[Prior art and problems] AlN (aluminum nitride) ceramic material which has high thermal conductivity and is an insulator is promising for hybrid IC substrates and IC packages. For example, in order to apply this to an IC substrate, it is necessary to metallize the surface with low-resistance Cu as an electrode such as a wiring electrode and a wiring.

AlNセラミック材の表面にメタライズする方法とし
て、従来は例えば次の方法が採られている。なお本分野
でメタライズとは、セラミック材表面に金属薄膜を密着
させることをいう。
As a method of metallizing the surface of an AlN ceramic material, for example, the following method has conventionally been adopted. In this field, metallization means that a metal thin film is adhered to the surface of a ceramic material.

AlNセラミック材は金属と濡れにくい性質があるの
で、AlNセラミック基板表面を1000℃以上で酸化させてA
l2O3とし、この酸化層の上にMO−Mn法などでメタライズ
を行う。
Since the AlN ceramic material has a property that it is difficult to wet with metal, the surface of the AlN ceramic substrate is oxidized at 1000
and l 2 O 3, performs metallized etc. M O -M n method on the oxide layer.

AlNセラミック基板にTiを蒸着し、その上にPt、Auを
蒸着、熱処理してメタライズを行う。この方法によれば
蒸着強度は2〜5kg/mm2程度と推定され、この密着強度
は活性なTiがAlNセラミック基板内に拡散してもたらさ
れている。
Metallization is performed by evaporating Ti on an AlN ceramic substrate, and evaporating and heat-treating Pt and Au thereon. According to this method, the deposition strength is estimated to be about 2 to 5 kg / mm 2 , and this adhesion strength is provided by diffusion of active Ti into the AlN ceramic substrate.

上記の方法では1000℃以上の高温プロセス処理を伴
うため高価となる。また、歪や歩留りの低いために高価
となる。
The above method involves high-temperature processing at a temperature of 1000 ° C. or higher, which is expensive. In addition, it is expensive due to distortion and low yield.

の方法でも300〜500℃のTi拡散の熱処理が必要とな
り、またTiだけでははんだ付けやろう付けができないの
でその上にPt層やAu層を蒸着しており高価となる。また
AlNセラミック材とこれに被着された導電材料の間に、A
lNよりも熱導電率の低い金属層を介在させることにな
り、上記のAlNのもつ特性が活かされない。
In the above method, a heat treatment of Ti diffusion at 300 to 500 ° C. is required, and since soldering or brazing cannot be performed with Ti alone, a Pt layer or an Au layer is deposited thereon, which is expensive. Also
A between the AlN ceramic material and the conductive material deposited on it
Since a metal layer having a lower thermal conductivity than 1N is interposed, the above characteristics of AlN cannot be utilized.

[問題を解決するための手段] 本発明はAlNセラミック材の表面にCu蒸着によってCu
層を形成しながら、該Cu層表面よりAlNセラミック材にA
rイオンを1×1015〜1×1018個/cm2照射して、極めて
密着強度の高いCuメタライズ層を得ようとするものであ
る。
[Means for Solving the Problem] The present invention provides a method of forming a Cu film on a surface of an AlN ceramic material by Cu vapor deposition.
While forming a layer, A is applied to the AlN ceramic material from the Cu layer surface.
Irradiation of 1 × 10 15 to 1 × 10 18 ions / cm 2 is intended to obtain a Cu metallized layer having extremely high adhesion strength.

なお、本発明で用いられるメタライズ法は特開昭62−
91483号公報に開示されているが、これを高熱伝導性と
絶縁性を具備するAlNセラミック材に適用し、前記特性
を活かしたIC用基材を提供するものである。
The metallizing method used in the present invention is disclosed in
Although disclosed in JP-A-91483, this is applied to an AlN ceramic material having high thermal conductivity and insulation to provide a substrate for IC utilizing the above characteristics.

以下、本発明の実施について説明する。 Hereinafter, embodiments of the present invention will be described.

第3図は本発明を実施する装置の概略図を示す。 FIG. 3 shows a schematic diagram of an apparatus for practicing the present invention.

真空チャンバー1の下部にバケット型イオン源4を備
え、中間に電子ビーム加熱式蒸発源3を備え、上部に試
料冷却型の回転式試料ホルダー2を備える。バケット型
イオン源4は、接地5、プラズマ電極6、フィラメント
8、アークチャンバ7、ガス導入口9等を備えたもので
ある。
A bucket type ion source 4 is provided at a lower portion of the vacuum chamber 1, an electron beam heating type evaporation source 3 is provided at an intermediate portion, and a sample cooling type rotary sample holder 2 is provided at an upper portion. The bucket type ion source 4 includes a ground 5, a plasma electrode 6, a filament 8, an arc chamber 7, a gas inlet 9, and the like.

ガスイオンはバケット型イオン源4より上方向に照射
され、蒸着金属は電子ビーム加熱式蒸発源3より上方に
放出され、ともに回転式試料ホルダー2に達する。前記
ホルダーには本発明実施の対象となるAlNセラミック材
が配置される。
The gas ions are irradiated upward from the bucket type ion source 4, and the deposited metal is emitted upward from the electron beam heating type evaporation source 3, and both reach the rotary sample holder 2. An AlN ceramic material, which is an object of the present invention, is disposed on the holder.

セラミック材表面に対する金属の蒸着とイオン注入
は、メタライジング中、すべての時間にわたって始終行
う必要はなく、初期にミキシング層を作る間のみ、同時
に金属の蒸着とイオン照射とを機能させ、その後は蒸着
のみ機能させ、ろう付けに必要な、あるいはろう付け強
度を最大にするメタライズ層の厚み、通常は数μまで蒸
着を行うこともできるし、メタライジング中すべての時
間にわたって双方を機能させてもよい。しかし、始終、
イオン照射を行うと、イオンによるメタライズ層のスパ
ッタリングがおこり、厚みの成長をおさえ、メタライズ
層の強度劣化を招くおそれがある。
The metal deposition and ion implantation on the surface of the ceramic material need not be performed all the time during metallization, but only during the initial formation of the mixing layer, the metal deposition and ion irradiation function at the same time. Metallization layer thickness required for brazing or maximizing brazing strength, typically up to a few microns, or both may function for all time during metallizing . However,
When the ion irradiation is performed, the metallized layer is sputtered by the ions, the growth of the metallized layer is suppressed, and the strength of the metallized layer may be deteriorated.

前記第3図に示す装置を使用し、第1段階として、Cu
蒸着とArイオン照射を同時に行い、第2段階ではCu蒸着
のみで膜厚を増加させた。
Using the apparatus shown in FIG.
The vapor deposition and Ar ion irradiation were performed simultaneously, and in the second stage, the film thickness was increased only by Cu vapor deposition.

基板:AlN イオン種:Ar チャンバ内真空度:10-6Torr 加速エネルギー:5〜25keV 任意の速度で蒸発したCuは5〜25eVで加速されたArイ
オンとAlN基板表面でミキシングされる。その際Cu原子
はArイオンによりスパッタ、もしくは内部に押し込ま
れ、このような相互運動をくり返しながら、ミキシング
層が形成される。
Substrate: AlN Ion species: Ar Vacuum degree in chamber: 10 -6 Torr Acceleration energy: 5 to 25 keV Cu evaporated at an arbitrary speed is mixed with Ar ions accelerated at 5 to 25 eV on the AlN substrate surface. At that time, Cu atoms are sputtered or pushed into the inside by Ar ions, and a mixing layer is formed while repeating such mutual movement.

ミキシング層の厚さはArイオンが基板に到達できる範
囲内に止め、その後のCu蒸着層の厚みに関しては外部条
件がミキシング層に影響しないよう5000〜10000Åの厚
さとした。
The thickness of the mixing layer was kept within a range where Ar ions could reach the substrate, and the thickness of the subsequent Cu vapor deposition layer was set at 5000 to 10000Å so that external conditions did not affect the mixing layer.

第1図は前記方法によって形成されたAlNセラミック
材表層断面概念図である。図においてはaはAlNセラミ
ック基板、bはAlNとCuのミキシング図、cはCu蒸着層
を示し、eはCe蒸発物、dはArイオンを示す。図におい
てb+cがメタライズ層である。
FIG. 1 is a conceptual view of a cross section of a surface layer of an AlN ceramic material formed by the above method. In the figure, a is an AlN ceramic substrate, b is a mixing diagram of AlN and Cu, c is a Cu deposited layer, e is Ce evaporated, and d is Ar ions. In the figure, b + c is a metallized layer.

[試験例] 基板:AlN、加速エネルギー:25keV、チャンバー内真空
度:10-6torr、イオン種:Ar、被膜種:Cu+Ar++Cuで試料
を作成し、金属蒸着層表面に、エポキシ系接着材を用い
てアルミ製引張棒を接着し引張り試験を行った。
[Test Example] substrate: AlN, acceleration energy: 25 keV, chamber vacuum: 10 -6 torr, ion species: Ar, coating species: Samples prepared with Cu + Ar + + Cu, the metal deposition layer surface, an epoxy-based adhesive And a tensile test was performed by bonding an aluminum pull rod.

実際に、スパッタ率を考慮して注入深さのピークが基
板界面に達したところでイオン照射を中止する。そのと
きまでに照射されたイオン数をドーズ量とする。
Actually, ion irradiation is stopped when the peak of the implantation depth reaches the substrate interface in consideration of the sputtering rate. The number of ions irradiated up to that time is defined as a dose.

第2図は、試験結果で、イオン注入量(個/cm2)に対
する密着強度(kg/mm2)を示している。
FIG. 2 shows the test results showing the adhesion strength (kg / mm 2 ) with respect to the ion implantation amount (pieces / cm 2 ).

本試験結果よりArイオンで混合を行った場合1×1016
個/cm2台より1×1017個/cm2台のArイオンを照射すれば
4〜7kg/mm2の安定した密着強度が得られ、又1×1015
個/cm2台のArイオン照射量では、安定しないが、2〜3k
g/mm2前後の強度は得られることが分った。これによっ
て、イオン照射量が1×1015〜1×1016個/cm2で実使用
に耐えるものが得られる。
From this test result, when mixing with Ar ions, 1 × 10 16
Irradiation of 1 × 10 17 / cm 2 Ar ions from 1 / cm 2 unit gives a stable adhesion strength of 4 to 7 kg / mm 2 , and 1 × 10 15
Ar / irradiation dose of 2 units / cm 2 is not stable, but 2-3k
It was found that a strength of around g / mm 2 was obtained. As a result, an ion irradiation dose of 1 × 10 15 to 1 × 10 16 / cm 2 can be obtained for practical use.

なお、図で黒は接着剤破断、白は被覆剥離を示す。 In the drawing, black indicates adhesive breakage and white indicates coating peeling.

[発明の効果] AlNはCuとぬれにくく、接合が困難であったが、本発
明の方法により、イオン照射量を1×1015〜1×1018
/cm2でとすることによって、CuとAlNとの実用に耐える
密着強度のものが得られるようになった。
[Effects of the Invention] AlN was hardly wet with Cu and was difficult to join. However, according to the method of the present invention, the ion irradiation dose was 1 × 10 15 to 1 × 10 18
By setting the pressure to / cm 2 , a material having an adhesion strength that can withstand practical use of Cu and AlN can be obtained.

AlNにCuを直接メタライズできることで、BeOやAl2O3
セラミックに代って放熱性が要求されるICパッケージ等
に活用することができる。
BeO and Al 2 O 3
It can be used for IC packages that require heat dissipation instead of ceramics.

また、従来の方法のように高温熱処理が不要でAlNセ
ラミック面を金属化することができる等生産面で大きな
効果がある。
Further, unlike the conventional method, high temperature heat treatment is not required, and the AlN ceramic surface can be metallized.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明によって得れるAlNセラミック材の表
層断面概念図である。 第2図は、本発明実施による試験結果の一例を示す。 第3図は、本発明を実施する装置の概略図である。 1……真空チャンバー、2……回転式試料ホルダー、3
……電子ビーム加熱蒸発源、4……バケット型イオン
源。
FIG. 1 is a conceptual diagram of a surface layer cross section of an AlN ceramic material obtained by the present invention. FIG. 2 shows an example of test results according to the present invention. FIG. 3 is a schematic diagram of an apparatus for practicing the present invention. 1 ... Vacuum chamber, 2 ... Rotary sample holder, 3
... Electron beam heating evaporation source, 4 ... Bucket type ion source.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】AlNセラミック材の表面にCu蒸着によってC
u層を形成しながら、該Cu層表面よりAlNセラミック材に
Arイオンを1×1015〜1×1018個/cm2照射することを特
徴とする高熱伝導性IC用基材の作製方法。
1. The method according to claim 1, wherein C is deposited on the surface of the AlN ceramic material by vapor deposition of Cu.
While forming the u layer, the Cu layer surface is converted to AlN ceramic material.
A method for producing a substrate for a highly thermally conductive IC, comprising irradiating 1 × 10 15 to 1 × 10 18 ions / cm 2 with Ar ions.
JP63254531A 1988-10-07 1988-10-07 Method of manufacturing base material for high thermal conductive IC Expired - Lifetime JP2600336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63254531A JP2600336B2 (en) 1988-10-07 1988-10-07 Method of manufacturing base material for high thermal conductive IC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63254531A JP2600336B2 (en) 1988-10-07 1988-10-07 Method of manufacturing base material for high thermal conductive IC

Publications (2)

Publication Number Publication Date
JPH02302385A JPH02302385A (en) 1990-12-14
JP2600336B2 true JP2600336B2 (en) 1997-04-16

Family

ID=17266339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63254531A Expired - Lifetime JP2600336B2 (en) 1988-10-07 1988-10-07 Method of manufacturing base material for high thermal conductive IC

Country Status (1)

Country Link
JP (1) JP2600336B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6306474B2 (en) * 2014-08-28 2018-04-04 京セラ株式会社 Wiring board, electronic device and electronic module
CN105367133A (en) * 2015-11-27 2016-03-02 常熟市银洋陶瓷器件有限公司 Preparation process suitable for coating silver on LED ceramic support surface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291483A (en) * 1985-10-17 1987-04-25 日新電機株式会社 Metallization for ceramic

Also Published As

Publication number Publication date
JPH02302385A (en) 1990-12-14

Similar Documents

Publication Publication Date Title
US4875284A (en) Process for producing a package for packing semiconductor devices
US4622236A (en) Boron nitride film and process for preparing same
JPS582022A (en) Thin film formation
JP2600336B2 (en) Method of manufacturing base material for high thermal conductive IC
JPS5919190B2 (en) Manufacturing method of lead film
JPS63137159A (en) Formation of thin crystalline metallic film
JP2560451B2 (en) Cu metallization method for Al ceramic material by O ion mixing
JPH04346651A (en) Metallizing method
JP2743201B2 (en) Metal film formation method on ceramics surface by ion mixing method
JP2844779B2 (en) Film formation method
JPS6291483A (en) Metallization for ceramic
JP2512898B2 (en) Insulating substrate and manufacturing method thereof
JPH062938B2 (en) Composite material with boron nitride coating
JP3176096B2 (en) Method of forming metal film on ceramic surface
JPS6287496A (en) Production of single crystal aluminum nitride film
JPH06293581A (en) Metallizing method for surface of aln ceramic material
JPH02188481A (en) Method for metallizing aln ceramics
JP3223740B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JPS6179767A (en) Formation of film
JPH01259582A (en) Manufacture of oxide superconductive thin film
JPS63255360A (en) Method for metallizing ceramic
JPH05287503A (en) Film coated material and its production
JPS63206464A (en) Inline type composite surface treatment device
JPH0393686A (en) Metallizing of ceramics
JPH02187053A (en) Integrated circuit component