JPH0392085A - Synchronizing separator circuit - Google Patents

Synchronizing separator circuit

Info

Publication number
JPH0392085A
JPH0392085A JP22995489A JP22995489A JPH0392085A JP H0392085 A JPH0392085 A JP H0392085A JP 22995489 A JP22995489 A JP 22995489A JP 22995489 A JP22995489 A JP 22995489A JP H0392085 A JPH0392085 A JP H0392085A
Authority
JP
Japan
Prior art keywords
circuit
signal
video signal
potential
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22995489A
Other languages
Japanese (ja)
Other versions
JPH0761126B2 (en
Inventor
Nobuo Ueda
信夫 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1229954A priority Critical patent/JPH0761126B2/en
Publication of JPH0392085A publication Critical patent/JPH0392085A/en
Publication of JPH0761126B2 publication Critical patent/JPH0761126B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Synchronizing For Television (AREA)

Abstract

PURPOSE:To attain stable synchronizing separation with high accuracy even when a video signal having fluctuation of APL(Average picture level) or noise is inputted by extracting an edge part of a synchronizing signal with a filter and using a pulse corresponding to the edge to form the synchronizing signal again. CONSTITUTION:The circuit is provided with an amplifier 8, a clamp circuit 9, a clip circuit 10, a high pass filter 11, a low pass filter 12, a slice circuit 13, a waveform shaping circuit 14 and a bistable multivibrator circuit 15. Then a video signal portion is clipped and the high pass filter 11 and the low pass filter 12 extracts the edge of the synchronizing signal and the slice circuit 13 eliminate noise and the pulse corresponding to the edge reconstitutes the synchronizing signal. Thus, accurate synchronizing separation is attained even when the APL is fluctuated and the synchronizing signal separator circuit stable against noise is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複合映像信号より同期信号を分離する同期
信号分離回路に関するものである.〔従来の技術〕 一般に二つの映像信号を混合、合戒する時にその二つの
映像信号の同期を一致させておく必要がある。このよう
に位相が一致しているか否かを判別するのに映像信号か
ら同期信号を分離して位相比較を行なうが、位相比較の
判別を早くするには同期信号分離部へ供給される映像信
号のDCクランプの応答速度が早くなければならない.
特にAP L (Average picture l
evel)の異なる映像信号が切替えられた場合には数
Hに渡りミスクランプを生じ、同期信号の分離が行なえ
ないこととなる.第4図はこの種の従来の装置を示すも
のである.同図において、1は映偽信号の入力端子で、
第5図(a)に示すようなDCクランプの行なわれてい
ない映像信号が供給され、コンデンサCI%抵抗R.R
tsダイオード2、定電圧源6よりなるピーククランプ
回路で映像信号はDCクランプされ、第5図(ロ)に示
す波形となる.4はDCクランプされた映像信号と可変
抵抗VR.により決定される電位とにより、電位の比較
を行ない、同期信号の分離を行なう差動増幅器である.
5は差動増幅器4で映像信号から分離された同期信号が
出力される出力端子であり、第5図(C)に示す出力を
発生する.次に動作について説明する.入力端子lへ第
5図(a)に示す映像信号が供給された状態において、
T,部分の時に映像信号のピーク電位は定電圧源6の起
電圧にダイオード2の順方向電位を加えた電位とほぼ等
しくなっている(以下クランプ電位と称す).次にAP
Lの低い信号のT1部分からAPLの高い信号のTt部
分に切替えられた時は差動増幅器4の入力端子3は一時
的にクランプ電位より高い電位になり、ダイオード2に
は順方向電位が加えられるため該ダイオード2はローイ
ンピーダンスとなる.抵抗R,はその時のダイオード2
のインピーダンスを示すものであり、抵抗R8はR,に
対しRx<R+であり、このときの充電電圧は抵抗R!
により急速に放電され、映像信号のピーク電位は次第に
クランプ電位になる.次にAPLの高い信号のT,部分
からAFLの低い信号T,部分に切替えられた時には差
動増幅器4の入力端子3は一時的にクランプ電位より低
い電位になり、ダイオード2には逆方向電位が加えられ
るため墨亥ダイオード2はハイインピーダンスとなる.
この低い電位は電源VCeに接続された抵抗R1を介し
てコンデンサCIに充電され、映像信号のピーク電位は
しだいにクランプ電位となるが、R.)R.であるため
前記のT1からT2に切替えられた時と比べ、T,から
T,に切替えた時の方が、映像信号のピーク電位がクラ
ンプ電位と等しくなるのに時間を要する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a synchronization signal separation circuit that separates a synchronization signal from a composite video signal. [Prior Art] Generally, when mixing and combining two video signals, it is necessary to synchronize the two video signals. In this way, to determine whether or not the phases match, the synchronization signal is separated from the video signal and phase comparison is performed, but in order to speed up the phase comparison, the video signal supplied to the synchronization signal separation section is The response speed of the DC clamp must be fast.
Especially AP L (Average picture l
If video signals with different levels (evel) are switched, misclamping will occur for several H, making it impossible to separate the synchronization signals. Figure 4 shows a conventional device of this type. In the figure, 1 is the input terminal for the video/false signal;
A video signal without DC clamping as shown in FIG. 5(a) is supplied, and the capacitor CI% resistor R. R
The video signal is DC clamped by a peak clamp circuit consisting of a TS diode 2 and a constant voltage source 6, resulting in the waveform shown in FIG. 5(b). 4 is a DC clamped video signal and a variable resistor VR. This is a differential amplifier that compares the potentials and separates the synchronization signal using the potential determined by
Reference numeral 5 denotes an output terminal to which the synchronizing signal separated from the video signal by the differential amplifier 4 is output, and generates the output shown in FIG. 5(C). Next, we will explain the operation. In a state where the video signal shown in FIG. 5(a) is supplied to the input terminal l,
T, the peak potential of the video signal is approximately equal to the sum of the electromotive force of the constant voltage source 6 and the forward potential of the diode 2 (hereinafter referred to as clamp potential). Next, AP
When the T1 part of the low L signal is switched to the Tt part of the APL high signal, the input terminal 3 of the differential amplifier 4 temporarily becomes a potential higher than the clamp potential, and a forward potential is applied to the diode 2. Therefore, the diode 2 has a low impedance. Resistance R, is diode 2 at that time
The impedance of the resistor R8 is R, and Rx<R+, and the charging voltage at this time is the impedance of the resistor R!
The peak potential of the video signal gradually becomes the clamp potential. Next, when the APL high signal T is switched to the AFL low signal T, the input terminal 3 of the differential amplifier 4 temporarily becomes a potential lower than the clamp potential, and the diode 2 has a reverse potential. is added, so Mohai diode 2 becomes high impedance.
This low potential is charged to the capacitor CI via the resistor R1 connected to the power supply VCe, and the peak potential of the video signal gradually becomes the clamp potential, but the R. )R. Therefore, it takes more time for the peak potential of the video signal to become equal to the clamp potential when switching from T to T than when switching from T1 to T2.

したがって差動増幅器4にて同期信号を分離した際はそ
の影響を抜け出る期間が長くなってしまうという欠点が
あった. また抵抗R1を小さくすればクランプ速度は早くなるが
、コンデンサC1に対する抵抗R,のインピーダンスが
低くなり、映像信号にサグを生じ、同期信号分離の性能
が低下するという不都合を生じることは周知の通りであ
る. 以上で説明したDCクランプを行なった映像信号を差動
増幅器4に加え、可変抵抗VR,で決定される電位と電
圧比較し同期信号を分離抽出すると第5図の夕ようにな
り、APLの異なる映像信号の切替えられた所で同期信
号の分離抽出の行なえない部分が発生する.時にAFL
の高い信号のT,部分からAPLの低い信号のT,部分
に切替えた時にその現象が大きく現われる. 〔発明が解決しようとする課題〕 従来の同期信号分離回路は以上のように構威されている
ので、APLの変化する映像信号では、精度良く同期信
号を抽出することができないなどの問題があった. この発明は上記のような問題点を解消するためになされ
たもので、APLが変動しても正確に同期信号分離がで
きるとともに、ノイズに対しても安定な同期信号分離回
路を得ることを目的とする.〔課題を解決するための手
段〕 この発明に係る同期信号分離回路は、映像信号部分をク
リップし、同期信号のエッヂ部分を抽出し、ノイズ除去
した後、エッヂ部分に対応したバルスで同期信号を再構
戒するようにしたものである. 〔作用〕 この発明における同期信号分離回路は、フィルタによる
同期信号のエッヂ部分を抽出し、このエッヂ部分に対応
したパルスにより再び同期信号をつくる. 〔実施例〕 以下、この発明の一実施例を図について説明する. 第1図において、7は第4図に示した1と同じ複合映像
信号の入力端子、8は増幅器、9はクランプ回路、10
はクリップ回路、11は高城通過フィルタ(以下HPF
)、12は低域通過フィルタ(以下LPF)、13はス
ライス回路、14は波形整形回路、15は双安定マルチ
バイブレー夕回路(Bistable Multi−V
ibrator,以下、BMVと称す)、16は同期信
号分離出力端子である.第2図は第1図におけるA−G
までの各部の波形を示した図である. 第1図の複合映像信号の入力端子7に第2図のAのよう
な複合映像信号(第5図のaと同じ)が入力された時、
増幅器8で同期信号部分が必要レベルより大きくなるよ
う増幅し、次段のクランプ回路9に入力する(第2図A
)。このクランプ回路9は、例えば第ψ図に示したよう
な回路であるが、C,,R.で構成されるクランプ時定
数は一水平期間(以下IHとする)ごとのAPL変動に
追従できる程度に短く選んでいる.このため、このクラ
ンプ回路を通過した映像信号は、第2図Bに示した如く
、サグ(低域歪)を生じている.しかしながら、時定数
が小さいので、従来例(第5図b)のようなAPLの変
動による極端な直流変動は生じることなく同期先端をク
ランプする.次に、第2図Bのようなサグをもった信号
に対して、クリップレベルを同期信号レベルより小さい
範囲で、映像信号を含むように設定したクリップ回路1
0(第4図の差動増幅器4で構戒可能)で不必要となる
映像信号を除去する.この出力信号波形を第2図Cに、
そしてその水平同期信号部分の拡大図をC′に示す.こ
のCあるいはC′の信号を}IPFIIに入力すると、
低域成分が除去され、残留映像信号の高域威分と、同期
信号のエッヂ部分、そしてノイズ威分が出力される(第
2図D).第2図Dにおいで、同期信号の立上り(α)
、立下り(β)に対応するパルスの振巾は、クリップ回
路10で同期信号振巾より映像信号を小さく抑えている
ので、映像信号の高域成分とランダム・ノイズの成分よ
り大きくなっている.このDの信号がLPF 1 2を
通ると、更に高域に分布するノイズ或分が減衰され、E
のような信号波形となるので、スライス回路l3のスラ
イスレベルをEのように設定すれば、同期信号の立上り
,立下り部分に対応したパルスのみが出力されることに
なる(F).このスライス回路は例えば第3図(a)に
示すようなヒステリシス(不感帯)特性をもち、具体的
には同図(b)のようなダイオードの逆並列回路で構戒
できる. 次に信号Fは波形整形回路14に入力される.この波形
整形回路14は、入力信号を矩形波に整形するシュミッ
ト回路(図示せず)と、正.負極の信号を同一極性にす
る絶対値回路(図示せず)によって構成されており、F
はGのような同期信号のエッヂ部に対応した矩形波パル
スとなる.このGに示すパルスによって、双安定マルチ
バイブレータ15(フリップフロップ回路)が駆動され
、Gのパルスの間隔(同期信号の幅に対応)で同図16
のようなパルスを発生する.これが入力信号7から分離
された同期信号となる.なお、上記実施例では、HPF
とLPFを分けているが、これらは帯域通過フィルタで
代用してもよい。
Therefore, when the synchronizing signal is separated by the differential amplifier 4, there is a drawback that it takes a long time to overcome the influence. Furthermore, if the resistor R1 is made smaller, the clamping speed becomes faster, but as is well known, the impedance of the resistor R to the capacitor C1 becomes lower, causing a sag in the video signal and deteriorating the synchronization signal separation performance. It is. When the video signal subjected to the DC clamp described above is added to the differential amplifier 4, the voltage is compared with the potential determined by the variable resistor VR, and the synchronization signal is separated and extracted, the result is as shown in Fig. 5, with different APLs. There are parts where the sync signal cannot be separated and extracted where the video signal is switched. Sometimes AFL
This phenomenon becomes more apparent when switching from the high T signal portion to the low APL signal T portion. [Problems to be Solved by the Invention] Since the conventional synchronization signal separation circuit is configured as described above, there are problems such as the inability to accurately extract the synchronization signal from a video signal whose APL changes. Ta. This invention was made to solve the above-mentioned problems, and aims to provide a synchronization signal separation circuit that can accurately separate synchronization signals even when the APL fluctuates, and is stable against noise. Suppose that [Means for Solving the Problems] The synchronization signal separation circuit according to the present invention clips the video signal portion, extracts the edge portion of the synchronization signal, removes noise, and then extracts the synchronization signal with a pulse corresponding to the edge portion. This made me reconsider my precepts. [Operation] The synchronization signal separation circuit of the present invention extracts the edge portion of the synchronization signal by the filter, and generates a synchronization signal again using pulses corresponding to this edge portion. [Example] An example of the present invention will be described below with reference to the drawings. In FIG. 1, 7 is the same composite video signal input terminal as 1 shown in FIG. 4, 8 is an amplifier, 9 is a clamp circuit, and 10
is a clip circuit, and 11 is a Takagi pass filter (hereinafter referred to as HPF).
), 12 is a low-pass filter (hereinafter referred to as LPF), 13 is a slice circuit, 14 is a waveform shaping circuit, and 15 is a bistable multi-vibrator circuit (Bistable Multi-V
ibrator (hereinafter referred to as BMV), 16 is a synchronization signal separation output terminal. Figure 2 shows A-G in Figure 1.
This is a diagram showing the waveforms of each part up to. When a composite video signal like A in FIG. 2 (same as a in FIG. 5) is input to the composite video signal input terminal 7 in FIG. 1,
The amplifier 8 amplifies the synchronizing signal part to a level greater than the required level, and inputs it to the next stage clamp circuit 9 (see Fig. 2A).
). This clamp circuit 9 is, for example, a circuit as shown in FIG. The clamp time constant consisting of is selected to be short enough to follow APL fluctuations for each horizontal period (hereinafter referred to as IH). Therefore, the video signal passing through this clamp circuit has sag (low-frequency distortion) as shown in FIG. 2B. However, since the time constant is small, the synchronization tip is clamped without causing extreme DC fluctuations due to APL fluctuations as in the conventional example (Fig. 5b). Next, for a signal with a sag as shown in FIG.
0 (this can be done using the differential amplifier 4 in Figure 4) to remove unnecessary video signals. This output signal waveform is shown in Figure 2C.
An enlarged view of the horizontal synchronization signal part is shown in C'. When this C or C' signal is input to }IPFII,
The low-frequency component is removed, and the high-frequency component of the residual video signal, the edge portion of the synchronization signal, and the noise component are output (Figure 2D). In Fig. 2D, the rising edge (α) of the synchronization signal
, the amplitude of the pulse corresponding to the falling edge (β) is larger than the high-frequency component and random noise component of the video signal because the clip circuit 10 suppresses the video signal to be smaller than the synchronization signal amplitude. .. When this D signal passes through LPF 1 2, some of the noise distributed in the high range is further attenuated, and E
Since the signal waveform is as follows, if the slice level of the slice circuit 13 is set as E, only the pulses corresponding to the rising and falling portions of the synchronization signal will be output (F). This slice circuit has a hysteresis (dead zone) characteristic, for example, as shown in Figure 3(a), and can be specifically avoided using an anti-parallel diode circuit as shown in Figure 3(b). Next, the signal F is input to the waveform shaping circuit 14. The waveform shaping circuit 14 includes a Schmitt circuit (not shown) that shapes an input signal into a rectangular wave, and a positive . It is composed of an absolute value circuit (not shown) that makes negative signals have the same polarity, and F
becomes a square wave pulse corresponding to the edge part of a synchronization signal like G. The bistable multivibrator 15 (flip-flop circuit) is driven by the pulse shown in G, and the interval between the pulses in G (corresponding to the width of the synchronization signal) is 16 in the same figure.
It generates a pulse like this. This becomes the synchronization signal separated from input signal 7. In addition, in the above embodiment, HPF
and LPF, but these may be replaced by bandpass filters.

また上記実施例では、スライスレベルが映像信号部分に
かかっているとしているが、サグの量が少ない場合は同
期信号を削る位に、スライスレベルを上げるようにして
もよい. 〔発明の効果〕 以上のように、この発明によれば、フィルタにより同期
信号のエッヂ部分のみを抽出しているので、APLの変
動やノイズが存在する映像信号が入力されても、精度の
高い、安定した同期信号分離回路を得られる効果がある
Further, in the above embodiment, the slice level is applied to the video signal portion, but if the amount of sag is small, the slice level may be increased to the extent that the synchronization signal is reduced. [Effects of the Invention] As described above, according to the present invention, only the edge portion of the synchronization signal is extracted by the filter, so even if a video signal containing APL fluctuations or noise is input, highly accurate This has the effect of providing a stable synchronization signal separation circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による同期信号分離回路の
ブロック図、第2図は第1図の各部における波形図、第
3図はこの発明の一実施例におけるスライス回路を示す
図、第4図は従来の同期信号分離回路の一例を示す図、
第5図は第4図に示した回路の動作波形図である. 9はクランプ回路、10はクリップ回路、11は高城通
過フィルタ、12は低域通過フィルタ、13はスライス
回路、工5は双安定マルチバイブレーク回路である。
FIG. 1 is a block diagram of a synchronization signal separation circuit according to an embodiment of the present invention, FIG. 2 is a waveform diagram at each part of FIG. 1, and FIG. 3 is a diagram showing a slice circuit according to an embodiment of the present invention. Figure 4 shows an example of a conventional synchronization signal separation circuit.
Figure 5 is an operating waveform diagram of the circuit shown in Figure 4. 9 is a clamp circuit, 10 is a clip circuit, 11 is a Takagi pass filter, 12 is a low pass filter, 13 is a slice circuit, and 5 is a bistable multivib break circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)複合映像信号中の同期信号先端部分あるいはペデ
スタル部分を一定の直流電位に固定するクランプ回路と
、 該クランプ回路のクランプ電位より一定電位だけ映像信
号側によった電位で映像信号をクリップするクリップ回
路と、 該クリップ回路の出力信号中の低域成分及び高域成分を
除去するフィルタ手段と、 該フィルタ手段の出力信号のうち信号振巾の小さい信号
を除去するスライス回路と、 該スライス回路の出力信号をトリガパルスとする双安定
マルチバイブレータ回路とを備えたことを特徴とする同
期信号分離回路。
(1) A clamp circuit that fixes the tip or pedestal portion of the synchronization signal in the composite video signal to a constant DC potential, and clips the video signal at a potential on the video signal side by a constant potential from the clamp potential of the clamp circuit. a clipping circuit; a filter means for removing low-frequency components and high-frequency components from the output signal of the clipping circuit; a slicing circuit for removing a signal with a small signal amplitude from the output signal of the filtering means; and the slicing circuit. 1. A synchronous signal separation circuit comprising: a bistable multivibrator circuit using an output signal as a trigger pulse.
JP1229954A 1989-09-05 1989-09-05 Sync signal separation circuit Expired - Lifetime JPH0761126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1229954A JPH0761126B2 (en) 1989-09-05 1989-09-05 Sync signal separation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1229954A JPH0761126B2 (en) 1989-09-05 1989-09-05 Sync signal separation circuit

Publications (2)

Publication Number Publication Date
JPH0392085A true JPH0392085A (en) 1991-04-17
JPH0761126B2 JPH0761126B2 (en) 1995-06-28

Family

ID=16900316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1229954A Expired - Lifetime JPH0761126B2 (en) 1989-09-05 1989-09-05 Sync signal separation circuit

Country Status (1)

Country Link
JP (1) JPH0761126B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724497A (en) * 1993-07-09 1995-01-27 Shin Nippon Kankyo Keisoku:Kk Purifying method for pond and the like

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318870A (en) * 1987-06-20 1988-12-27 Nec Corp Separating circuit for synchronizing pulse of picture signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318870A (en) * 1987-06-20 1988-12-27 Nec Corp Separating circuit for synchronizing pulse of picture signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724497A (en) * 1993-07-09 1995-01-27 Shin Nippon Kankyo Keisoku:Kk Purifying method for pond and the like

Also Published As

Publication number Publication date
JPH0761126B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
JPS6014553B2 (en) Television synchronization signal separation circuit
JPH0392085A (en) Synchronizing separator circuit
US4600944A (en) Low cost synchronizing signal separator
KR100240326B1 (en) Vertical sync. separator
JPS5947909B2 (en) Synchronous separation device
JPH02121489A (en) Synchronous signal processing circuit for television signal
JPH0510463Y2 (en)
SU1690220A1 (en) Device for correction of brightness signal and color discrimination signal
JPS6246119B2 (en)
KR0137212Y1 (en) Sync. separating circuit
JPH02280574A (en) Video signal circuit
JP2570291Y2 (en) Black noise removal circuit
KR920001109B1 (en) Vdp still signal detecting circuit
JPH0638073A (en) Synchronization separation circuit
JPH0799591A (en) Synchronizing separator
KR940023273A (en) TV receiver and TV signal discrimination circuit
JPH0451779A (en) Synchronizing signal replacing circuit
JPH0339790A (en) Operation mode discriminating circuit for display monitor or the like
JPS63318870A (en) Separating circuit for synchronizing pulse of picture signal
KR950030595A (en) Synchronous Signal Separator for High Definition
JPH0159787B2 (en)
JPS62272768A (en) Distortion removal circuit
JPS61296826A (en) Signal noise eliminating device
JPH0646284A (en) Synchronizing signal separator
JPH01274570A (en) Video signal clamp circuit