JPH0390528A - Aluminum alloy excellent in mirror finishing characteristic - Google Patents

Aluminum alloy excellent in mirror finishing characteristic

Info

Publication number
JPH0390528A
JPH0390528A JP22524389A JP22524389A JPH0390528A JP H0390528 A JPH0390528 A JP H0390528A JP 22524389 A JP22524389 A JP 22524389A JP 22524389 A JP22524389 A JP 22524389A JP H0390528 A JPH0390528 A JP H0390528A
Authority
JP
Japan
Prior art keywords
aluminum alloy
compound
distribution
mirror
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22524389A
Other languages
Japanese (ja)
Inventor
Kunihiko Kishino
邦彦 岸野
Tatsuya Oda
達也 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP22524389A priority Critical patent/JPH0390528A/en
Publication of JPH0390528A publication Critical patent/JPH0390528A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To produce an Al alloy excellent in mirror-finish characteristics by specifying the major axis and the state of distribution of intermetallic compounds containing Mg and Si and free from Fe, respectively, in an Al alloy containing specific percentages of Mg, Fe, and Si. CONSTITUTION:An aluminum alloy which has a composition containing, as an essential element, 2.5-6.5wt.% Mg, also containing, as impurity elements, <=0.20wt.% Fe and <=0.2wt.% Si, and having the balance essentially Al is prepared so that intermetallic compounds containing Mg or/and Si and free from Fe are distributed in the structure and also the intermetallic compounds of >=1.0mm major axis exist 100-5000 pieces per square millimeter. By this method, the aluminum alloy minimal in the occurrence of defects at the time of mirror finishing can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は、磁気ディスク、コピードラム、ポリゴンミラ
ー、VTRドラム等の鏡面切削を施すアルミニウム合金
に関するものであり、特に切削面の表面欠陥が生じにく
いものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an aluminum alloy that is subjected to mirror cutting for magnetic disks, copy drums, polygon mirrors, VTR drums, etc. It is difficult.

〔従来の技術] コンピューターの磁気ディスク、複写機のドラム、レー
ザー等の光を反射するポリゴンミラー等の反射器あるい
はVTR,DAT等のドラムなどの磁気テープ接触部材
等は通常アルミニウム合金が使用されている。これらの
部材では所定の形状にアルミニウム合金素材を加工した
後その表面を鏡面切削し、さらにその後表面処理等を施
す、あるいは施さずに使用されている。
[Prior Art] Aluminum alloys are usually used for magnetic disks in computers, drums in copying machines, reflectors such as polygon mirrors that reflect light from lasers, and magnetic tape contact members such as drums in VTRs, DATs, etc. There is. These members are used after processing an aluminum alloy material into a predetermined shape, cutting the surface to a mirror finish, and then subjecting it to surface treatment, etc., or without subjecting it to such treatment.

この鏡面切削においては、通常荒切削、仕上げ切削等の
様に数工程に分けて実施され、仕上げ切削においてはダ
イアモンドバイトを使用して、超精密切削仕上げが行わ
れることが一般的である。
This mirror cutting is usually carried out in several steps such as rough cutting and finishing cutting, and in the finishing cutting, a diamond cutting tool is generally used to perform ultra-precision finishing.

このような超精密切削仕上げ面を有する材料には、以下
の様な特性が要求されている。
Materials with such ultra-precision machined surfaces are required to have the following properties.

(1)種々の加工時および使用時の種々の動き等に耐え
る充分な強度を有すること。
(1) It must have sufficient strength to withstand various movements during various processing and use.

(2)鏡面切削時にスクラッチ、ピット等の欠陥を生じ
ない。
(2) Defects such as scratches and pits do not occur during mirror cutting.

(3)鏡面切削後に表面処理が施される場合には、それ
らの処理によりピット等の欠陥が生じないこと。
(3) If surface treatments are performed after mirror cutting, defects such as pits should not occur due to those treatments.

このような特性を満たすアルミニウム合金としてAA5
086等のAl−Mg系合金あるいはAA3003等の
Al−Mn系合金等の種々の合金が使用されている。
AA5 is an aluminum alloy that satisfies these characteristics.
Various alloys are used, such as Al-Mg alloys such as 086 and Al-Mn alloys such as AA3003.

[発明が解決しようとする課題] これらの合金ではいずれも不純物としてFe、Si等を
含有しており、それら不純物に起因するAl−Fe系等
の金属間化合物がその素材母相中に存在する。これら材
料の鏡面切削時には、それら金属間化合物の脱落に伴う
ピットあるいはスクラッチ等の表面欠陥が発生する危険
性が存在し、それらの加工不良を防ぐ為には切削速度を
低下させる等の手段をとる必要があり、それゆえに生産
性を損なう原因となっていた。
[Problem to be solved by the invention] All of these alloys contain impurities such as Fe and Si, and intermetallic compounds such as Al-Fe based due to these impurities exist in the matrix of the material. . When mirror-cutting these materials, there is a risk that surface defects such as pits or scratches may occur due to the shedding of these intermetallic compounds, and measures such as lowering the cutting speed are taken to prevent these processing defects. This was necessary and therefore caused a loss of productivity.

これらの加工不良を起こし難い材料については種々の検
討がなされており、−船釣な手法としては以下の様な対
策がとられることが多い。
Various studies have been conducted on materials that are less susceptible to these processing defects, and the following countermeasures are often taken as a practical method.

(11合金地金を高純度化し、Fe、Si等の不純物を
減少させることによりこれら金属間化合物を減少させる
(These intermetallic compounds are reduced by highly purifying the 11 alloy ingot and reducing impurities such as Fe and Si.

(2)薄板鋳造法により鋳造時の冷却速度を増大させる
ことにより、これら金属間化合物を減少させる。
(2) These intermetallic compounds are reduced by increasing the cooling rate during casting using the thin plate casting method.

しかしながらこれら対策によると地金の高価格化、設備
費の増大等による材料価格の高価格を招く結果となって
いた。またこれら対策による種々の合金材も必ずしも表
面欠陥を無くすことは出来ず、充分な効果を奏していな
かった。
However, these measures have resulted in higher material prices due to higher raw metal prices, increased equipment costs, etc. Further, various alloy materials using these measures have not always been able to eliminate surface defects and have not been sufficiently effective.

[課題を解決するための手段] 本発明はこれに鑑み切削時における材料の組織と欠陥の
発生機構とについて、詳細に検討した結果以下の知見を
得た。
[Means for Solving the Problems] In view of this, the present invention has obtained the following knowledge as a result of detailed study on the structure of the material and the defect generation mechanism during cutting.

前述した様な従来の対策として金属間化合物を減少させ
た材料は、表面欠陥数が減少する傾向にはあるものの、
必ずしも無くならず、さらにはばらつきの範囲内にて対
策を施さないものと同等、もしくは対策を施さないもの
より欠陥が多いものすら存在する。また逆に、対策を採
らない材料においても非常に表面欠陥の発生が少ない素
材(口・ント)が存在する。
Although materials with reduced intermetallic compounds as mentioned above tend to have fewer surface defects,
They do not necessarily disappear, and even within the range of variation, there are cases where defects are equivalent to those without measures or even have more defects than those without measures. On the other hand, even among materials for which no countermeasures are taken, there are materials with very few surface defects.

これらの事実に基づき材料組織を詳細に検討した結果、
■脱落によるピット、スクラッチとなる金属間化合物は
Feを含む硬く、脆いAl2−Fe−X系の化合物(X
は第3元素)である。■しかしAj!−Fe−X系の化
合物の全てが脱落するものではなく、また最も大きな化
合物が脱落するものでもない、■組織中の金属間化合物
としてはAI!−Fe−X系の他、Mgまたは/および
Siを含むもの、例えばMg工S i、A1.zMgt
等あるいはMn等の他の元素が添加される場合にはそれ
ら元素を含むA、eMns+等の化合物等があるが、こ
れらのMgまたは/およびSiを含む化合物がやや粗大
に存在する素材については、Al−Fe−X系の化合物
は脱落するがそれによるビットは比較的小さく、スクラ
ッチも発生しにくいことが判明した。
As a result of a detailed study of the material structure based on these facts,
■The intermetallic compounds that form pits and scratches due to falling off are hard and brittle Al2-Fe-X compounds containing Fe (X
is the third element). ■But Aj! -Not all of the -Fe-X compounds fall off, nor is the largest compound falling off. ■As an intermetallic compound in the structure, AI! In addition to -Fe-X systems, those containing Mg or/and Si, such as Mg Si, A1. zMgt
When other elements such as Mg and/or Mn are added, there are compounds such as A and eMns+ that contain these elements, but for materials in which compounds containing Mg and/or Si are present in a somewhat coarse manner, Although the Al-Fe-X compound falls off, the resulting bits are relatively small and scratches are less likely to occur.

これらの事実をさらに解析した結果、Mgまたは/およ
びSiを含む化合物が少ない場合には、Aj!−Fe−
X系の化合物は切削工具により切断されずに素材から掘
り起こされる形態で脱落し易く、その際に近傍の母相を
塑性変形させて比較的粗大なピットを形成し、著しい場
合には工具とともに移動しながら脱落する為にスクラッ
チとなることが判明した。しかしMgまたは/およびS
iを含む比較的粗大な化合物が素材中に均一に分散して
いる場合には、これら化合物が比較的柔らかいために工
具により容易に切削され、その際に工具表面にその一部
が構成刃先状に存在しAl2−Fe−X系の化合物を脱
落させにくくする効果を有するとともに、Mgまたは/
およびSiを含む化合物がAl−Fe−X系の化合物の
周囲に存在する場合には、逆にAI−Fe−X系の化合
物を脱落させやすくなり、脱落する際に殆どその周囲を
変形させないため微細なビットした発生せず、かつスク
ラッチも殆ど発生しないことが判明した。
Further analysis of these facts revealed that when the amount of compounds containing Mg and/or Si is small, Aj! -Fe-
X-based compounds tend to fall out in the form of being dug out of the material without being cut by the cutting tool, and at that time, they plastically deform the nearby matrix, forming relatively coarse pits, and in severe cases, they move with the tool. It turned out that it would become a scratch because it would fall off while doing so. However, Mg or/and S
When relatively coarse compounds containing i are uniformly dispersed in the material, these compounds are relatively soft and are easily cut by a tool, and at that time, some of them appear on the tool surface in the shape of a built-up cutting edge. It has the effect of making it difficult for Al2-Fe-X compounds to fall off, and also has the effect of making it difficult for Al2-Fe-X compounds to fall off.
If a compound containing Si is present around an Al-Fe-X compound, on the contrary, the AI-Fe-X compound will easily fall off, and the surrounding area will hardly be deformed when it falls off. It was found that no minute bits were generated and almost no scratches were generated.

これらの効果の大きさは化合物の種類によっても若干具
なり、MgzSiが最も大きな効果を有し、A I!3
 M g z も同様に大きな効果を有するが、他のM
gまたは/およびSiを含む化合物による効果をこれら
の化合物による効果より若干小さい。
The magnitude of these effects varies somewhat depending on the type of compound, with MgzSi having the greatest effect, and AI! 3
M g z has a similarly large effect, but other M
The effects of compounds containing g and/or Si are slightly smaller than those of these compounds.

本発明はかかる知見をもとになされたもので、本発明の
請求項1は、必須元素として、M g 2.5〜6.5
wt%を含有し、不純物元素として、Fe≦0.20w
t%、Si20.20wt%を含有し、残部が実質的に
Alからなるアルミニウム合金であって、その組織中に
Mgまたは/およびSiを含有し、Feを含有しない金
属間化合物がその組織中の分布において、該化合物の長
径が1.01M以上のものが1.0mm2あたりに10
0〜5000個存在することを特徴とする鏡面切削性に
優れたアルミニウム合金であり、請求項2は、必須元素
として、Mg2.5〜6.5wt%を含有し、選択的添
加元素として、Mn0.01〜1.0wt%、Cr 0
.01〜0.3wt%、Z r 0.005〜0.3w
t%、T i 0.001〜0.05御t%、N i 
0.005〜0.5wt%、80.0001〜0.01
wt%の内、1種または2種以上を含有し、不純物元素
として、Fe≦0.20wt%、Si20.20wt%
を含有し、残部が実質的にAlからなるアルミニウム合
金であって、そのMi繊織中Mgまたは/およびSiを
含有し、Feを含有しない金属間化合物が、その組織中
の分布において、該化合物の長径が1.0μ以上のもの
が1.0mm2あたりに100〜5000個存在するこ
とを特徴とする鏡面切削性に優れたアルミニウム合金で
あり、請求項3は、必須元素として、必須元素として、
Mg2.5〜6.5wt%を含有し、選択的添加元素と
して、Cu0.001=2.0wt%、Zn0.OO1
〜2゜0wt%の内、1種または2種以上を含有し、不
純物元素として、Fe≦0.20wt%、Si20.2
0wt%を含有し、残部が実質的に、llからなるアル
ミニウム合金であって、その組織中にMgまたは/およ
びSiを含有し、Feを含有しない金属間化合物が、そ
の組織中の分布において、該化合物の長径が1.0μ以
上のものが1.0mm2あたりに100〜5000個存
在することを特徴とする鏡面切削性に優れたアルミニウ
ム合金であり、請求項4は、必須元素として、M g 
2.5〜6.5wt%を含有し、第1の選択的添加元素
として、Mn0.01〜1、Qwt%、Cr 0.01
〜0.3wt%、Z r 0.005〜0.3wt%、
T i 0.001〜0.05wt%、N i O。
The present invention has been made based on such knowledge, and claim 1 of the present invention provides that M g 2.5 to 6.5 as an essential element.
wt%, and as an impurity element, Fe≦0.20w
t%, Si20.20wt%, and the remainder is substantially Al, and an intermetallic compound containing Mg or/and Si and no Fe in its structure. In the distribution, the compound with a long axis of 1.01M or more is 10% per 1.0mm2.
It is an aluminum alloy with excellent mirror machinability characterized by the presence of 0 to 5000 pieces, and claim 2 contains 2.5 to 6.5 wt% of Mg as an essential element, and Mn0 as a selectively added element. .01-1.0wt%, Cr 0
.. 01-0.3wt%, Z r 0.005-0.3w
t%, Ti 0.001-0.05 t%, Ni
0.005-0.5wt%, 80.0001-0.01
Fe≦0.20wt%, Si20.20wt% as impurity elements.
, and the remainder is substantially Al, in which an intermetallic compound containing Mg or/and Si and not Fe in the Mi fibers is distributed in the structure of the compound. An aluminum alloy with excellent mirror machinability characterized by having 100 to 5,000 pieces having a long diameter of 1.0 μ or more per 1.0 mm2, and claim 3, as an essential element,
Contains 2.5 to 6.5 wt% of Mg, and as selectively added elements, Cu0.001=2.0 wt%, Zn0. OO1
Contains one or more of ~2°0wt%, and as impurity elements, Fe≦0.20wt%, Si20.2
An aluminum alloy containing 0 wt% and the remainder substantially consisting of ll, which contains Mg or/and Si in its structure and an intermetallic compound that does not contain Fe, has a distribution in its structure. Claim 4 is an aluminum alloy having excellent mirror machinability, characterized in that 100 to 5000 compounds having a long axis of 1.0 μ or more are present per 1.0 mm2, and claim 4 is an aluminum alloy having excellent mirror machinability as an essential element.
2.5 to 6.5 wt%, and as the first selective addition element, Mn0.01 to 1, Qwt%, Cr 0.01
~0.3wt%, Zr 0.005~0.3wt%,
T i 0.001-0.05 wt%, N i O.

005〜Q、5wt%、Bo、0001〜0.01wt
%の内1種または2種以上を含有し、さらに第2の選択
的元素として、Cu0.OO1〜2.0wt%、Zn0
.001〜2.0wt%の内、1種または2種以上を含
有し、不純物元素として、Fe≦0.20wt%、Si
0.20wt%を含有し、残部が実質的にAlからなる
アルミニウム合金であって、その組織中にMgまたは/
およびSiを含有し、Feを含有しない金属間化合物が
、その組織中の分布において、該化合物の長径が1. 
Otna以上のものが1.0mm2あたりに100〜5
000個存在することを特徴とする鏡面切削性に優れた
アルくニウム合金である。
005~Q, 5wt%, Bo, 0001~0.01wt
%, and further contains Cu0. % as a second selective element. OO1~2.0wt%, Zn0
.. Fe≦0.20wt%, Si
An aluminum alloy containing 0.20 wt% and the remainder substantially consisting of Al, and has Mg or/and Mg in its structure.
And an intermetallic compound containing Si but not Fe has a long axis of 1.
Otna or more is 100 to 5 per 1.0 mm2
It is an aluminum alloy with excellent mirror machinability and is characterized by the presence of 000 pieces.

〔作用〕[Effect]

本発明における合金組成および組織限定の理由について
説明する(以下wt%を単に%と略記する)。
The reason for the alloy composition and structure limitation in the present invention will be explained (hereinafter, wt% is simply abbreviated as %).

まず本発明合金材の組成を限定した理由を以下に説明す
る。
First, the reason for limiting the composition of the alloy material of the present invention will be explained below.

Mgは主として強度を得るとともにMgを含有し、Fe
を含有しない金属間化合物をその組織中に生して切削性
を向上する効果を有する。2.5%未満ではこれら効果
が充分ではなく、6.5wt%をこえると、Mgを含む
金属間化合物が増大し、粗大化し、材料の耐食性を劣化
させるとともに粗大なピントの発生原因となる危険性が
高まる。
Mg mainly provides strength and contains Mg, and Fe
It has the effect of improving machinability by creating an intermetallic compound that does not contain in the structure. If it is less than 2.5%, these effects will not be sufficient, and if it exceeds 6.5wt%, the intermetallic compounds containing Mg will increase and become coarse, leading to the risk of deteriorating the corrosion resistance of the material and causing coarse pinto. Sexuality increases.

Mn、Cr5Zr、Ti、Ni、Bはそれぞれ材料中の
結晶粒を微細化する効果を有し、素材の強度に寄与する
とともに、切削加工表面の平滑性を向上する効果がある
。それぞれ下限未満ではこれら効果が充分ではなく、上
限をこえると鋳造時に粗大な化合物を生し、欠陥が発生
する可能性が高くなる。
Mn, CrZr, Ti, Ni, and B each have the effect of refining the crystal grains in the material, contributing to the strength of the material and improving the smoothness of the cut surface. Below the respective lower limits, these effects are not sufficient, and above the upper limits, coarse compounds are produced during casting, increasing the possibility of defects occurring.

CuおよびZnは本発明合金材を鏡面切削加工後に、酸
あるいはアルカリで表面処理を施す場合に表面の反応性
を均一にし、処理後の表面の平滑性を向上する効果を奏
する。また、磁気ディスク等に使用される場合の様に表
面にめっきを施す場合には、めっきの下地処理であるジ
ンケート処理時にジンケート粒子を均一、微細化し、そ
れによりめっきの密着性およびめっき表面の平滑性を向
上する。
Cu and Zn have the effect of making the reactivity of the surface uniform and improving the smoothness of the surface after the treatment when the alloy material of the present invention is subjected to surface treatment with acid or alkali after mirror cutting. In addition, when plating the surface, such as when used for magnetic disks, the zincate particles are made uniform and fine during zincate treatment, which is the base treatment for plating, and this improves the adhesion of the plating and the smoothness of the plating surface. Improve your sexuality.

本発明合金に含まれる不純物はおちにFeとSiである
が、これら元素が単独で0.20wt%を超えると素材
中の金属間化合物が粗大化し、鏡面切削時の欠陥が発生
する危険性が高くなる。
The impurities contained in the alloy of the present invention are mainly Fe and Si, but if these elements alone exceed 0.20 wt%, the intermetallic compounds in the material will become coarse and there is a risk that defects will occur during mirror cutting. It gets expensive.

上記元素以外の不純物はそれぞれ0.05wt%以下で
あれば含有しても本発明合金材の特性に影響しない。
Impurities other than the above-mentioned elements do not affect the properties of the alloy material of the present invention even if they are contained as long as they are each 0.05 wt% or less.

また本発明合金材には溶湯の酸化防止等の目的でBeを
0.5〜200 ppm程度添加することも可能である
It is also possible to add Be to the alloy material of the present invention in an amount of about 0.5 to 200 ppm for the purpose of preventing oxidation of the molten metal.

次に本発明合金材の組織を限定した理由について説明す
る。
Next, the reason for limiting the structure of the alloy material of the present invention will be explained.

前述の如く、Mgまたは/およびSiを含有し、Feを
含有しない金属間化合物はFeを含有する金属間化合物
が切削時に欠陥となることを抑制する効果を有し、この
効果はその長径が1.0mm2以上のものにおいて顕著
である。その組織中の分布において、該化合物の長径が
1.0mm2以上のものが1゜011あたりに100〜
5000個に限定した理由は、下限未満ではこの効果が
充分ではなく、5000個を超えると逆に切削表面の平
滑性を阻害する。
As mentioned above, an intermetallic compound containing Mg or/and Si and not containing Fe has the effect of suppressing the formation of defects during cutting of the intermetallic compound containing Fe, and this effect is due to the fact that the major axis of the intermetallic compound is 1 It is noticeable in those with a diameter of .0 mm2 or more. In the distribution in the tissue, the compound with a long axis of 1.0 mm2 or more has a concentration of 100 to 100 per 1°011.
The reason why the number is limited to 5,000 is that below the lower limit, this effect is not sufficient, and when it exceeds 5,000, the smoothness of the cut surface is adversely affected.

組織中の金属間化合物の分布の決定にあたっては、充分
に大きな面積を測定対象としない場合には正確な分布の
測定が不可能である。従って本発明品の測定に当たって
は、1.0mm2以上の面積を測定することが好ましい
。また測定にあたっては、走査型電子顕微鏡(SEM)
あるいは光学w4?II鏡等により観察した組織を画像
処理装置等により測定することが一般的であるが、測定
の際の観察倍率が小さいものである場合には測定誤差が
大きくなり正確な測定が不可能である。したがって本発
明品の測定にあたっては1000倍以上の倍率にて組織
観察を行なうことが望ましい。
When determining the distribution of intermetallic compounds in a structure, it is impossible to accurately measure the distribution unless a sufficiently large area is measured. Therefore, when measuring the product of the present invention, it is preferable to measure an area of 1.0 mm 2 or more. In addition, for measurements, a scanning electron microscope (SEM) was used.
Or optical w4? It is common to measure tissue observed with a II mirror, etc. using an image processing device, etc., but if the observation magnification during measurement is small, measurement errors will become large and accurate measurement will not be possible. . Therefore, when measuring the product of the present invention, it is desirable to observe the structure at a magnification of 1000 times or more.

これら組織状態は鋳造条件と均質化処理条件の組み合わ
せにより威されるものであり、本発明においてはそれら
条件をそれぞれに規定するものではない。Mgまたは/
およびSiを含有し、Feを含有しない金属間化合物は
凝固終了間際、即ち同相線温度付近にて晶出し、さらに
冷却途中で析出する。従って、まず鋳造時の冷却速度の
大きさにより鋳塊または鋳造板の化合物の分布が決定さ
れる。なおこの時に問題になる冷却速度は、溶湯が凝固
する際の700〜580 ”C前後の温度域における冷
却速度、および凝固後に析出がおきる580〜200″
Cの温度域における冷却速度の何れも含むものである。
These structural conditions are influenced by the combination of casting conditions and homogenization treatment conditions, and the present invention does not specify these conditions individually. Mg or/
The intermetallic compound containing Si and not Fe crystallizes just before the end of solidification, that is, near the in-phase temperature, and further precipitates during cooling. Therefore, first, the distribution of compounds in the ingot or cast plate is determined by the magnitude of the cooling rate during casting. The cooling rate that becomes an issue at this time is the cooling rate in the temperature range of around 700-580"C when the molten metal solidifies, and the cooling rate in the temperature range of 580-200"C where precipitation occurs after solidification.
This includes any cooling rate in the temperature range of C.

この時の冷却速度が大きい程、化合物のサイズは細かく
なる。次に通常の鋳塊あるいは鋳造板は均質化処理、焼
鈍等の熱処理が施される、この際の条件が高温・長時間
であるほどMgまたは/およびSiを含有し、Feを含
有しない金属間化合物は微細になる。従ってこれら熱処
理温度・時間は鋳造時の化合物分布により決定されるべ
きである。通常はこのような合金の熱処理温度は均質化
処理の場合は450〜540″C程度であり、焼鈍処理
の場合には200〜400″C程度の温度が採用されて
いる。本発明の目的とする組織を得るための熱処理温度
は520 ”C以下が推奨される。この理由は素材中の
原子の拡散速度は温度に対して指数関数的に増大するた
めに、熱処理温度が高温になるほど化合物の微細化が短
時間の内に進行し制御が困難となり、所望の化合物量が
得られにくくなるからである。熱処理時間は熱処理前の
化合物分布と熱処理温度により決定されるべきである。
The larger the cooling rate at this time, the finer the size of the compound. Next, the ordinary ingot or cast plate is subjected to heat treatment such as homogenization treatment and annealing. The compound becomes finer. Therefore, these heat treatment temperatures and times should be determined depending on the compound distribution during casting. Usually, the heat treatment temperature for such an alloy is about 450 to 540''C for homogenization treatment, and about 200 to 400''C for annealing treatment. The recommended heat treatment temperature to obtain the target structure of the present invention is 520"C or less. The reason for this is that the diffusion rate of atoms in the material increases exponentially with temperature, so the heat treatment temperature is This is because the higher the temperature, the more fine the compound progresses in a shorter time, making control more difficult and making it difficult to obtain the desired amount of compound.The heat treatment time should be determined by the compound distribution before heat treatment and the heat treatment temperature. be.

また熱処理後の冷却時には、化合物の再析出による粗大
化がおきる場合があることから、冷却速度が小さい場合
ば熱処理により小さめの分布として、再析出により所望
の分布とすることが望ましく、冷却速度が大きい場合に
は熱処理により所望の分布とすることが望ましい。なお
これら熱処理による化合物分布の調整は一度の熱処理に
より決定する必要はなく、加工前、加工途中、加工後等
に数回に分けて行うことも可能である。なお加工と熱処
理とを組み合わせる場合においては、加工により導入さ
れた歪みが材料中の原子の拡散を早める効果があり、そ
れゆえ比較的低温、短時間、処理で化合物の微細化を行
うことも可能である。また鋳造時の冷却速度をコントロ
ールすることにより所望の化合物サイズ、量にコントロ
ールすることも可能であり、この場合には鋳造後の熱処
理は、Mgまたは/およびSiを含有し、Feを含有し
ない金属間化合物のサイズ、量に大きな影響を与えない
様な条件を選定すべきであり、その場合の熱処理温度は
380°C以下が推奨される。
In addition, when cooling after heat treatment, coarsening may occur due to redecipitation of the compound, so if the cooling rate is low, it is desirable to make the distribution smaller by heat treatment and achieve the desired distribution by reprecipitation. If it is large, it is desirable to achieve the desired distribution by heat treatment. Note that the adjustment of the compound distribution by these heat treatments does not need to be determined by a single heat treatment, and can be carried out in several parts, such as before processing, during processing, and after processing. In addition, when processing and heat treatment are combined, the strain introduced by processing has the effect of accelerating the diffusion of atoms in the material, and therefore it is possible to refine the compound at relatively low temperatures and in a short time. It is. It is also possible to control the desired compound size and amount by controlling the cooling rate during casting. In this case, the heat treatment after casting is performed using a metal containing Mg or/and Si but not containing Fe. Conditions should be selected that do not significantly affect the size and amount of intercalary compounds, and in this case it is recommended that the heat treatment temperature be 380°C or less.

〔実施例] 以下に本発明の一実施例について説明する。〔Example] An embodiment of the present invention will be described below.

実施例1 第1表に示す各組成の合金をDC鋳造により厚さ300
mm、中600sの鋳塊とした。この鋳塊の金属間化合
物をSEMにより観察倍率2000倍にて観察し、ED
Xを随時使用してその化合物に含有される元素を確認し
ながら、Mgまたは/およびSiを含有し、Feを含有
しない金属間化合物を組織中より識別し、そのSEM像
を画像解析装置に入力して長径1.〇−組以上該化合物
のサイズと量とを測定した。測定面積は、1.0mm2
とじ、その測定結果を第2表に示す。
Example 1 Alloys having the compositions shown in Table 1 were cast to a thickness of 300 mm by DC casting.
It was made into an ingot with a diameter of 600 seconds. The intermetallic compounds in this ingot were observed using an SEM at a magnification of 2000 times, and the ED
While checking the elements contained in the compound using X as needed, identify intermetallic compounds containing Mg and/or Si but not Fe from the tissue, and input the SEM image to the image analysis device. and major axis 1. The size and amount of the compound were measured for 0-groups and above. The measurement area is 1.0mm2
The measurement results are shown in Table 2.

これらの鋳塊を片面各10r!mずつ補剤した後、鋳塊
中の該化合物分布に留意して第1表に示す均質化処理条
件にて熱処理し、処理俊速やかに該温度のまま熱間圧延
を行い厚さ4閤の板材とした。
Each side of these ingots costs 10r! After supplementing the ingot by m, it was heat-treated under the homogenization treatment conditions shown in Table 1, paying attention to the distribution of the compound in the ingot, and quickly hot-rolled at the same temperature to a thickness of 4 loaves. It was made into a plate material.

熱間圧延終了後、その温度(470〜380”C)より
強制空冷により速やかに冷却し150°C/h以上の冷
却速度にて80°C以下まで冷却した。その後冷間圧延
により1.6 m厚の供試用板材とした。
After hot rolling, it was rapidly cooled from that temperature (470 to 380"C) by forced air cooling and cooled to 80°C or less at a cooling rate of 150°C/h or more. Thereafter, cold rolling was performed to 1.6 A test plate with a thickness of m was used.

この板材より外形280m5+の円板を打ち抜き、36
0°CX2hの焼鈍を行った後、この板材のMgおよび
/またはSiを含有し、Fcを含有しない金属間化合物
を、前述の鋳塊における測定と同様の方法により測定し
、その結果を第2表に示した。
A circular plate with an outer diameter of 280 m5+ was punched out from this plate material, and 36
After annealing at 0°C for 2 hours, the intermetallic compounds containing Mg and/or Si but not Fc in this plate were measured using the same method as the measurement for the ingot described above, and the results were used in the second test. Shown in the table.

また同時にこの円板を荒切削により外径275閤、内径
100閣のドーナッツ状円板として、切削性試験に供し
た。切削には天然単結晶ダイアモンドバイトを使用し、
回転数2000rpm、送り速度0、05 m / r
ev 、切り込み深さ10mm2の条件にて切削を行い
、切削した表面のスクラッチ、ビット等の不良の有無を
目視にて観察した。切削性試験は1つの組成について1
0枚ずつ両面を切削し、計20面を観察した結果10面
以上で不良が発生していたものを×とし、2〜9面で不
良が発生していたものを△とし、不良の発生が2面以下
であったものをOとした。その結果を第2表に併記した
。これより明らかなように本発明品はいずれも切削性に
優れている。しかし本発明の組成を外れる比較例はMg
または/およびSiを含有し、Feを含有しない金属間
化合物が数が多いかもしくは適性量内にあっても、切削
による不良が多く、特性的に劣ることは明らかである。
At the same time, this disk was roughly cut into a donut-shaped disk with an outer diameter of 275 mm and an inner diameter of 100 mm, which was then subjected to a machinability test. A natural single-crystal diamond tool is used for cutting.
Rotation speed 2000 rpm, feed speed 0, 05 m/r
Cutting was performed under the conditions of ev and cutting depth of 10 mm2, and the presence or absence of defects such as scratches and bits on the cut surface was visually observed. Machinability test is 1 for one composition.
After cutting 0 sheets on both sides and observing a total of 20 sides, those with defects on 10 or more sides are marked as ×, and those with defects on 2 to 9 sides are marked as △, indicating that no defects have occurred. Those with 2 or fewer sides were rated O. The results are also listed in Table 2. As is clear from this, all the products of the present invention have excellent machinability. However, in a comparative example that deviates from the composition of the present invention, Mg
It is clear that even if the number of intermetallic compounds containing or/and Si and not containing Fe is large or within an appropriate amount, there are many defects due to cutting and the properties are inferior.

実施例2 実施例1の合金Nα4の鋳塊を第3表の均質化処理条件
にて処理し、その後実施例1と同一の工程により種々の
化合物分布を持つ供試材を得た。金属間化合物の測定お
よび切削性試験も実施例1と同様に行った。結果を第3
表に示す。本結果より明らかな様に本発明品は切削性が
良好である。本発明の範囲を外れる分布を持つ比較例で
は特性的に劣ることは明らかである。
Example 2 The ingot of alloy Nα4 of Example 1 was treated under the homogenization treatment conditions shown in Table 3, and then the same steps as in Example 1 were performed to obtain test materials having various compound distributions. The measurement of intermetallic compounds and the machinability test were also conducted in the same manner as in Example 1. 3rd result
Shown in the table. As is clear from these results, the product of the present invention has good machinability. It is clear that comparative examples with distributions outside the scope of the present invention have inferior characteristics.

実施例3 第4表に示す組成の合金を双ロール鋳造機により板厚6
.8 vn、幅900mの鋳造板とした。本鋳造板を第
5表に示す熱処理を施し、その後冷間圧延により板厚1
.6 rmの供試用板材とし、その後の工程は実施例1
と同様に加工、熱処理および評価を行った。その結果を
第5表に示す。本結果より明らかな様に本発明品は切削
性が良好である。これに対し本発明の範囲を外れる分布
を持つ比較例では特性的に劣ることは明らかである。
Example 3 An alloy having the composition shown in Table 4 was cast into a sheet with a thickness of 6 mm using a twin roll casting machine.
.. It was a cast plate with a width of 8 vn and a width of 900 m. This cast plate was heat treated as shown in Table 5, and then cold rolled to a thickness of 1
.. A test plate of 6 rm was used, and the subsequent steps were as in Example 1.
Processing, heat treatment, and evaluation were performed in the same manner as above. The results are shown in Table 5. As is clear from these results, the product of the present invention has good machinability. On the other hand, it is clear that comparative examples having distributions outside the scope of the present invention have inferior characteristics.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明によれば、鏡面切削加工時
の欠陥の発生の少ない合金が得られるもので工業上顕著
な効果を奏するものである。
As explained above, according to the present invention, it is possible to obtain an alloy in which fewer defects occur during mirror cutting, which has a significant industrial effect.

Claims (4)

【特許請求の範囲】[Claims] (1)必須元素として、Mg2.5〜6.5wt%を含
有し、不純物元素として、Fe≦0.20wt%、Si
≦0.20wt%を含有し、残部が実質的にAlからな
るアルミニウム合金であって、その組織中にMgまたは
/およびSiを含有し、Feを含有しない金属間化合物
がその組織中の分布において、該化合物の長径が1.0
μm以上のものが1.0mm^2あたりに100〜50
00個存在することを特徴とする鏡面切削性に優れたア
ルミニウム合金。
(1) Contains Mg2.5-6.5wt% as an essential element, Fe≦0.20wt%, Si as an impurity element.
≦0.20wt%, the balance being substantially Al, the intermetallic compound containing Mg or/and Si in its structure and not containing Fe in the distribution in its structure. , the major axis of the compound is 1.0
100 to 50 per 1.0 mm^2 of μm or more
An aluminum alloy with excellent mirror machinability characterized by the presence of 00 pieces.
(2)必須元素として、Mg2.5〜6.5wt%を含
有し、選択的添加元素として、Mn0.01〜1.0w
t%、Cr0.01〜0.3wt%、Zr0.005〜
0.3wt%、Ti0.001〜0.05wt%、Ni
0.005〜0.5wt%、B0.0001〜0.01
wt%の内、1種または2種以上を含有し、不純物元素
として、Fe≦0.20wt%、Si≦0.20wt%
を含有し、残部が実質的にAlからなるアルミニウム合
金であって、その組織中にMgまたは/およびSiを含
有し、Feを含有しない金属間化合物が、その組織中の
分布において、該化合物の長径が1.0μm以上のもの
が1.0mm^2あたりに100〜5000個存在する
ことを特徴とする鏡面切削性に優れたアルミニウム合金
(2) Contains 2.5 to 6.5 wt% of Mg as an essential element, and 0.01 to 1.0 w of Mn as an optional additional element.
t%, Cr0.01~0.3wt%, Zr0.005~
0.3wt%, Ti0.001-0.05wt%, Ni
0.005-0.5wt%, B0.0001-0.01
Fe≦0.20wt%, Si≦0.20wt% as impurity elements.
An aluminum alloy containing Mg and/or Si with the remainder substantially consisting of Al, in which an intermetallic compound that contains Mg or/and Si and does not contain Fe has a distribution in the structure of the compound. An aluminum alloy with excellent mirror machinability, characterized by the presence of 100 to 5000 pieces per 1.0 mm^2 with a major axis of 1.0 μm or more.
(3)必須元素として、Mg2.5〜6.5wt%を含
有し、選択的添加元素として、Cu0.001〜2.0
wt%、Zn0.001〜2.0wt%の内、1種また
は2種以上を含有し、不純物元素として、Fe≦0.2
0wt%、Si≦0.20wt%を含有し、残部が実質
的にAlからなるアルミニウム合金であって、その組織
中にMgまたは/およびSiを含有し、Feを含有しな
い金属間化合物が、その組織中の分布において、該化合
物の長径が1.0μm以上のものが1.0mm^2あた
りに100〜5000個存在することを特徴とする鏡面
切削性に優れたアルミニウム合金。
(3) Contains 2.5 to 6.5 wt% of Mg as an essential element, and 0.001 to 2.0 of Cu as an optional addition element.
wt%, Zn0.001 to 2.0wt%, and contains one or more of Zn0.001 to 2.0wt%, and as an impurity element, Fe≦0.2
0wt%, Si≦0.20wt%, and the balance is substantially Al, and the intermetallic compound contains Mg and/or Si and does not contain Fe in its structure. An aluminum alloy with excellent mirror machinability, characterized in that, in the distribution in the structure, there are 100 to 5000 compounds having a major axis of 1.0 μm or more per 1.0 mm^2.
(4)必須元素として、Mg2.5〜6.5wt%を含
有し、第1の選択的添加元素として、Mn0.01〜1
.0wt%、Cr0.01〜0.3wt%、Zr0.0
05〜0.3wt%、Ti0.001〜0.05wt%
、Ni0.005〜0.5wt%、B0.0001〜0
.01wt%の内1種または2種以上を含有し、さらに
第2の選択的元素として、Cu0.001〜2.0wt
%、Zn0.001〜2.0wt%の内、1種または2
種以上を含有し、不純物元素として、Fe≦0.20w
t%、Si0.20wt%を含有し、残部が実質的にA
lからなるアルミニウム合金であって、その組織中にM
gまたは/およびSiを含有し、Feを含有しない金属
間化合物が、その組織中の分布において、該化合物の長
径が1.0μm以上のものが1.0mm^2あたりに1
00〜5000個存在することを特徴とする鏡面切削性
に優れたアルミニウム合金。
(4) Contains 2.5 to 6.5 wt% of Mg as an essential element, and 0.01 to 1 Mn as a first selective addition element.
.. 0wt%, Cr0.01-0.3wt%, Zr0.0
05-0.3wt%, Ti0.001-0.05wt%
, Ni0.005~0.5wt%, B0.0001~0
.. 0.01 wt%, and further contains Cu0.001 to 2.0 wt% as a second selective element.
%, one or two of Zn0.001-2.0wt%
Fe≦0.20w as an impurity element
t%, Si0.20wt%, and the remainder is substantially A.
An aluminum alloy consisting of M in its structure.
In the distribution in the structure of an intermetallic compound containing g or/and Si and not containing Fe, the compound having a long axis of 1.0 μm or more has a concentration of 1 per 1.0 mm^2.
An aluminum alloy with excellent mirror machinability characterized by the presence of 00 to 5000 pieces.
JP22524389A 1989-08-31 1989-08-31 Aluminum alloy excellent in mirror finishing characteristic Pending JPH0390528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22524389A JPH0390528A (en) 1989-08-31 1989-08-31 Aluminum alloy excellent in mirror finishing characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22524389A JPH0390528A (en) 1989-08-31 1989-08-31 Aluminum alloy excellent in mirror finishing characteristic

Publications (1)

Publication Number Publication Date
JPH0390528A true JPH0390528A (en) 1991-04-16

Family

ID=16826246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22524389A Pending JPH0390528A (en) 1989-08-31 1989-08-31 Aluminum alloy excellent in mirror finishing characteristic

Country Status (1)

Country Link
JP (1) JPH0390528A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013118A1 (en) * 1997-09-11 1999-03-18 Nippon Light Metal Company Ltd. Aluminum alloy sheet for spot welding
JP2002275568A (en) * 2001-03-15 2002-09-25 Kobe Steel Ltd Aluminum alloy for magnetic disk and substrate for magnetic disk

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999013118A1 (en) * 1997-09-11 1999-03-18 Nippon Light Metal Company Ltd. Aluminum alloy sheet for spot welding
US6369347B1 (en) 1997-09-11 2002-04-09 Nippon Light Metal Company, Ltd. Aluminum alloy sheet for spot welding
JP2002275568A (en) * 2001-03-15 2002-09-25 Kobe Steel Ltd Aluminum alloy for magnetic disk and substrate for magnetic disk

Similar Documents

Publication Publication Date Title
JP6998305B2 (en) Aluminum alloy plate for magnetic disk substrate and its manufacturing method, and magnetic disk
US4431461A (en) Method for producing Al-base alloy substrates for magnetic recording media
JP6908741B2 (en) Aluminum alloy blanks for magnetic disks and aluminum alloy substrates for magnetic disks
JPS59157255A (en) Aluminum alloy material for superprecision working to form specular surface
JPH0390528A (en) Aluminum alloy excellent in mirror finishing characteristic
JPH04272150A (en) Aluminum alloy for magnetic disk excellent in grindability
JP3710009B2 (en) Aluminum alloy plate for magnetic disk substrate and manufacturing method thereof
JPH02205651A (en) Aluminum alloy for magnetic disk base
JPH11315338A (en) Aluminum alloy for magnetic disk, excellent in zincate treatment property
JPH07195150A (en) Method for casting aluminum alloy for hdd
JPS58221255A (en) Aluminum alloy material for laser mirror and its manufacture
JPH108177A (en) Aluminum alloy sheet for magnetic disk substrate and its production
JP2020153012A (en) Aluminum alloy blank for magnetic disk, and aluminum alloy substrate for magnetic disk
JPH01225739A (en) Aluminum alloy for magnetic disk substrate
JPH07331397A (en) Production of aluminum alloy sheet for magnetic disk substrate
JPH01312054A (en) Aluminum alloy for magnetic disk and its production
JPH02159340A (en) Aluminum alloy sheet for disk having excellent plating characteristics
JPH07197170A (en) Aluminum alloy sheet for thin disk and its production
JPH04341535A (en) Aluminum alloy substrate for high density coating type magnetic disk
WO2020184038A1 (en) Aluminum alloy blank for magnetic disk and aluminum alloy substrate for magnetic disk
JP2017166017A (en) Aluminum alloy substrate for magnetic disc
JP4214143B2 (en) Aluminum alloy plate for magnetic disk, aluminum alloy substrate for magnetic disk, and method for producing the alloy plate
JPH02159339A (en) Aluminum alloy for magnetic disk base having excellent specular finishing properties
JPH09263870A (en) Aluminum alloy for magnetic disk substrate, and magnetic disk substrate
JPH0499143A (en) Aluminum alloy for magnetic disk base plate having good ni-p plating property