JPH0389938A - Preparation of ultrafine particle - Google Patents

Preparation of ultrafine particle

Info

Publication number
JPH0389938A
JPH0389938A JP22505989A JP22505989A JPH0389938A JP H0389938 A JPH0389938 A JP H0389938A JP 22505989 A JP22505989 A JP 22505989A JP 22505989 A JP22505989 A JP 22505989A JP H0389938 A JPH0389938 A JP H0389938A
Authority
JP
Japan
Prior art keywords
crucible
ultrafine particles
reaction chamber
auxiliary
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22505989A
Other languages
Japanese (ja)
Other versions
JPH0753236B2 (en
Inventor
Kazuhito Ogura
小倉 和仁
Hiroaki Sugino
杉野 弘明
Hideki Toyotama
英樹 豊玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Stanley Electric Co Ltd
Original Assignee
Research Development Corp of Japan
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Stanley Electric Co Ltd filed Critical Research Development Corp of Japan
Priority to JP1225059A priority Critical patent/JPH0753236B2/en
Publication of JPH0389938A publication Critical patent/JPH0389938A/en
Publication of JPH0753236B2 publication Critical patent/JPH0753236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To produce new kind of ultrafine particles by introducing the inert gas atmosphere into a reaction chamber and evaporating the aimed substance from a main crucible in this reaction chamber and simultaneously evaporating the allowable additive from an auxiliary crucible and depositing the mixture of both on a substrate as the ultrafine particles. CONSTITUTION:A main crucible 11 and an auxiliary crucible 12 which can be independently heated and controlled are prepared in a reaction chamber 1. The inert gas atmosphere is introduced into this reaction chamber 1 and both the crucible 11 and the crucible 12 are heated at the prescribed temp. respectively. The aimed substance is evaporated from the main crucible 11 and simultaneously the allowable additive is evaporated form the auxiliary crucible 12. The mixture of both is deposited on a substrate 5 as ultrafine particles. As a result, the ultrafine particles in which the required amount of the additive is admixed with the aimed substance can be produced. Further the ultrafine particles high in amorphousness whose crystallinity is controlled can be produced by admixing the impurity having crystallization controlling effect. The ultrafine particles having amorphousness show excellent solubility and dispersibility.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超微粒子の製造方法に関し、特に水性溶媒等
の溶媒に対して優れた溶解性・分散性を有する超微粒子
を製造する方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing ultrafine particles, and particularly to a method for producing ultrafine particles that have excellent solubility and dispersibility in solvents such as aqueous solvents. .

[従来の技術] 第2図を参照して、従来技術による超微粒子の作成方法
を説明する。
[Prior Art] A method for producing ultrafine particles according to the prior art will be described with reference to FIG.

真空容器で形成される反応室1は、弁7,8を介して排
気系2と不活性ガス源3とに接続されている。反応容器
1の内部には原料を蒸発させるためのるつぼ4か配置さ
れ、るつぼ4上方には生成した超微粒子を付着させるた
めの基板5か配置されている。基板5は液体窒素系等の
冷却系(図示せず)によって冷却される。
A reaction chamber 1 formed by a vacuum vessel is connected to an exhaust system 2 and an inert gas source 3 via valves 7 and 8. A crucible 4 for evaporating raw materials is disposed inside the reaction vessel 1, and a substrate 5 is disposed above the crucible 4 for adhering produced ultrafine particles. The substrate 5 is cooled by a cooling system (not shown) such as a liquid nitrogen system.

超微粒子作成においては、まず有機化合物等の所定組成
の原料をるつぼ4に仕込み、反応室1を気密に封じる。
In producing ultrafine particles, first, raw materials of a predetermined composition such as organic compounds are charged into a crucible 4, and the reaction chamber 1 is hermetically sealed.

反応室1内を弁7を介して排気系2て、たとえば1.0
 6Torr位の高真空に排気した後、ヘリウム(He
) 、アルゴン(Ar)等の不活性ガスを不活性ガス源
3から弁8を介して導入し、所定の不活性ガス圧とする
The exhaust system 2 exhausts the inside of the reaction chamber 1 via the valve 7, e.g.
After evacuation to a high vacuum of about 6 Torr, helium (He
), an inert gas such as argon (Ar) is introduced from an inert gas source 3 through a valve 8 to maintain a predetermined inert gas pressure.

その後、基板5を冷却し、あらかじめ原料を仕込んだる
つぼ4を徐々に加熱し、蒸発温度まで昇温する6加熱さ
れた原料は液化し、表面から気化・蒸発する。なお、原
料によっては、液化せず、固相から直接気相に昇華する
Thereafter, the substrate 5 is cooled, and the crucible 4 in which raw materials have been charged in advance is gradually heated, and the temperature is raised to the evaporation temperature.6 The heated raw materials are liquefied and vaporized from the surface. Note that some raw materials do not liquefy and sublimate directly from the solid phase to the gas phase.

るつぼ4で加熱され、蒸発した原料ガス分子は雰囲気の
不活性ガス分子と衝突して冷却され、徐々に凝集して超
微粒子を形成する。生成した超微粒子は、るつぼ4上方
に設置し、冷却した基板5に付着され、回収される。
The raw material gas molecules heated and evaporated in the crucible 4 collide with inert gas molecules in the atmosphere, are cooled, and gradually coagulate to form ultrafine particles. The generated ultrafine particles are placed above the crucible 4, attached to a cooled substrate 5, and collected.

有機物超微粒子のバルク粒子に対する長所として、粒径
の減少に伴う表面電荷の変化および溶媒に対する溶解速
度ないしは分散性の向上かある。
The advantages of ultrafine organic particles over bulk particles include a change in surface charge as the particle size decreases and an improvement in dissolution rate or dispersibility in solvents.

物質の溶媒に対する溶解速度、過飽和度、分散性を決定
する重要なパラメータとして、粒径および粒子の結晶性
がある。有機物超微粒子は、バルク材に比較してその粒
径が著しく小さく、f憂りた溶解性(溶解速度、過飽和
度)ないし分散性を示す。
Particle size and particle crystallinity are important parameters that determine the dissolution rate, degree of supersaturation, and dispersibility of a substance in a solvent. Ultrafine organic particles have significantly smaller particle sizes than bulk materials and exhibit poor solubility (dissolution rate, supersaturation degree) and dispersibility.

一方、非晶質物質が、結晶性物質に比較して優れた溶解
性・分散性を示すことも良く知られている。
On the other hand, it is also well known that amorphous substances exhibit superior solubility and dispersibility compared to crystalline substances.

従来、難溶性の薬品は、バルク原料と薬品添加物(乳糖
、メチルセルロース等)を混合し、ボールミル等で粉砕
、混合することで、超微粒子化するとともに非晶質性を
付与し、溶解性を高めていた。
Conventionally, poorly soluble drugs are made by mixing bulk raw materials and drug additives (lactose, methylcellulose, etc.), pulverizing them in a ball mill, etc., and mixing them to form ultra-fine particles and impart amorphous properties to improve solubility. It was increasing.

[発明か解決しようとする課題] 以上述べたように、従来ある種の有機物に対して、溶媒
に対する溶解性・分散性を高めるため、ボールミル等で
超微粒子化することが行われた。
[Problems to be Solved by the Invention] As described above, conventionally, certain organic substances have been made into ultrafine particles using a ball mill or the like in order to improve their solubility and dispersibility in solvents.

しかし、ある種の有機物においては、超II!1粒子化
しても、精製する超微粒子の結晶性が高く、期待した程
の溶媒に対する溶解速度や過飽和度の溶解性(あるいは
分散性)の向上効果が得られないことかあった。
However, in certain organic substances, Super II! Even when it is made into one particle, the crystallinity of the ultrafine particles to be purified is high, and the expected effect of improving the dissolution rate in the solvent and the solubility (or dispersibility) of supersaturation degree may not be obtained.

本発明の目的は、新たな種類の超微粒子を製造する方法
を提供することである。
An object of the present invention is to provide a method for producing a new type of ultrafine particles.

本発明の他の目的は、溶媒に対する溶解性・分散性を高
めた非晶質有機物超微粒子を製造する方法を提供するこ
とである。
Another object of the present invention is to provide a method for producing ultrafine amorphous organic particles with improved solubility and dispersibility in solvents.

[課題を解決するための手段] 反応室内に独立に加熱制御できる主るつぼと補助るつぼ
とを準備し、反応室内に不活性ガス雰囲気を導入し、主
るつぼと補助るつぼとをそれぞれ所定温度に加熱し、目
的物質を主るつぼから、許容できる添加物を補助るつぼ
がち同時に蒸発させ、両者の混合物を超微粒子として基
板上に堆積させる。
[Means for solving the problem] Prepare a main crucible and an auxiliary crucible that can be heated independently in a reaction chamber, introduce an inert gas atmosphere into the reaction chamber, and heat the main crucible and auxiliary crucible to a predetermined temperature. Then, the target substance is simultaneously evaporated from the main crucible and the acceptable additive is evaporated from the auxiliary crucible, and a mixture of both is deposited as ultrafine particles on the substrate.

目的物質と添加物とは、初めに各るつぼに装架しても、
少量ずつ貯蔵部がち供給してもよい。
Even if the target substance and additives are initially loaded in each crucible,
The reservoir may be supplied in small quantities.

目的物質か有機物の場合、添加物として目的物質の結晶
化を妨げる不純物を用い、基板上に蒸発物を捕獲させ、
非晶質有機物質超微粒子を得ることかてきる。
If the target substance is an organic substance, an impurity that prevents the crystallization of the target substance is used as an additive, and the evaporated substance is captured on the substrate.
It is possible to obtain ultrafine particles of amorphous organic material.

[作用] 超微粒子の製造Gよ、るつぼから超微粒子原料を蒸発さ
せ、不活性雰囲気ガスと衝突をさせることによって行わ
れる6結晶化を阻害させるために、不純物等を目的物質
に添加するため、目的物質と一緒に添加物をるつぼに投
入すると、るつぼ内で加熱され蒸発する際に、選択的蒸
発か起り、得られる超微粒子としては添加物濃度が所期
のものにならないことか多い。
[Function] Production of ultrafine particles G, in order to inhibit the crystallization that is carried out by evaporating the ultrafine particle raw material from the crucible and colliding it with an inert atmosphere gas, impurities etc. are added to the target substance. When additives are put into a crucible together with the target substance, selective evaporation occurs when they are heated and evaporated in the crucible, and the resulting ultrafine particles often do not have the desired concentration of additives.

主るつぼと別に独立に加熱制御できる補助るつぼを設け
、主るつぼから目的物質を、補助るつぼから添加物を蒸
発させることにより、それぞれの蒸発量を独立に制御す
ることか可能になる。このようにして、反応室内で2種
類以上の蒸発源から同時に蒸発を行い、目的物質に所望
量の添加物を混合した混合物の超微粒子を基板上に堆積
させることかできる。
By providing an auxiliary crucible that can be heated independently from the main crucible and evaporating the target substance from the main crucible and the additive from the auxiliary crucible, it becomes possible to independently control the amount of evaporation of each. In this way, evaporation is performed simultaneously from two or more types of evaporation sources in the reaction chamber, and ultrafine particles of a mixture of the target substance and a desired amount of additive can be deposited on the substrate.

目的物質か有機物質てあり、たとえはその溶解性・分散
性を高めるため、結晶化を妨げる不純物を添加する場合
は、補助るつぼに添加物を供給し、不活性ガス雰囲気中
で主るつぼと補助るつぼから同時に蒸発を行い、たとえ
は冷却した基板上に超微粒子を捕獲させることにより、
溶解性・分散性に優れた非晶質超微粒子を得ることか可
能になる。
If you have a target substance or an organic substance and want to add impurities that inhibit crystallization to improve its solubility and dispersibility, supply the additive to the auxiliary crucible and separate it from the main crucible in an inert gas atmosphere. By simultaneously evaporating from a crucible and capturing ultrafine particles on a cooled substrate,
It becomes possible to obtain amorphous ultrafine particles with excellent solubility and dispersibility.

そもそも、非晶質物質を得るための一般的な方法として
、 ■物質を急激に冷却してすばやく造粒する方法、■目的
物質に不純物を混入し、結晶成長を抑制する方法 等か有る。目的物質の蒸発と並行して添加物を補助るつ
ぼから蒸発させ混合することは■の方法によるものであ
る。このようにして、結晶性を低く抑えた非晶質超微粒
子か得られる。
In the first place, there are two general methods for obtaining an amorphous substance: (1) rapid cooling of the substance to quickly granulate it, and (2) a method of mixing impurities into the target substance to suppress crystal growth. The method (2) involves evaporating and mixing additives from an auxiliary crucible in parallel with the evaporation of the target substance. In this way, amorphous ultrafine particles with low crystallinity can be obtained.

非晶質超微粒子は、粒径か小さいことにより優れた溶解
性・分散性を有するのに加え、非晶質であることにより
一層溶解性・分散性が向上することが期待される。
Amorphous ultrafine particles have excellent solubility and dispersibility due to their small particle size, and are expected to further improve solubility and dispersibility due to their amorphous nature.

[実施例] 以下、図面を参照して本発明の詳細な説明する。[Example] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は超微粒子作成装置を示す。FIG. 1 shows an apparatus for producing ultrafine particles.

反応室1は弁7を介して排気系2に接続され、また他の
弁8を介して不活性ガス源3に接続されている。
The reaction chamber 1 is connected via a valve 7 to an exhaust system 2 and via a further valve 8 to an inert gas source 3.

反応室1は、たとえはステンレス製のベース上にステン
レス製ないしガラス製のペルジャーを載せて構成される
。排気系2は、たとえはロータリポンプと拡散ポンプと
の組合せ等て構成される。
The reaction chamber 1 is constructed, for example, by placing a stainless steel or glass Pel jar on a stainless steel base. The exhaust system 2 is configured, for example, by a combination of a rotary pump and a diffusion pump.

不活性ガス源3はJ(e、Ar等■族ガスないしは、所
定の原料に対して不活性と見なせるN2ガス等の不活性
ガスを供給する。
The inert gas source 3 supplies an inert gas such as a group Ⅰ gas such as J(e, Ar, etc.) or an inert gas such as N2 gas which can be considered inert to a predetermined raw material.

反応室1内には主るつぼ11、補助るつぼ12か配置さ
れている。それぞれのし−タは独立制御可能な電源に接
続されている。
A main crucible 11 and an auxiliary crucible 12 are arranged within the reaction chamber 1. Each router is connected to an independently controllable power source.

るつぼ11.12上方には冷却できる基板5か配置され
る6基板5は液体窒素系(図示せず)によって液体窒素
温度近くに冷却できる。
A coolable substrate 5 is disposed above the crucible 11, 12. The substrate 5 can be cooled to near liquid nitrogen temperature by a liquid nitrogen system (not shown).

主るつぼ1J、補助るつぼ12は、それぞれたとえばヒ
ータを兼ねたW、Mo等の高融点金属の容器、ヒータ」
二に載せた石英、アルミナ等の容器、ヒータを埋め込ん
だ石英、アルミナ等の容器等で構成される。
The main crucible 1J and the auxiliary crucible 12 are, for example, containers made of high melting point metals such as W and Mo that also serve as heaters, respectively.
It consists of a container made of quartz, alumina, etc. placed on top of the quartz container, and a container made of quartz, alumina, etc. with a heater embedded in it.

以下に超微粒子作成の手順を説明する。The procedure for producing ultrafine particles will be explained below.

主るつぼ11に有機化合物等の所望目的物質の原料を所
望量仕込み、補助るつぼ12に所望量の結晶化抑制不純
物を仕込む。基板5を配置し、反応室1を気密に封じる
。反応室1内を高真空(たとえば10 ’Torr以上
の真空)に排気し、不活性ガス源3から反応室1内にH
e、Ar等の不活性ガスを導入する。不活性ガスを所定
の圧力(たとえば0.1〜10Torr)に調整し、不
活性ガス雰囲気を作成する。不活性ガス雰囲気はフロー
させてもよい。
A desired amount of a raw material for a desired target substance such as an organic compound is charged into the main crucible 11, and a desired amount of a crystallization inhibiting impurity is charged into the auxiliary crucible 12. The substrate 5 is placed and the reaction chamber 1 is hermetically sealed. The inside of the reaction chamber 1 is evacuated to a high vacuum (for example, a vacuum of 10' Torr or more), and H is supplied into the reaction chamber 1 from the inert gas source 3.
e, an inert gas such as Ar is introduced. The inert gas is adjusted to a predetermined pressure (for example, 0.1 to 10 Torr) to create an inert gas atmosphere. The inert gas atmosphere may be allowed to flow.

主るつぼ11と補助るつぼ12を加熱し、それぞれの原
料の蒸発温度(あるいは昇華温度)として適当な温度に
加熱して、主るつぼ11から目的物質、補助るつぼ12
から結晶化抑制不純物を同時に蒸発させる。
The main crucible 11 and the auxiliary crucible 12 are heated to a temperature suitable for the evaporation temperature (or sublimation temperature) of each raw material, and the target substance is transferred from the main crucible 11 to the auxiliary crucible 12.
The crystallization-inhibiting impurities are simultaneously evaporated.

同時に蒸発した目的物質の分子(ないし原子)と結晶化
抑制物質の分子(ないし原子)とは、雰囲気ガスの不活
性ガス分子と衝突を繰り返しつつ、冷却、成長・混合し
、混合物の超微粒子となって基板5上に堆積する。超微
粒子は、不活性ガス分子との衝突によって急激に冷却さ
れ、かつ結晶化抑制物質を含んでいるため、非晶質とな
る。また、基板5か冷却されているので成長し、基板5
に衝突した超微粒子はそこで捕獲される6 たとえば、目的物質は難溶性薬品等の有機物質、結晶化
抑制物質は乳糖、メチルセルロース等である。
The molecules (or atoms) of the target substance and the crystallization inhibiting substance that evaporated at the same time repeatedly collide with the inert gas molecules of the atmospheric gas, cool, grow, and mix, and form the ultrafine particles of the mixture. and is deposited on the substrate 5. The ultrafine particles become amorphous because they are rapidly cooled by collision with inert gas molecules and contain a crystallization inhibiting substance. Also, since the substrate 5 is cooled, it grows, and the substrate 5
For example, the target substance is an organic substance such as a poorly soluble drug, and the crystallization inhibiting substance is lactose, methylcellulose, etc.

真空容器内にtleガスを導入し、真空度をI Tor
rに調整した後、目的物質1gの入った主るつぼと、添
力U物であるL−ロイシンIgの入った補助るつぼをそ
れぞれ加熱する。主るつぼ及び補助るつぼをそれぞれ2
70℃及び200℃に調節して蒸発させると、るつぼ」
二部に設置されたカラス基板」二に、混合超微粒子か付
着する。生成された超倣粒0 子における目的物質と添加物の混合比率は1対1であっ
た。
Introduce tle gas into the vacuum container and increase the degree of vacuum to I Tor.
After adjusting to r, the main crucible containing 1 g of the target substance and the auxiliary crucible containing L-leucine Ig, which is an additive, are heated. 2 main crucibles and 2 auxiliary crucibles each
If you adjust the temperature to 70℃ and 200℃ and evaporate, it will become a melting pot.
The mixed ultrafine particles adhere to the glass substrate installed in the second part. The mixing ratio of the target substance and additive in the produced superimitation particles was 1:1.

なお、上述の超微粒子製造方法において、加熱方法は抵
抗加熱、ハロゲンランプやレーザ光による光加熱、誘導
加熱等の種々の方法を用いることができる。
In the above-mentioned method for producing ultrafine particles, various heating methods can be used, such as resistance heating, optical heating using a halogen lamp or laser beam, and induction heating.

また、特願平1.−85149号で提案したように反応
室内にさらに原料収納部および原料収納部から各るつぼ
へ原料を搬送するための搬送具を複数備えてもよい。
Also, patent application Hei 1. As proposed in No. 85149, the reaction chamber may further include a raw material storage section and a plurality of conveying tools for transporting the raw materials from the raw material storage section to each crucible.

EC料収納部は、原料を収納し、適宜取り出すことので
きるもので、たとえはステンレス製の棚、開閉できる出
口を底部に持っ容器等で構成される。
The EC material storage section stores raw materials and allows them to be taken out as appropriate, and is made up of, for example, a stainless steel shelf, a container with an outlet at the bottom that can be opened and closed, and the like.

搬送具は、ギヤ等の駆動手段で駆動される匙部材などで
構成される。
The conveyance tool is composed of a spoon member or the like driven by a drive means such as a gear.

このような梢成のばあいは、各るつぼの中には最初は原
料は投入せずに各るつぼをpfr望温度に加熱できる。
In the case of such top formation, each crucible can be heated to the desired pfr temperature without initially charging the raw material into each crucible.

各るつぼか所定の温度に達した後、原料収納部から少量
ずつ原料を間欠的あるいは連続的にそれ1 ぞれのるつぼ内に投入する4 原料を間欠的ないし連続的に供給する方法としては、 ■原料収納部とるつぼの間で原料を搬送する役目を担う
匙部材等をブーツやギヤ等を用いて往復運動させる方法
のほか、 ■ベル1−コンベヤを原1収納部からるつぼ上方に設置
し、原料収納部から少量ずつベルトコンベヤに原料を落
とし、るつぼ上に搬送する方法、■原料収納部からるつ
ぼ上へ搬送路を形成し、原で1収納部下部に開口部を段
Oて原料を振動等によって、少量ずつ搬送路に投入し、
搬送路に沿って原料をるつぼに運ぶ方法、 ■これらの組合わせ等 があり、任意に採用できる。
After each crucible reaches a predetermined temperature, a small amount of raw material is intermittently or continuously introduced into each crucible from the raw material storage section. ■In addition to the method of reciprocating the spoon member, etc. that plays the role of transporting raw materials between the raw material storage section and the crucible using boots or gears, ■The method of installing a bell 1 conveyor from the raw material storage section above the crucible , A method of dropping raw materials little by little onto a belt conveyor from the raw material storage section and transporting them onto the crucible.■ A conveyance path is formed from the raw material storage section to the top of the crucible, and an opening is made in the lower part of one storage section in the original stage to transport the raw materials. The material is introduced into the conveyor path little by little by vibration, etc.
There are methods for transporting the raw materials to the crucible along the conveyance path, ■a combination of these methods, and any method can be adopted.

原料を原料収納部から少量ずつ間欠的あるいは連続的に
るつぼ内に投入すれば、短時間の内に原料を蒸発、気化
させることかできる。短時間内に蒸発するので選択的蒸
発によって原料の組成か変化することが少ない。
By intermittently or continuously introducing the raw material into the crucible in small quantities from the raw material storage section, the raw material can be evaporated or vaporized within a short period of time. Since it evaporates within a short time, the composition of the raw material is unlikely to change due to selective evaporation.

 2 なお、1つの補助るつぼを用いる場合を説明したか、補
助るつぼの数は複数でもよい6添加物は、目的物質の用
途に不都合を生じない安定な有機化合物とすればよい。
2 Although the case where one auxiliary crucible is used has been described, the number of auxiliary crucibles may be plural. 6 The additive may be a stable organic compound that does not cause any inconvenience in the use of the target substance.

その種類は1つに限らない。The type is not limited to one.

上に述べたような方法によって、目的物質に不純物とし
て、許容できる量の添加物が混入した超微粒子が作成さ
れる。超微粒子中の目的物質と添加物との組成比は、各
々の蒸発量を独立して制御することでコントロールでき
る。
By the method described above, ultrafine particles are created in which the target substance is mixed with an acceptable amount of additives as impurities. The composition ratio of the target substance and additive in the ultrafine particles can be controlled by independently controlling the evaporation amount of each.

[発明の効果] 以上述べたように、本発明によれは目的物質に所望量の
添加物を混入した超微粒子を製造することができる。
[Effects of the Invention] As described above, according to the present invention, ultrafine particles in which a desired amount of additives are mixed into a target substance can be produced.

結晶化抑制効果を有する不純物を混入することにより、
結晶性を抑制した非晶質性の高い超微粒子が得られる。
By adding impurities that have the effect of suppressing crystallization,
Highly amorphous ultrafine particles with suppressed crystallinity can be obtained.

非晶質性の超微粒子は、優れた溶解性・分散性を示す。Amorphous ultrafine particles exhibit excellent solubility and dispersibility.

 99

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いる超微粒子製造装置の断
面図、 第2図は従来技術による超微粒子製造装置の断面図であ
る。 図において、 8 1 2 反応室 排気系 不活性ガス源 るつぼ 弁 主るつぼ 補助るつぼ
FIG. 1 is a sectional view of an ultrafine particle manufacturing apparatus used in an embodiment of the present invention, and FIG. 2 is a sectional view of an ultrafine particle manufacturing apparatus according to the prior art. In the figure, 8 1 2 Reaction chamber exhaust system Inert gas source Crucible valve Main crucible Auxiliary crucible

Claims (2)

【特許請求の範囲】[Claims] (1)、反応室内に独立に加熱制御できる主るつぼと補
助るつぼとを準備する工程と、 反応室内に不活性ガス雰囲気を導入し、主るつぼと補助
るつぼとをそれぞれ所定温度に加熱する工程と、 目的物質を主るつぼから、許容できる添加物を補助るつ
ぼから同時に蒸発させ、両者の混合物を超微粒子として
基板上に堆積させる工程とを含む超微粒子の製造方法。
(1) A step of preparing a main crucible and an auxiliary crucible that can be heated independently in the reaction chamber, and a step of introducing an inert gas atmosphere into the reaction chamber and heating the main crucible and the auxiliary crucible to a predetermined temperature, respectively. A method for producing ultrafine particles, comprising simultaneously evaporating a target substance from a main crucible and an acceptable additive from an auxiliary crucible, and depositing a mixture of both as ultrafine particles on a substrate.
(2)、前記目的物質は有機物質であり、前記添加物は
目的物質の結晶化を妨げる不純物であり、前記基板は冷
却されており、前記超微粒子は非晶質である請求項1記
載の超微粒子の製造方法。
(2) The target substance is an organic substance, the additive is an impurity that prevents crystallization of the target substance, the substrate is cooled, and the ultrafine particles are amorphous. Method for producing ultrafine particles.
JP1225059A 1989-08-31 1989-08-31 Ultrafine particle manufacturing method Expired - Fee Related JPH0753236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1225059A JPH0753236B2 (en) 1989-08-31 1989-08-31 Ultrafine particle manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1225059A JPH0753236B2 (en) 1989-08-31 1989-08-31 Ultrafine particle manufacturing method

Publications (2)

Publication Number Publication Date
JPH0389938A true JPH0389938A (en) 1991-04-15
JPH0753236B2 JPH0753236B2 (en) 1995-06-07

Family

ID=16823397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1225059A Expired - Fee Related JPH0753236B2 (en) 1989-08-31 1989-08-31 Ultrafine particle manufacturing method

Country Status (1)

Country Link
JP (1) JPH0753236B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165030A (en) * 1981-04-06 1982-10-09 Hitachi Ltd Preparation of ultrafine particle
JPS62191862U (en) * 1986-05-27 1987-12-05
JPS6339631A (en) * 1986-08-05 1988-02-20 Res Dev Corp Of Japan Production of fine particles of organic substance
JPS6345362A (en) * 1986-08-11 1988-02-26 Matsushita Electric Ind Co Ltd Production of thin phthalocyanine compound film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165030A (en) * 1981-04-06 1982-10-09 Hitachi Ltd Preparation of ultrafine particle
JPS62191862U (en) * 1986-05-27 1987-12-05
JPS6339631A (en) * 1986-08-05 1988-02-20 Res Dev Corp Of Japan Production of fine particles of organic substance
JPS6345362A (en) * 1986-08-11 1988-02-26 Matsushita Electric Ind Co Ltd Production of thin phthalocyanine compound film

Also Published As

Publication number Publication date
JPH0753236B2 (en) 1995-06-07

Similar Documents

Publication Publication Date Title
AU653286B2 (en) Apparatus for continuous growth of SiC single crystal from SiC synthesized in a vapor phase without using graphite crucible
JPH0462716A (en) Crystalline carbonaceous thin-film and its deposition method
US20080003447A1 (en) Materials and methods for the manufacture of large crystal diamonds
JP2007500664A (en) Method and apparatus for producing AlN single crystal with gas permeable crucible wall
WO1999014405A1 (en) Method and apparatus for producing silicon carbide single crystal
JPS5948792B2 (en) Silicon carbide crystal growth method
US7371281B2 (en) Silicon carbide single crystal and method and apparatus for producing the same
JPH03295898A (en) Method and device for growing silicon carbide single crystal
JPH0389938A (en) Preparation of ultrafine particle
CN101050545A (en) Method for developing aluminum nitride crystal in large size through flow of plasma flame
US20110042684A1 (en) Method of Growing AlN Crystals, and AlN Laminate
JPH06298600A (en) Method of growing sic single crystal
JP2003342716A (en) METHOD FOR GROWING GaN CRYSTAL
Soboleva et al. Y 2 O 3-Al 2 O 3-Nd 2 O 3 phase diagram and the growth of (Y, Nd) 3 Al 5 O 12 single crystals
JP2004203721A (en) Apparatus and method for growing single crystal
JPH02265643A (en) Manufacture of ultrafine particles and its device
CN1304646C (en) Preparation of beta-FeSi2 single crystal by pulsing laser method
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
JPH03135013A (en) Manufacture of compound for doping and doping method
JP2625840B2 (en) Method for producing coarse artificial diamond crystals
Capper Bulk growth techniques
JP3569743B2 (en) Skutterudite single crystal and method for producing the same
JPH01183499A (en) Production of high-purity znse single crystal and apparatus therefor
JPS6247000A (en) Production of crystal body of tungsten carbide
JPS6272113A (en) Molecular beam crystal growth device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees