JPH02265643A - Manufacture of ultrafine particles and its device - Google Patents

Manufacture of ultrafine particles and its device

Info

Publication number
JPH02265643A
JPH02265643A JP8514989A JP8514989A JPH02265643A JP H02265643 A JPH02265643 A JP H02265643A JP 8514989 A JP8514989 A JP 8514989A JP 8514989 A JP8514989 A JP 8514989A JP H02265643 A JPH02265643 A JP H02265643A
Authority
JP
Japan
Prior art keywords
raw material
crucible
reaction chamber
little
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8514989A
Other languages
Japanese (ja)
Inventor
Kazuhito Ogura
小倉 和仁
Keiko Iwata
岩田 恵子
Hiroaki Sugino
杉野 弘明
Hideki Toyotama
英樹 豊玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Stanley Electric Co Ltd
Original Assignee
Research Development Corp of Japan
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Stanley Electric Co Ltd filed Critical Research Development Corp of Japan
Priority to JP8514989A priority Critical patent/JPH02265643A/en
Publication of JPH02265643A publication Critical patent/JPH02265643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To manufacture continuously by introducing inactive gas atmosphere in a reaction chamber, rising the temperature of a crucible up to a given temperature and feeding a raw material little by little. CONSTITUTION:The desired quantity of a desired raw material such as an organic compound is fed into a raw material storage section 10, and a base 5 is disposed and a reaction chamber 1 is sealed airtightly. The inside of the reaction chamber 1 is exhausted in the highly vacuumized state, and inactive gas such as He or Ar is introduced from an inactive gas source 3 into the reaction chamber 1. The inactive gas is adjusted to the given pressure to form the inactive gas atmosphere. Then, a raw material is fed from the raw material storage section 10 disposed separately from the crucible 4 in the reaction chamber 1 into the crucible 4 little by little after the crucible 4 reaches the given temperature. Then, the raw material is evaporated and gasified in a short time. The evaporated volume can be increased by said process.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、超微粒子作成方法および装置に関し、特に熱
的に分解を受けやすい物質を含む原料から超微粒子を作
成する方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method and apparatus for producing ultrafine particles, and more particularly to a method and apparatus for producing ultrafine particles from raw materials containing substances that are susceptible to thermal decomposition.

[従来の技術] 第、2図を参照して、従来技術による超微粒子の作成方
法を説明する。
[Prior Art] A method for producing ultrafine particles according to the prior art will be described with reference to FIG. 2.

真空容器で形成される反応室1は、排気系2と不活性ガ
ス源3とに接続されている0反応容器1の内部には原料
を装架するるつぼ4と、生成したam粒子を付着させる
ためのるつぼ4上方の基板5が配置されている。基板5
は液体窒素系等の冷却系(図示せず)によって冷却され
る。
A reaction chamber 1 formed of a vacuum container is connected to an exhaust system 2 and an inert gas source 3. Inside the reaction chamber 1 is a crucible 4 in which raw materials are loaded, and a crucible 4 to which generated am particles are attached. A substrate 5 is placed above the crucible 4 for the purpose. Board 5
is cooled by a cooling system (not shown) such as a liquid nitrogen system.

超微粒子作成においては、まず有機化合物等の所定組成
の原料をるつぼ4に仕込み、反応室1を気密に封じる。
In producing ultrafine particles, first, raw materials of a predetermined composition such as organic compounds are charged into a crucible 4, and the reaction chamber 1 is hermetically sealed.

反応室1内を排気系2でたとえば10−6Torr位の
高真空に排気した後、ヘリウム(He)、アルゴン(A
r)等の不活性ガスを不活性ガス源3から弁を介して導
入し、所定の不活性ガス圧とする。
After evacuating the reaction chamber 1 to a high vacuum of, for example, 10-6 Torr using the exhaust system 2, helium (He), argon (A
An inert gas such as r) is introduced from an inert gas source 3 through a valve to maintain a predetermined inert gas pressure.

その後、基板5を冷却し、あらかじめ原料を仕込んだる
つぼ4を徐々に加熱し、蒸発温度まで昇温する。加熱さ
れた原料は液化し1表面から気化、蒸発する。なお、原
料によっては、液化せず、固相から直接昇華する。
Thereafter, the substrate 5 is cooled, and the crucible 4 in which raw materials have been charged in advance is gradually heated to the evaporation temperature. The heated raw material liquefies and vaporizes from one surface. Note that some raw materials do not liquefy but sublimate directly from the solid phase.

るつぼ4で加熱され、蒸発した原料ガス分子は雰囲気の
不活性ガス分子と衝突して冷却され、徐々に凝集して超
微粒子を形成する。生成した超微粒子は、るつぼ4上部
に設置し冷却した基板5に付着され、回収される。
The raw material gas molecules heated and evaporated in the crucible 4 collide with inert gas molecules in the atmosphere, are cooled, and gradually coagulate to form ultrafine particles. The generated ultrafine particles are attached to a cooled substrate 5 placed above the crucible 4 and collected.

ここで原料が熱的に分解されやすい有機化合物等である
と、るつぼ内で加熱を受けている間に原料が分解し、蒸
発しやすい成分から先に蒸発していく、従って、るつぼ
内に残る液相原料の組成が次第に変化し、これに伴って
蒸発する原料ガス分子の組成も次第に変化してしまう。
If the raw material is an organic compound that is easily decomposed thermally, the raw material will decompose while being heated in the crucible, and the components that are easier to evaporate will evaporate first, so they will remain in the crucible. The composition of the liquid phase raw material gradually changes, and accordingly, the composition of the raw material gas molecules that evaporate also gradually changes.

[発明が解決しようとする課!] 以上述べたように、原料をるつぼ4に仕込み、るつぼ4
を徐々に昇温して蒸発温度(あるいは昇華温度)まで加
熱し、原料を気化させる方法によると、蒸発温度に至る
までの熱の影響および原料が気化するまで高温に保たれ
る影響によって、原料が熱的に分解される6通常、目的
とする量ないしはさらに余裕を見た量をるつぼに仕込む
ので、全ての原料が気化するためにはかなりの時間を要
する。
[The problem that the invention attempts to solve! ] As mentioned above, the raw materials are charged into crucible 4,
According to the method of gradually raising the temperature of the raw material to the evaporation temperature (or sublimation temperature) and vaporizing the raw material, the raw material is is thermally decomposed.6 Normally, the desired amount or an additional amount is charged into the crucible, so it takes a considerable amount of time for all the raw materials to vaporize.

従って、熱的に不安定な、すなわち熱的に分解を受けや
すい有機化合物等を超微粒子化する場合には、原料分子
が高温にさらされ続けることで一部が分解し、生成した
超微粒子に分解した組成物が混入する。
Therefore, when converting thermally unstable organic compounds, which are susceptible to thermal decomposition, into ultrafine particles, the raw material molecules will continue to be exposed to high temperatures and some will decompose, resulting in the resulting ultrafine particles. The decomposed composition is mixed in.

るつぼ内の原料の組成が次第に変化することにより、蒸
発開始直後と蒸発終了直前の超微粒子の組成が異なって
しまう。
As the composition of the raw material in the crucible gradually changes, the composition of the ultrafine particles immediately after the start of evaporation differs from that immediately before the end of evaporation.

超微粒子を大量に作成しようとする場合には、大きなる
つぼに大量の原料を仕込んでいたが、1回の仕込み量を
多くすると、原料が熱的に分解され、組成が変化する可
能性が増す。
When trying to create large amounts of ultrafine particles, a large amount of raw material is charged into a large crucible, but when a large amount is charged at a time, the possibility that the raw material is thermally decomposed and its composition changes increases. .

組成の変化をなるべく低く抑えようとすると、熱的に不
安定な有機化合物・を超微粒子化する際には、原料が熱
にさらされる時間を短くし、その温度も低く抑えること
が望ましい、すると、1回当りるつぼに仕込める原料の
量が少量になり、所望の量の超微粒子を得ようとすると
、何度も同じ操作を繰り返さなければならなくなる。
In order to keep compositional changes as low as possible, when turning thermally unstable organic compounds into ultrafine particles, it is desirable to shorten the time the raw material is exposed to heat and keep the temperature low. The amount of raw material that can be charged into the crucible each time is small, and the same operation must be repeated many times to obtain the desired amount of ultrafine particles.

本発明の目的は、超微粒子の組成を一定に保ったまま、
大量に連続して超微粒子を作成することのできる超微粒
子作成方法と装置を提供することである。
The purpose of the present invention is to maintain the composition of ultrafine particles constant,
An object of the present invention is to provide a method and apparatus for producing ultrafine particles that can continuously produce ultrafine particles in large quantities.

[課頭を解決するための手段] 反応室内に不活性ガス雰囲気を導入し、るつぼを所定の
温度に昇温した後、原料を少量ずつ供給する。
[Means for solving the problem] After introducing an inert gas atmosphere into the reaction chamber and raising the temperature of the crucible to a predetermined temperature, raw materials are supplied little by little.

原料を少量ずつるつぼに供給するために、反応室内に原
料収納部とるつぼをそれぞれ配置する。
In order to supply the raw materials to the crucible little by little, a raw material storage section and a crucible are respectively arranged within the reaction chamber.

原料収納部から少量の原料を取り、るつぼ上へ搬送し、
るつぼ内へ供給する。
A small amount of raw material is taken from the raw material storage section and transported onto the crucible.
Supply into the crucible.

[作用] るつぼを高温に保ったまま、少量の原料を投入すると、
その原料は極めて短時間に蒸発する。短時間に蒸発する
場合、不活性ガス雰囲気中で生成される超微粒子の組成
は、原料組成とほぼ同一かつ一定に保たれる。高温に晒
される時間が短いので熱分解が抑えられるためと考えら
れる。
[Function] If you put a small amount of raw material into the crucible while keeping it at a high temperature,
The raw material evaporates in a very short time. When evaporating in a short time, the composition of the ultrafine particles produced in an inert gas atmosphere is kept constant and almost the same as the raw material composition. This is thought to be because thermal decomposition is suppressed because the time of exposure to high temperatures is short.

従って、るつぼ内に少量の原料を連続的または間欠的に
投入することにより、原料組成と同じほぼ同一組成の超
微粒子を所望する量連続して得ることができる。
Therefore, by continuously or intermittently charging a small amount of raw material into the crucible, a desired amount of ultrafine particles having substantially the same composition as the raw material composition can be continuously obtained.

[実施例] 第1図(A)、(B)に本発明の1実施例による超微粒
子作成装置を示す、第1図(A)が断面図、第1図(B
)が平面図である。
[Example] FIGS. 1(A) and 1(B) show an ultrafine particle production apparatus according to an embodiment of the present invention, FIG. 1(A) is a sectional view, and FIG. 1(B) is a cross-sectional view.
) is a plan view.

反応室1はバルブを介して排気系2に接続され、また他
のパルプを介して不活性ガス源3に接続されている。
The reaction chamber 1 is connected via a valve to an exhaust system 2 and via another pulp to an inert gas source 3.

反応室1は、たとえばステンレス製のベース上にステン
レス製ないしガラス製のペルジャーを載せて構成される
。排気系2は、たとえばロータリポンプと拡散ポンプと
の組合せ等で構成される。
The reaction chamber 1 is constructed by placing a Pel jar made of stainless steel or glass on a base made of stainless steel, for example. The exhaust system 2 is composed of, for example, a combination of a rotary pump and a diffusion pump.

不活性ガス源3はHe、Ar等■族ガスないしは、所定
の原料に対して不活性と見なせるH 2 、N 2ガス
等の不活性ガスを供給する。
The inert gas source 3 supplies an inert gas such as a group I gas such as He or Ar, or an inert gas such as H 2 or N 2 gas that can be considered inert to a predetermined raw material.

反応室1内にはるつぼ4および原料収納部10が配置さ
れ、さらに原料収納部10からるつぼ4へ原料を搬送す
るための搬送具11が配置されている。るつぼ4上方に
は冷却できる基板5が配置される。基板5は液体窒素系
(図示せず)によって液体窒素温度近くに冷却できる。
A crucible 4 and a raw material storage section 10 are arranged in the reaction chamber 1, and a transport tool 11 for transporting the raw material from the raw material storage section 10 to the crucible 4 is also arranged. A coolable substrate 5 is arranged above the crucible 4. The substrate 5 can be cooled to near liquid nitrogen temperature by a liquid nitrogen system (not shown).

るつぼ4は、たとえばヒータを兼ねたW、M。The crucible 4 is, for example, W or M which also serves as a heater.

等の高融点金属の容器、ヒータ上に載せた石英、アルミ
ナ等の容器、ヒータを埋め込んだ石英アルミナ等の容器
等で構成される。原料収納部10は、原料を収納し、適
宜取り出すことのできるもので、たとえばステンレス製
の棚、開閉できる出口を底部に持つ容器等で構成される
0本実施例では、底部に開閉できる出口21を持ち、ア
クチュエータ22を操作すると1回当たり1定量の原料
が供給されるものを用いる。
It consists of a container made of high melting point metal such as, a container made of quartz or alumina placed on a heater, a container made of quartz alumina or the like with a heater embedded in it, etc. The raw material storage section 10 stores the raw materials and can take them out as needed, and is made up of, for example, a stainless steel shelf, a container with an outlet at the bottom that can be opened and closed, etc. In this embodiment, there is an outlet 21 that can be opened and closed at the bottom. , and one in which one amount of raw material is supplied each time the actuator 22 is operated is used.

搬送具11は、延部材24がギヤ等の駆動手段26を介
して、駆動源であるモータ13に接続され、モータ13
はコントローラ15を介して電源17に接続されて往復
運動をする。ストッパ28は延部材24の運動を制止し
て、上に載った原料をるつぼ4内に落下させる。
In the conveyor 11, the elongated member 24 is connected to the motor 13, which is a drive source, via a drive means 26 such as a gear.
is connected to a power source 17 via a controller 15 to perform reciprocating motion. The stopper 28 stops the movement of the elongated member 24 and causes the raw material placed thereon to fall into the crucible 4.

また手動操作をするためのハンドル14がモータ13と
並列に設けられている。
Further, a handle 14 for manual operation is provided in parallel with the motor 13.

以下に超微粒子作成の手順を説明する。The procedure for producing ultrafine particles will be explained below.

原料収納部10に有機化合物等の所望原料を所望量仕込
み、基板5を配置し、反応室1を気密に封じる0反応室
1内を高真空(たとえば10 ’T。
A desired amount of a desired raw material such as an organic compound is charged into the raw material storage section 10, a substrate 5 is placed thereon, and the reaction chamber 1 is hermetically sealed at a high vacuum (eg, 10'T).

rr以下)に排気し、不活性ガス源3から反応室1内に
He、 Ar等の不活性ガスを導入する。不活性ガスを
所定の圧力(たとえば0.1〜10Torr)に調整し
、不活性ガス雰囲気を作成する。不活性ガス雰囲気はフ
ローさせてもよい。
rr or less), and an inert gas such as He or Ar is introduced into the reaction chamber 1 from the inert gas source 3. The inert gas is adjusted to a predetermined pressure (for example, 0.1 to 10 Torr) to create an inert gas atmosphere. The inert gas atmosphere may be allowed to flow.

るつぼ4の中には最初は原料は投入していない。No raw material is initially put into the crucible 4.

るつぼ4を加熱し、目的とする原料の蒸発温度(あるい
は昇華温度)として適当な温度に設定する。
The crucible 4 is heated and set to an appropriate temperature as the evaporation temperature (or sublimation temperature) of the target raw material.

加熱方法としては抵抗加熱、ハロゲンランプやレーザ光
による光加熱、誘導加熱等の加熱方法を用いることがで
きる。
As the heating method, heating methods such as resistance heating, optical heating using a halogen lamp or laser beam, and induction heating can be used.

るつぼ4が所定の温度に達した後、反応室l内にるつぼ
4と別に設置した原料収納部10から少量ずつ原料を間
欠的あるいは連続的にるつぼ4内に投入する。
After the crucible 4 reaches a predetermined temperature, raw materials are intermittently or continuously introduced into the crucible 4 little by little from a raw material storage section 10 installed separately from the crucible 4 in the reaction chamber 1.

原料を間欠的ないし連続的に供給する手段としては、 (1)原料収納部とるつぼの間で原料を搬送する役目を
担う延部材等をグーリやギヤ等を用いて往復運動させる
手段を図示したが、他に (2)ベルトコンベヤを原料収納部からるつぼ上方に設
置し、原料収納部から少量ずつベルトコンベヤに原料を
落とし、るつぼ上に搬送する手段や、 (3)原料収納部からるつぼ上へ搬送路を形成し、原料
収納部下部に開口部を設けて原料を振動等によ1て、少
量ずつ搬送路に投入し、搬送路に沿って原料をるつぼに
運ぶ手段等、 (4)これらの組合わせ等を用いてもよい。
As means for supplying raw materials intermittently or continuously, (1) A means for reciprocating a rolling member, etc. that plays the role of transporting raw materials between the raw material storage section and the crucible using gouries, gears, etc. is illustrated. However, there are other methods (2) installing a belt conveyor from the raw material storage section above the crucible, dropping the raw materials from the raw material storage section onto the belt conveyor little by little and conveying them onto the crucible; (4) A means of forming a conveyance path to a crucible, providing an opening at the bottom of the raw material storage section, introducing the raw material into the conveyance path little by little by vibration, etc., and transporting the raw material to the crucible along the conveyance path, etc. A combination of these may also be used.

原料を原料収納部10から少量ずつ間欠的あるいは連続
的にるつぼ4内に投入することにより、短時間の内に原
料が蒸発、気化する。短時間に蒸発するので原料の組成
が変化することが少ない、従って、得られる超微粒子の
組成が均一に、はぼ原料と同一になる。
By intermittently or continuously introducing the raw material into the crucible 4 little by little from the raw material storage section 10, the raw material evaporates and vaporizes within a short time. Since it evaporates in a short time, there is little change in the composition of the raw material.Therefore, the composition of the obtained ultrafine particles is uniform and the same as that of the raw material.

また、このように高温で蒸発させることによって、時間
当りの蒸発量を増加させることもできる。
Further, by evaporating at such a high temperature, the amount of evaporation per hour can be increased.

原料収納部からるつぼへ原料を少量ずつ搬送するので、
原料収納部には極めて大量の原料を1度に仕込むことが
でき、真空を破ることなく大量の超微粒子を連続的に作
成することができる。
Raw materials are transported from the raw material storage section to the crucible little by little, so
An extremely large amount of raw material can be charged into the raw material storage section at one time, and a large amount of ultrafine particles can be continuously produced without breaking the vacuum.

[例] 1、ムA    のム 原料収納部10に化合物Aを約8g収納し、基板5を配
置して、反応室1を気密に封じた。排気後、反応室1内
にHeガスを導入し、I TOrrの圧力となるように
調整した。るつぼ4は抵抗加熱によりあらかじめ270
℃に加熱した。原料収納部10とるつぼ4の間で敷部材
24をモータ13およびギヤ等から構成される駆動手段
26を用いて往復運動させることで、化合物Aをるつぼ
内に少量ずつ(約10mgずつ)間欠的に投入した。
[Example] 1. About 8 g of compound A was stored in the raw material storage section 10 of Mu A, the substrate 5 was placed, and the reaction chamber 1 was hermetically sealed. After evacuation, He gas was introduced into the reaction chamber 1 and adjusted to a pressure of I TOrr. Crucible 4 is preheated to 270 ml by resistance heating.
heated to ℃. By reciprocating the bed member 24 between the raw material storage section 10 and the crucible 4 using a driving means 26 consisting of a motor 13 and gears, compound A is intermittently introduced into the crucible in small amounts (approximately 10 mg each). I invested in it.

投入した化合物Aは瞬時に溶解、気化し、不活性雰囲気
中で超微粒子として成長し、液体窒素で冷却した基体5
上に回収された。
The introduced compound A instantly dissolves and vaporizes, grows as ultrafine particles in an inert atmosphere, and is cooled with liquid nitrogen to form a substrate 5.
Recovered above.

このようにして得られた超微粒子の純度を、薄層クログ
ラフィ、高速液体クロマトグラフィ等で分析した。第3
図(A)に化合物Aの超RIQ子のクロマトグラムを示
す、きれいな単一ピークが認められる。主ピークの他、
かすかに信号が認められる位置を矢印で示した。純度は
99.5%であった0日本薬局方に記載された純度検定
試験の基準値を満たすものであった。
The purity of the ultrafine particles thus obtained was analyzed by thin layer chromatography, high performance liquid chromatography, etc. Third
Figure (A) shows the chromatogram of the ultra-RIQ element of Compound A, and a clear single peak is observed. In addition to the main peak,
Arrows indicate positions where faint signals are observed. The purity was 99.5%, which met the standard value of the purity test described in the Japanese Pharmacopoeia.

比較として、従来法でも化合物Aの超微粒子を作成し、
クロマトグラフィで分析した。第3図(B)が得られた
クロマトグラムを示す、主ピークの他にいくらかの小さ
なピークが認められる。
For comparison, ultrafine particles of compound A were created using the conventional method,
Analyzed by chromatography. FIG. 3(B) shows the chromatogram obtained, in addition to the main peak some small peaks are observed.

純度は最高値で90.5%であった。この値は純度検定
試験の基準を満足しない。
The highest purity was 90.5%. This value does not meet the purity verification test criteria.

2、  八  B         の  4原料収納
部10に化合物Bを約2.5g収納し、基板5を配置し
て、反応室1を気密に封じた0反応室1内を真空に排気
し、Heガスを導入してITOrrとした。るつぼ4を
450℃に加熱した。上述の例と同様に、化合物Bを敷
部材24で少量ずつ(約5mg)原料収納部10からる
つぼ4内へ間欠的に投入した。
2.8 B-4 Store about 2.5 g of compound B in the raw material storage section 10, place the substrate 5, and evacuate the inside of the reaction chamber 1, which is airtightly sealed, to remove He gas. It was introduced and named ITOrr. Crucible 4 was heated to 450°C. Similar to the above example, Compound B was intermittently introduced into the crucible 4 from the raw material storage section 10 little by little (approximately 5 mg) using the bed member 24 .

投入された化合物Bは、瞬間的に蒸発し、不活性雰囲気
中で超微粒子に成長し、冷却した基板5に回収された。
The introduced compound B evaporated instantaneously, grew into ultrafine particles in an inert atmosphere, and was collected on the cooled substrate 5.

高速液体フロマドグラフィで回収された超微粒子の純度
を測定したところ、95.8%であった。
The purity of the ultrafine particles recovered by high-performance liquid fluorography was measured to be 95.8%.

従来法によるものは、純度が51.7%以下であった。The purity of the conventional method was 51.7% or less.

上記の例によると、従来法と較べて大幅な純度の向上が
得られたことが判る。
According to the above example, it can be seen that a significant improvement in purity was obtained compared to the conventional method.

[発明の効果] 以上述べたように、本発明によれば原料を極めて短時間
で、蒸発、気化させることができる。
[Effects of the Invention] As described above, according to the present invention, raw materials can be evaporated and vaporized in an extremely short time.

原料が高温に晒される時間が著しく短縮するので、熱的
に分解を受ける可能性が極めて低くなる。
Since the time that the raw material is exposed to high temperatures is significantly reduced, the possibility of thermal decomposition is extremely reduced.

原料が高温に晒される時間が極めて短くなるので、従来
法で用いる温度をかなり上回る温度を用いても原料が熱
的に分解される程度を従来法の程度以下に抑えることが
できる。
Since the time during which the raw material is exposed to high temperatures is extremely short, even if temperatures considerably higher than those used in conventional methods are used, the extent to which the raw materials are thermally decomposed can be suppressed to below that of the conventional method.

また、このように高温で蒸発させることによって、時間
当りの蒸発量を増加させることもできる。
Further, by evaporating at such a high temperature, the amount of evaporation per hour can be increased.

原料収納部からるつぼへ原料を少量ずつ搬送するので、
極めて大量の原料を1度に仕込むことができ、真空を破
ることなく大量の超微粒子を連続的に作成することがで
きる。
Raw materials are transported from the raw material storage section to the crucible little by little, so
An extremely large amount of raw material can be charged at once, and a large amount of ultrafine particles can be continuously produced without breaking the vacuum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、(B)は本発明の実施例を示し、第1図
(A)は断面図、第1図(B)は平面図、第2図は従来
技術による超微粒子生成装置を示す断面図である。 第3図(A)、(B)は、本発明の実施例および従来法
に従って作成した化合物Aの超微粒子のクロマトグラム
である。 反応室 排気系 不活性ガス源 るつぼ 基板 原料収納部 敷部材 モータ ハンドル コントローラ 電源 出口 アクチュエータ 匙部材 駆動手段 ストッパ lす (A)断面図 (B)平面図 本発明の実施例 第1図
1(A) and 1(B) show an embodiment of the present invention, FIG. 1(A) is a cross-sectional view, FIG. 1(B) is a plan view, and FIG. 2 is an ultrafine particle generation device according to the prior art. FIG. FIGS. 3(A) and 3(B) are chromatograms of ultrafine particles of Compound A prepared according to an example of the present invention and a conventional method. Reaction chamber Exhaust system Inert gas source Crucible Substrate Raw material storage section Flooring member Motor handle Controller Power supply outlet Actuator Spoon member Driving means Stopper (A) Cross-sectional view (B) Plan view Embodiment of the present invention Fig. 1

Claims (2)

【特許請求の範囲】[Claims] (1)、不活性ガス雰囲気中で所定温度に加熱したるつ
ぼを準備する工程と、 熱的に分解を受けやすい物質を含む原料を前記るつぼに
少量ずつ供給して蒸発させ、原料とほぼ同一組成の超微
粒子を不活性ガス雰囲気中で成長させる工程と を含む超微粒子作成方法。
(1) A step of preparing a crucible heated to a predetermined temperature in an inert gas atmosphere, and supplying a raw material containing a substance that is susceptible to thermal decomposition little by little to the crucible, evaporating it, and having a composition almost the same as the raw material. A method for producing ultrafine particles, comprising: growing ultrafine particles in an inert gas atmosphere.
(2)、真空排気可能な気密反応室と、 気密反応室へ不活性ガスを供給するためのガス源と、 気密反応室内に配置されたるつぼと、 るつぼを加熱する手段と 気密反応室内に配置された原料収納部と、 原料収納部からるつぼに少量ずつ原料を搬送するための
搬送手段と を有する超微粒子作成装置。
(2) An airtight reaction chamber that can be evacuated, a gas source for supplying an inert gas to the airtight reaction chamber, a crucible disposed within the airtight reaction chamber, a means for heating the crucible, and a means disposed within the airtight reaction chamber. An apparatus for producing ultrafine particles, comprising: a raw material storage section, and a conveying means for transporting the raw material little by little from the raw material storage section to a crucible.
JP8514989A 1989-04-04 1989-04-04 Manufacture of ultrafine particles and its device Pending JPH02265643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8514989A JPH02265643A (en) 1989-04-04 1989-04-04 Manufacture of ultrafine particles and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8514989A JPH02265643A (en) 1989-04-04 1989-04-04 Manufacture of ultrafine particles and its device

Publications (1)

Publication Number Publication Date
JPH02265643A true JPH02265643A (en) 1990-10-30

Family

ID=13850610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8514989A Pending JPH02265643A (en) 1989-04-04 1989-04-04 Manufacture of ultrafine particles and its device

Country Status (1)

Country Link
JP (1) JPH02265643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043545A (en) * 2004-08-02 2006-02-16 Ricoh Co Ltd Apparatus and method for manufacturing organic microcrystal and microcrystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165030A (en) * 1981-04-06 1982-10-09 Hitachi Ltd Preparation of ultrafine particle
JPS60145373A (en) * 1984-01-05 1985-07-31 Fuji Xerox Co Ltd Vapor deposition method of alloy or compound
JPS6339631A (en) * 1986-08-05 1988-02-20 Res Dev Corp Of Japan Production of fine particles of organic substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57165030A (en) * 1981-04-06 1982-10-09 Hitachi Ltd Preparation of ultrafine particle
JPS60145373A (en) * 1984-01-05 1985-07-31 Fuji Xerox Co Ltd Vapor deposition method of alloy or compound
JPS6339631A (en) * 1986-08-05 1988-02-20 Res Dev Corp Of Japan Production of fine particles of organic substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043545A (en) * 2004-08-02 2006-02-16 Ricoh Co Ltd Apparatus and method for manufacturing organic microcrystal and microcrystal

Similar Documents

Publication Publication Date Title
US5306530A (en) Method for producing high quality thin layer films on substrates
US20020170490A1 (en) Method and apparatus for growing aluminum nitride monocrystals
US5439575A (en) Hybrid method for depositing semi-conductive materials
RU2007138551A (en) METHOD AND DEVICE FOR APPLICATION OF COATING, PERMANENT MAGNET AND METHOD FOR PRODUCING IT
EP1803840A2 (en) Method for growing single crystal of silicon carbide
JPH08232069A (en) Method and apparatus for sublimating solid substance
US5474809A (en) Evaporation method
JP2001323367A (en) Method for vapor depositing organic compound, and method for purifying organic compound
JPH02265643A (en) Manufacture of ultrafine particles and its device
US20070104890A1 (en) Purifying organic materials for physical vapor deposition
US5094880A (en) Thin superconducting film and manufacturing method for the same
JP2003342716A (en) METHOD FOR GROWING GaN CRYSTAL
JPS6225249B2 (en)
JPS6272113A (en) Molecular beam crystal growth device
JPS61261294A (en) Method of molecular beam epitaxial growth and molecular beam source
JPS6447850A (en) Manufacture of thermoelement
KR100375077B1 (en) Apparatus for depositing the organic semiconductor device with a large size of substrate
JPS6121190B2 (en)
JPS61122197A (en) Production of diamond
JPH0663087B2 (en) Method for forming titanium nitride film
JPH0680496A (en) Knudsen cell for low temperature
JPH0389938A (en) Preparation of ultrafine particle
JP2023055564A (en) Method for manufacturing target and sputtering device
JPS61104070A (en) Formation of thin film
JP2825974B2 (en) Molecular beam source container