JPH0389579A - Semiconductor optical integrated element and manufacture thereof - Google Patents
Semiconductor optical integrated element and manufacture thereofInfo
- Publication number
- JPH0389579A JPH0389579A JP22686789A JP22686789A JPH0389579A JP H0389579 A JPH0389579 A JP H0389579A JP 22686789 A JP22686789 A JP 22686789A JP 22686789 A JP22686789 A JP 22686789A JP H0389579 A JPH0389579 A JP H0389579A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- region
- mqw
- quantum well
- well structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 85
- 239000004065 semiconductor Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 12
- 230000000694 effects Effects 0.000 abstract description 10
- 230000008878 coupling Effects 0.000 abstract description 9
- 238000010168 coupling process Methods 0.000 abstract description 9
- 238000005859 coupling reaction Methods 0.000 abstract description 9
- 230000005684 electric field Effects 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 description 14
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 13
- 229910052717 sulfur Inorganic materials 0.000 description 13
- 239000011593 sulfur Substances 0.000 description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 239000011701 zinc Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 238000005253 cladding Methods 0.000 description 4
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 4
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000005424 photoluminescence Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 240000002329 Inga feuillei Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000005701 quantum confined stark effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0265—Intensity modulators
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体光集積素子の構造と製造方法に関し、特
に多重量子井戸構造とその無秩序化を利用した半導体光
集積素子の構造と製造方法に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the structure and manufacturing method of a semiconductor optical integrated device, and particularly relates to the structure and manufacturing method of a semiconductor optical integrated device that utilizes a multiple quantum well structure and its disordering. .
一つの半導体基板上に、発光領域と、発光領域から放出
された光を変調する変調領域とが集積化された半導体光
集積素子は、高速の光フアイバー通信における小型で高
性能な光源として重要である。その中ても、分布帰還型
半導体レーザ(以下DFBレーザ)と吸収型光変調器と
を集積化した半導体光集積素子は、数G b / s以
上の光フアイバー通信の光源として中心的な役割を果た
すことが期待されている。従来のDFBレーザと光変調
器の集積素子には、大まかに言って次の3種類があり、
それぞれ光変調器の部分に特徴がある。第1は、光変調
器にフランツケルデイツシュ効果を利用したもので、光
変調器領域に形成されたDFBレーザのエネルギーに対
してわずかにエネルギーギャップの大きな半導体層に、
電界を印加することで透過するレーザ光を変調する。こ
の半導体光集積素子については、例えば鈴木らの報告が
ある。 (M、5uzuki et al、、IEEE
J、 Lightwave Tech。Semiconductor optical integrated devices, in which a light-emitting region and a modulation region that modulates the light emitted from the light-emitting region are integrated on a single semiconductor substrate, are important as small, high-performance light sources for high-speed optical fiber communications. be. Among these, semiconductor optical integrated devices that integrate distributed feedback semiconductor lasers (hereinafter referred to as DFB lasers) and absorption optical modulators play a central role as light sources for optical fiber communications of several Gb/s or more. It is expected that this will be fulfilled. There are roughly three types of conventional DFB laser and optical modulator integrated elements:
Each optical modulator has its own characteristics. The first is one that utilizes the Franz Keldeitssch effect in an optical modulator.
The transmitted laser light is modulated by applying an electric field. Regarding this semiconductor optical integrated device, there is a report by Suzuki et al., for example. (M,5uzuki et al., IEEE
J, Lightwave Tech.
LT−5,(1987) 1277) 、第2は、光変
調器に量子閉じ込めシュタクル効果を利用したもので、
光変調器領域に形成された多重量子井戸層に電界を印加
することで透過するDFBレーザ光を変調する。LT-5, (1987) 1277), the second is one that utilizes the quantum confined Stackle effect in an optical modulator,
The transmitted DFB laser light is modulated by applying an electric field to the multiple quantum well layer formed in the optical modulator region.
この半導体光集積素子については、用材らの報告がある
。(Y、Kawamura et at、 IEEE
J、 Quantua+Electron、 QE−2
3,(1987) 915)。上述の第1と第2の従来
例は、DFBレーザ領域と光変調器領域が異なる組成の
半導体層で構成されている。このため製造にあたっては
、まず半導体基板上にDFBレーザ領域を結晶成長した
後、光変調器領域を選択的に結晶成長するという方法を
用いている。Regarding this semiconductor optical integrated device, there is a report by Yozai et al. (Y, Kawamura et at, IEEE
J, Quantua+Electron, QE-2
3, (1987) 915). In the first and second conventional examples described above, the DFB laser region and the optical modulator region are composed of semiconductor layers having different compositions. For this reason, in manufacturing, a method is used in which a DFB laser region is first grown as a crystal on a semiconductor substrate, and then an optical modulator region is selectively grown as a crystal.
第3の従来例は、光変調器に利得変調を利用したもので
、光変調器領域はDFBレーザ領域と同じ組成をもつ活
性層を有しており、光変調器領域の活性層へ注入する電
流を変調することで利得を変え、透過するDFBレーザ
光を変調する。この半導体光集積素子については、例え
ば山口らの報告がある(M、Yamaguchi et
at、、 Electron、 Lett。The third conventional example utilizes gain modulation in an optical modulator, and the optical modulator region has an active layer having the same composition as the DFB laser region, and the injection into the active layer of the optical modulator region is By modulating the current, the gain is changed and the transmitted DFB laser light is modulated. Regarding this semiconductor optical integrated device, there is a report by Yamaguchi et al.
at, Electron, Lett.
23、(1987) 190>。第3の従来例では、D
FBレーザ領域と光変調器領域とが同じ組成の半導体層
で構成されているために、2つの領域の活性層を同時に
結晶成長でき、選択的な結晶成長は不用である。23, (1987) 190>. In the third conventional example, D
Since the FB laser region and the optical modulator region are composed of semiconductor layers having the same composition, the active layers of the two regions can be grown at the same time, and selective crystal growth is unnecessary.
上述した従来例には以下のような問題点がある。まず第
1と第2の従来例では、光変調器領域を形成する際に選
択的な結晶成長を用いる必要があるために、製造が難し
く、かつ光変調器からの光出力が小さいという問題点が
ある0選択的な結晶成長には、液相エピタキシャル成長
(LPE)法や気相エピタキシャル成長(VPE)法や
分子線エピタキシャル成長(MBE)法などが用いられ
るが、いずれの方法でもDFBレーザ領域と光変調器領
域の境界部分に異常成長が起こり易い。The conventional example described above has the following problems. First, in the first and second conventional examples, since it is necessary to use selective crystal growth when forming the optical modulator region, manufacturing is difficult and the optical output from the optical modulator is low. Liquid phase epitaxial growth (LPE), vapor phase epitaxial growth (VPE), molecular beam epitaxial growth (MBE), etc. are used for selective crystal growth, but in any of these methods, the DFB laser region and optical modulation Abnormal growth is likely to occur at the border of the organ area.
また境界部分では均一な半導体層の結晶成長が難しいた
め、DFBレーザ領域と光変調器領域の光学的な結合効
率は10%から50%程度と小さい、このため境界部分
でのレーザ光の散乱損失が大きくなり、光変調器からの
光出力が小さくなるのである。一方第3の従来例では、
選択的な結晶成長を用いていないために、製造が比較的
容易で結合効率も100%近い値が実現できる。しかし
ながら、光変調器が電流注入による利得変化を利用して
いるために、変調帯域はIGHz以下に制限されている
。In addition, since it is difficult to grow uniform semiconductor layer crystals at the boundary, the optical coupling efficiency between the DFB laser region and the optical modulator region is low, ranging from 10% to 50%, resulting in scattering loss of laser light at the boundary. becomes larger, and the optical output from the optical modulator becomes smaller. On the other hand, in the third conventional example,
Since selective crystal growth is not used, manufacturing is relatively easy and a coupling efficiency of nearly 100% can be achieved. However, since the optical modulator utilizes gain change due to current injection, the modulation band is limited to IGHz or less.
本発明の目的は、上述の従来例における問題点を解決し
、製造が容易で、かつ100%に近い光学的な結合効率
が実現でき、さらに数G b / s以上の変調が可能
な、発光素子と光変調器を集積した半導体光集積素子の
製造と製造方法とを提供することである。The purpose of the present invention is to solve the problems in the conventional example described above, to provide a light emitting device that is easy to manufacture, can achieve optical coupling efficiency close to 100%, and can be modulated at several Gb/s or more. An object of the present invention is to provide a manufacturing method of a semiconductor optical integrated device in which an element and an optical modulator are integrated.
本発明の半導体光集積素子の第一の構造は、一つの半導
体基板上に、発光領域と発光領域から放出された光を変
調する光変調領域とが集積化されており、発光領域は多
重量子井戸構造からなる活性層を含み、かつ光変調領域
は多重量子井戸構造が無秩序化された半導体層を含むこ
とを特徴とする構造になっている。また、第二の構造は
、一つの半導体基板上に、発光領域と発光領域から放出
された光を変調する光変調領域とが集積化されており、
発光領域は多重量子井戸構造が無秩序化された活性層を
含み、かつ光変調領域は多重量子井戸構造からなる半導
体層を含むことを特徴とする構造となっている。また、
本発明の製造方法は、一つの半導体基板上に、多重量子
井戸構造を含む多層構造を形成する工程と、多重量子井
戸構造の一部に不純物を導入して多重量子井戸構造を無
秩序化する工程を少くとも含み、かつ、この無秩序化領
域には少なくともp型とn型の2種類の不純物を含むこ
とを特徴とする製造方法である。The first structure of the semiconductor optical integrated device of the present invention is that a light emitting region and a light modulation region that modulates light emitted from the light emitting region are integrated on one semiconductor substrate, and the light emitting region has a multi-quantum The structure includes an active layer having a well structure, and the light modulation region includes a semiconductor layer having a disordered multi-quantum well structure. Further, in the second structure, a light emitting region and a light modulation region that modulates light emitted from the light emitting region are integrated on one semiconductor substrate,
The structure is characterized in that the light emitting region includes an active layer having a disordered multi-quantum well structure, and the light modulating region includes a semiconductor layer having a multi-quantum well structure. Also,
The manufacturing method of the present invention includes a step of forming a multilayer structure including a multiple quantum well structure on one semiconductor substrate, and a step of introducing impurities into a part of the multiple quantum well structure to disorder the multiple quantum well structure. This manufacturing method is characterized in that the disordered region contains at least two types of impurities, p-type and n-type.
次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図は本発明の半導体光集積素子の第1の実施例を表
す斜視図、第2図は第1図のAA’線断面図である。こ
の実施例は一つの半導体基板上に集積化されたDFBレ
ーザ領域100と光変調器領域200とから構成されて
いる。構造上の特徴は、DFBレーザ領域100は多重
量子井戸構造からなる半導体層(以下MQWNI)30
からなる活性層を含み、変調器領域200は活性層と同
じ多重量子井戸構造(以下MQW構造)が無秩序化され
た半導体層(以下MQW無秩序化層)40を含むことで
ある。よく知られているようにMQW層3層化0定の不
純物が拡散やイオン注入などによって導入されると、M
QW構造が無秩序化して、MQWM30の平均組成を持
ったバルク半導体層に変化する。MQW層3層化0戸層
と障壁層の組成と厚さとを適当に設定することで、MQ
W無秩序化層40のエネルギーギャップを、MQW層3
層化0FBレーザの活性層としたときのレーザ光のエネ
ルギーに対してわずかに大きくすることができる0、:
のMQW無秩序化層40に電界を印加すると、フランツ
ケルデイツシュ効果によってDFBレーザ光を変調でき
る。MQW無秩序化層40は元のMQW層3層化0学的
に連続してつながっているために、従来例の欠点である
DFBレーザ領域100と光変調器領域200の境界部
での光学的な散乱はほとんどなく、100%に近い結合
効率が実現できる。そのため光変調器領域200からの
光出力が大きい。FIG. 1 is a perspective view showing a first embodiment of a semiconductor optical integrated device according to the present invention, and FIG. 2 is a sectional view taken along line AA' in FIG. This embodiment consists of a DFB laser region 100 and an optical modulator region 200 integrated on one semiconductor substrate. The structural feature is that the DFB laser region 100 has a semiconductor layer (hereinafter referred to as MQWNI) 30 having a multiple quantum well structure.
The modulator region 200 includes a semiconductor layer 40 in which the same multi-quantum well structure (hereinafter referred to as MQW structure) as the active layer is disordered (hereinafter referred to as MQW disordered layer). As is well known, when zero-constant impurities are introduced into a three-layer MQW layer by diffusion or ion implantation, M
The QW structure becomes disordered and changes into a bulk semiconductor layer having an average composition of MQWM30. By appropriately setting the composition and thickness of the three-layer MQW layer and the barrier layer, the MQ
The energy gap of the W disordered layer 40 is
0, which can be slightly larger than the energy of the laser light when used as the active layer of a layered 0FB laser:
When an electric field is applied to the MQW disordered layer 40, the DFB laser light can be modulated by the Franz Keldeitssch effect. Since the MQW disordered layer 40 is logically connected to the original three-layer MQW layer, the optical problem at the boundary between the DFB laser region 100 and the optical modulator region 200, which is a drawback of the conventional example, is There is almost no scattering, and a coupling efficiency close to 100% can be achieved. Therefore, the optical output from the optical modulator region 200 is large.
以下、製造手順を追いながら素子構造について詳しく説
明する。まず回折格子80を部分的に形成したp型In
P基板10の上に、有機金属気相エピタキシャル成長(
MOVPE)方によって、p型InGaAsP光ガイド
層20.MQW層3層化0型InPクラッド層50、n
型I nGaAsPキャップ層60を順層成0する。こ
こでMQW層3層化010周期のI nGaAs井戸層
(厚さ8nm)とInGaAsP障壁層(フォトルミネ
ッセンス波長^、=1.3μm、厚さ11nm)とから
なる。次にDFBレーザ領域100を5i02膜などの
誘電体膜でおおって、光変調器領域200に表面からM
QW層3層化0硫黄を拡散する。硫黄が拡散されたMQ
W層3層化0QW構造が壊れてMQW無秩序化層40と
なる0次に横モードを制御するための埋め込み構造を形
成する。まずDFBレーザ領域100と光変調器領域2
00の中央部をメサ形状にエツチングした後、鉄をドー
プした高抵抗InP埋め込み層90をMOVPE法でメ
サの両側に成長する0次に電極70をつけた後、2つの
領域の間にエツチングによる分離711300を形成す
る。最後にへきかいによって切り出し、光変調器領域2
00の端面に無反射コート膜95を形成して半導体光集
積素子が完成する。DFBレーザ領域100と光変調器
領域200の長さは、それぞれ300μmと200μm
である。またDFBレーザ光の波長は約1.55.cz
m、光変調領域200のあるMQW無秩序化層40のフ
ォトルミネッセンス波長は約1・45μmである。Hereinafter, the device structure will be explained in detail while following the manufacturing procedure. First, the p-type In with which the diffraction grating 80 is partially formed.
On the P substrate 10, organic metal vapor phase epitaxial growth (
MOVPE), the p-type InGaAsP light guide layer 20. MQW layer three-layer type 0 InP cladding layer 50, n
A type I nGaAsP cap layer 60 is deposited. Here, the MQW layer is composed of a three-layered InGaAs well layer (thickness: 8 nm) with a period of 010 and an InGaAsP barrier layer (photoluminescence wavelength = 1.3 μm, thickness: 11 nm). Next, the DFB laser region 100 is covered with a dielectric film such as a 5i02 film, and the optical modulator region 200 is coated with M from the surface.
Diffusion of sulfur into three QW layers. MQ with sulfur diffused
A buried structure is formed for controlling the zero-order transverse mode, which becomes the MQW disordered layer 40 when the three-layered W layer 0QW structure is broken. First, the DFB laser area 100 and the optical modulator area 2
After etching the central part of 00 into a mesa shape, a high-resistance InP buried layer 90 doped with iron is grown on both sides of the mesa using the MOVPE method. Separation 711300 is formed. Finally, cut out the optical modulator area 2 by cutting out the optical modulator area 2.
A non-reflective coating film 95 is formed on the end face of the semiconductor optical integrated device. The lengths of the DFB laser region 100 and the optical modulator region 200 are 300 μm and 200 μm, respectively.
It is. Furthermore, the wavelength of the DFB laser beam is approximately 1.55. cz
m, the photoluminescence wavelength of the MQW disordered layer 40 with the light modulation region 200 is about 1·45 μm.
第3図は本発明の半導体光集積素子の構造の第2の実施
例を表す断面図である。この実施例は一つの半導体基板
上に集積化されたDFBレーザ領域100と光変調器領
域200とから構成されている。おおよその構造は第1
図に示した第1の実施例と同じである。第2の実施例の
構造上の特徴は、第1の実施例と反対に、DFBレーザ
領域100はMQW無秩序化層41からなる活性層を含
み、光変調器領域200はMQW層3層内1むことであ
る。MQW層3層内1戸層と障壁層の組成と厚さとを適
当に設定することで、MQW層3層内1ネルギーギャッ
プを、MQW無秩序化層41を活性層としたDFBレー
ザのレーザ光のエネルギーに対してわずかに大きくする
ことができる、光変調器領域200のMQW層3層内1
界を印加すると、量子閉じ込めシュタルク効果によって
DFBレーザ光を変調できる。製造手順は第1の実施例
とほとんど同じであるため、このでは詳しく述べない。FIG. 3 is a sectional view showing a second embodiment of the structure of a semiconductor optical integrated device according to the present invention. This embodiment consists of a DFB laser region 100 and an optical modulator region 200 integrated on one semiconductor substrate. The approximate structure is the first
This is the same as the first embodiment shown in the figure. The structural features of the second embodiment are that, contrary to the first embodiment, the DFB laser region 100 includes an active layer consisting of an MQW disordered layer 41, and the optical modulator region 200 includes one of the three MQW layers. It is to do so. By appropriately setting the composition and thickness of the first layer in the three MQW layers and the barrier layer, the energy gap of one in the three MQW layers can be adjusted to the laser beam of the DFB laser with the MQW disordered layer 41 as the active layer. 1 in the 3 MQW layers of the optical modulator region 200, which can be made slightly larger with respect to energy.
When a field is applied, the DFB laser light can be modulated by the quantum confined Stark effect. The manufacturing procedure is almost the same as the first embodiment, so it will not be described in detail here.
製造手順で第1の実施例と異なる点は、第2の実施例で
は硫黄の拡散によってMQW構造を無秩序化する領域が
DFBレーザ領域である点と、結晶成長するMQW層3
層内1成と厚さである。MQW層3層内110周期のI
nGaAs井戸N(井戸7nm)とInGaAsP障
壁層(λ、=1.3μm、厚さ4nm)とからなる、素
子の大きさは第1の実施例とほぼ同じである。またDF
Bレーザ光の波長は約1.55μm、光変調領域200
のMQW層3層内1ォトルミネッセンス波長は約1.4
5μmである。The manufacturing procedure differs from the first embodiment in that in the second embodiment, the region where the MQW structure is disordered by sulfur diffusion is the DFB laser region, and the MQW layer 3 where the crystal grows
The thickness is 1 within the layer. I of 110 periods in 3 layers of MQW layer
The size of the device, which consists of an nGaAs well N (well 7 nm) and an InGaAsP barrier layer (λ, = 1.3 μm, thickness 4 nm), is almost the same as that of the first embodiment. Also DF
The wavelength of the B laser beam is approximately 1.55 μm, and the optical modulation area is 200
The wavelength of one photoluminescence in three MQW layers is approximately 1.4
It is 5 μm.
上述の2つの実施例では、いずれの構造も従来例に用い
られたような選択的な結晶成長は不用であるため、製造
が容易で、かつDFBレーザ領域100と光変調器領域
200との光学的な結合効率は100%に近い、このた
め光変調器領域200から10mW以上の光出力が得ら
れる。また光変調方法として、フランツケルデイシュ効
果や量子閉じ込めシュタクル効果をもちいているために
1、数G b / s以上の高速変調が可能である。In the two embodiments described above, since neither structure requires selective crystal growth as used in the conventional example, manufacturing is easy, and the optical connection between the DFB laser region 100 and the optical modulator region 200 is The coupling efficiency is close to 100%, so an optical output of 10 mW or more can be obtained from the optical modulator region 200. In addition, since the Franz Keldysch effect and the quantum confinement Stackle effect are used as the optical modulation method, high-speed modulation of 1 to several Gb/s or more is possible.
なお、第1と第2の実施例では、MQW構造を無秩序化
する方法として、硫黄の拡散を利用したが、イオン注入
など他の方法でもよい、またあらかじめ結晶成長中にM
QW層に不純物をいれておき、その後無秩序化したい領
域にだけレーザ光を当て、その熱によってMQW無秩序
化層を形成するという製造方法を用いることもできる。In the first and second embodiments, sulfur diffusion was used as a method to disorder the MQW structure, but other methods such as ion implantation may also be used.
It is also possible to use a manufacturing method in which an impurity is added to the QW layer, and then a laser beam is applied only to the region desired to be disordered, and an MQW disordered layer is formed by the heat generated.
また導入する不純物として、硫黄の他に亜鉛などを用い
ることもできる。ただし、硫黄がはいった半導体層はn
型に、亜鉛が入った半導体層はp型になるので、各層の
導電型はそれにあわせて設定する必要がある。In addition to sulfur, zinc or the like can also be used as an impurity to be introduced. However, the semiconductor layer containing sulfur is n
Since a semiconductor layer containing zinc in the mold becomes p-type, the conductivity type of each layer must be set accordingly.
以下では、第4図と第5図の用いて本発明の半導体光集
積素子の製造方法を説明する。この製造方法の特徴は、
第1の実施例で述べたようなMQW無秩序化層のフラン
ツケルデイシュ効果を利用した光変調器の製造において
、キャリア濃度を低減したMQW無秩序化層を実現する
ことにある。In the following, a method for manufacturing a semiconductor optical integrated device according to the present invention will be explained using FIGS. 4 and 5. The characteristics of this manufacturing method are:
The object of the present invention is to realize an MQW disordered layer with a reduced carrier concentration in manufacturing an optical modulator using the Franz Keldysch effect of the MQW disordered layer as described in the first embodiment.
一般にMQW構造を無秩序化するためにはlQ1gCI
+−’程度の不純物を導入する必要がある。このため上
述の第1の実施例のようにMQW無秩序化層を光変調器
として用いる場合には、MQW無秩序化層のキャリア濃
度が大きくなり、そのため動作電圧が大きくなるという
欠点がある0本発明は、MQW層に導入する不純物とし
て少なくともp型とn型の2種類の不純物を用いること
によって、不純物どうしの補償効果を利用して、全体と
してMQW無秩序化層の実効的なキャリア濃度を低減す
る製造方法を提供する。Generally, to disorder the MQW structure, lQ1gCI
It is necessary to introduce impurities of the order of +-'. For this reason, when the MQW disordered layer is used as an optical modulator as in the first embodiment described above, the carrier concentration of the MQW disordered layer increases, and therefore the operating voltage increases. By using at least two types of impurities, p-type and n-type, as impurities introduced into the MQW layer, the effective carrier concentration of the MQW disordered layer is reduced as a whole by utilizing the compensation effect of the impurities. A manufacturing method is provided.
第4図は本発明の製造方法の一実施例を説明するための
図である0本発明のポイントはキャリア濃度の低いMQ
W無秩序層42の形成方法にあるので、第4図はその部
分の製造手順だけを示している。以下製造手順を追って
説明する。まず回折格子80を部分的に形成したp型I
nP基板10の上に、MOVPE法によって、p型I
nGaAsP光ガイド層20、MQW層32、n型In
Pクラッド層50.n型InGaAsPキャップ層60
を順次成長する(第4図(a))、ここでMQW層3層
成010周期のI nGaAs井戸層(厚さ80膜m)
と、I nGaAsP障壁層(λ、=1.3μm、厚さ
11 nm)とからなり、亜鉛が約1018Cal−’
ドープされている0次にDFBレーザ領域100をS
i 02膜などの誘電体膜96でおおって、光変調器領
域200に表面からMQW層3層成0硫黄を拡散する。Figure 4 is a diagram for explaining one embodiment of the manufacturing method of the present invention.The point of the present invention is that MQ has a low carrier concentration.
Since the method for forming the W disordered layer 42 is concerned, FIG. 4 only shows the manufacturing procedure for that part. The manufacturing procedure will be explained below. First, a p-type I on which a diffraction grating 80 is partially formed.
A p-type I layer is formed on the nP substrate 10 by the MOVPE method.
nGaAsP optical guide layer 20, MQW layer 32, n-type In
P cladding layer 50. n-type InGaAsP cap layer 60
(FIG. 4(a)), where an InGaAs well layer (80 m thick) with three MQW layers and a period of 010 is grown (Fig. 4(a)).
and an InGaAsP barrier layer (λ, = 1.3 μm, thickness 11 nm), with a zinc content of about 1018 Cal-'
The doped zero-order DFB laser region 100 is
Covering with a dielectric film 96 such as an i02 film, sulfur is diffused into the optical modulator region 200 from the surface.
硫黄が拡散されたMQW層32はMQW構造が壊れてM
QW無秩序化層42となる〈第4図(b))、このとき
拡散する硫黄の量を適当に調整することで、結晶成長の
時にドープされていた亜鉛が補償されて、MQW無秩序
化層42の実効的なキャリア濃度が10”cm−’オー
ダーまで低下する。この後の埋め込み構造の形成方法な
どは第1図に示した実施例と同じであるので説明は省略
する。In the MQW layer 32 in which sulfur is diffused, the MQW structure is broken and M
By appropriately adjusting the amount of sulfur diffused at this time, the zinc doped during crystal growth is compensated for and the MQW disordered layer 42 becomes the QW disordered layer 42 (Fig. 4(b)). The effective carrier concentration decreases to the order of 10''cm-'.The subsequent method of forming the buried structure is the same as that of the embodiment shown in FIG. 1, so a description thereof will be omitted.
第5図は本発明の製造方法のもう一つの実施例を説明す
るための図である。第4図に示した製造方法の実施例と
異なる点は、光ガイド層21がMQW層3層内3に形成
されており、硫黄の拡散がこの光ガイド層を通して行わ
れる点である。以下製造手順を追って説明する。まずp
型InP基板10の上に、MOVPE法によって、p型
InPバッファ層15、MQW層32、n型I nGa
AsP光ガイド層21を順次成長する(第5図(a)〉
、ここでMQW層3層内310周期のInGaAs井戸
層(厚さ8nm)と、Ln G a A sP障壁層(
λg =1.3μm、厚さllnm)とからなり、亜鉛
が約10 ”on−’ドープされている0次にDFBレ
ーザ領域100に回折格子80を形成する6次DFBレ
ーザ領域100の表面誘電体M96でおおって、光変調
器領域200に硫黄を拡散してMQW無秩序化層43を
形成する(第5図(b))、このとき拡散する硫黄の量
を適当に調整することで、結晶成長の時にドー プされ
ていた亜鉛が補償されて、MQW無秩序化層43の実効
的なキャリア濃度が1016CIl−3オーダーまで低
下する0次に誘電体膜96を除去し、全体にn型InP
クラッド層50.n型I n G a AsPキャップ
層60を順次成長する(第5図(C〉〉、この後の埋め
込み構造の形成方法などは第1図に示した実施例と同じ
である。FIG. 5 is a diagram for explaining another embodiment of the manufacturing method of the present invention. The difference from the embodiment of the manufacturing method shown in FIG. 4 is that a light guide layer 21 is formed within the three MQW layers, and sulfur is diffused through this light guide layer. The manufacturing procedure will be explained below. First p
A p-type InP buffer layer 15, an MQW layer 32, an n-type InGa layer are formed on the InP type substrate 10 by MOVPE.
The AsP light guide layer 21 is sequentially grown (FIG. 5(a))
, here, an InGaAs well layer (thickness: 8 nm) with 310 periods in the three MQW layers, and an Ln Ga A sP barrier layer (
The surface dielectric of the 6th order DFB laser region 100 forms a grating 80 in the 0th order DFB laser region 100 doped with zinc to approximately 10 ”on-'. The MQW disordered layer 43 is formed by covering the optical modulator region 200 with M96 and diffusing sulfur into the optical modulator region 200 (FIG. 5(b)). By appropriately adjusting the amount of sulfur diffused at this time, crystal growth is controlled. Zinc doped during the process is compensated for and the effective carrier concentration of the MQW disordered layer 43 is reduced to the order of 1016Cl1-3.
Cladding layer 50. An n-type I n Ga AsP cap layer 60 is sequentially grown (FIG. 5 (C)), and the subsequent method of forming the buried structure is the same as the embodiment shown in FIG. 1.
なお、これら2つの製造方法の実施例では、MQW層造
を無秩序化する方法として硫黄の拡散を利用したが、イ
オン注入など他の方法でもよい。Note that in the examples of these two manufacturing methods, sulfur diffusion was used as a method for disordering the MQW layered structure, but other methods such as ion implantation may be used.
またあらかじめ結晶成長の時MQW層にp型とn型の2
種類の不純物をいれておき、その後無秩序化したい光変
調器領域200にだけレーザ光を当て、その熱によって
MQW無秩序化層42.43を形成するという製造方法
を用いることもできる。Also, during crystal growth, two types of p-type and n-type are added to the MQW layer in advance.
It is also possible to use a manufacturing method in which different kinds of impurities are added, and then a laser beam is applied only to the optical modulator region 200 to be disordered, and the MQW disordered layers 42 and 43 are formed by the heat generated.
以上、本発明の半導体光集積素子の構造と製造方法につ
いて、DFBレーザと光変調器の半導体光集積素子を実
施例として詳しく説明してきたが、本発明の構造と製造
方法は、これ以外の半導体光集積素子、例えば波長可変
分布ブラッグ反射型半導体レーザと光変調器の光集積素
子などにも適用できる。また結晶成長の点では、VPE
法以外の、例えばMBE法などを用いることもできる。Above, the structure and manufacturing method of the semiconductor optical integrated device of the present invention have been explained in detail using the semiconductor optical integrated device of the DFB laser and the optical modulator as examples. The present invention can also be applied to optical integrated devices, such as optical integrated devices such as wavelength tunable distributed Bragg reflection type semiconductor lasers and optical modulators. In addition, in terms of crystal growth, VPE
It is also possible to use methods other than the MBE method, for example, the MBE method.
また結晶材料の点では、I nGaAlAsなどの他の
材料系を用いた半導体光集積素子にも適用可能である。In terms of crystal materials, the present invention is also applicable to semiconductor optical integrated devices using other material systems such as InGaAlAs.
以上説明したように本発明は、MQW#I造の無秩序化
を利用することによって、製造が容易で高い光学的な結
合効率が得られる、発光素子と光変調器との半導体光集
積素子を実現する効果がある。DFBレーザと光変調器
とを一つの半導体基板上に集積化した実施例では、選択
的な結晶成長のような難しい製造方法を使用せずに、1
00%近い結合効率を有する半導体光集積素子が得られ
た。As explained above, the present invention realizes a semiconductor optical integrated device of a light emitting element and an optical modulator that is easy to manufacture and can obtain high optical coupling efficiency by utilizing the disordered structure of the MQW#I structure. It has the effect of In an embodiment in which a DFB laser and an optical modulator are integrated on one semiconductor substrate, one
A semiconductor optical integrated device having a coupling efficiency of nearly 0.00% was obtained.
第1図は本発明の半導体光集積素子の構造の第一の実施
例を表す斜視図、第2図は第1図のAへ′線断面図、第
3図は半導体光集積素子の構造の第2の実施例を表す断
面図、第4図と第5図は本発明の半導体光集積素子の製
造方法を説明するための図である。
図において、100はDFBレーザ領域、200は光変
調器領域、300は分離溝、10は基板、15はバッフ
ァ層、20.21は光ガイド層、30,31,32.3
3はMQW層、40゜41.42.43はMQW無秩序
化層、50はクラッド層、60はキャップ層、70は電
極、80は回折格子、90は埋め込み層、95は無反射
コート膜、96は誘電体膜である。FIG. 1 is a perspective view showing a first embodiment of the structure of a semiconductor optical integrated device according to the present invention, FIG. 2 is a sectional view taken along line A' in FIG. 1, and FIG. 4 and 5, which are cross-sectional views showing the second embodiment, are diagrams for explaining the method of manufacturing a semiconductor optical integrated device of the present invention. In the figure, 100 is a DFB laser region, 200 is an optical modulator region, 300 is a separation groove, 10 is a substrate, 15 is a buffer layer, 20.21 is a light guide layer, 30, 31, 32.3
3 is an MQW layer, 40°41.42.43 is an MQW disordered layer, 50 is a cladding layer, 60 is a cap layer, 70 is an electrode, 80 is a diffraction grating, 90 is a buried layer, 95 is an anti-reflection coating film, 96 is a dielectric film.
Claims (3)
域から放出された光を変調する光変調領域とが集積化さ
れた半導体光集積素子において、前記発光領域は多重量
子井戸構造からなる活性層を含み、かつ前記光変調領域
は前記多重量子井戸構造が無秩序化された半導体層を含
むことを特徴とする半導体光集積素子。(1) In a semiconductor optical integrated device in which a light emitting region and a light modulation region that modulates light emitted from the light emitting region are integrated on one semiconductor substrate, the light emitting region has a multi-quantum well structure. 1. A semiconductor optical integrated device including an active layer, and wherein the light modulation region includes a semiconductor layer in which the multi-quantum well structure is disordered.
域から放出された光を変調する光変調領域とが集積化さ
れた半導体光集積素子において、前記発光領域は多重量
子井戸構造が無秩序化された活性層を含み、かつ前記光
変調領域は前記多重量子井戸構造からなる半導体層を含
むことを特徴とする半導体光集積素子。(2) In a semiconductor optical integrated device in which a light emitting region and a light modulation region that modulates light emitted from the light emitting region are integrated on one semiconductor substrate, the light emitting region has a disordered multi-quantum well structure. What is claimed is: 1. A semiconductor optical integrated device comprising: a semiconductor layer having a multi-quantum well structure;
多層構造を形成する工程と、前記多重量子井戸構造の一
部に不純物を導入して前記多重量子井戸構造を無秩序化
する工程を少くとも含み、かつ前記多重量子井戸構造の
無秩序化領域には少なくともp型とn型の2種類の不純
物を含ませることを特徴とする半導体光集積素子の製造
方法。(3) Reduce the steps of forming a multilayer structure including a multiple quantum well structure on one semiconductor substrate and the step of introducing impurities into a part of the multiple quantum well structure to disorder the multiple quantum well structure. A method for manufacturing a semiconductor optical integrated device, characterized in that the disordered region of the multiple quantum well structure contains at least two types of impurities, p-type and n-type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22686789A JPH0389579A (en) | 1989-08-31 | 1989-08-31 | Semiconductor optical integrated element and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22686789A JPH0389579A (en) | 1989-08-31 | 1989-08-31 | Semiconductor optical integrated element and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0389579A true JPH0389579A (en) | 1991-04-15 |
Family
ID=16851817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22686789A Pending JPH0389579A (en) | 1989-08-31 | 1989-08-31 | Semiconductor optical integrated element and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0389579A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0410483A (en) * | 1989-12-02 | 1992-01-14 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor optical modulator and manufacture thereof |
JP2004281517A (en) * | 2003-03-13 | 2004-10-07 | Matsushita Electric Ind Co Ltd | Variable wavelength semiconductor laser device and manufacturing method thereof |
-
1989
- 1989-08-31 JP JP22686789A patent/JPH0389579A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0410483A (en) * | 1989-12-02 | 1992-01-14 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor optical modulator and manufacture thereof |
JP2004281517A (en) * | 2003-03-13 | 2004-10-07 | Matsushita Electric Ind Co Ltd | Variable wavelength semiconductor laser device and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0627798B1 (en) | Monolithically integrated laser-modulator with multiquantum well structure | |
JP2587628B2 (en) | Semiconductor integrated light emitting device | |
JPS6254489A (en) | Semiconductor light emitting element | |
JP3141854B2 (en) | Method for manufacturing optical semiconductor device | |
US6327413B1 (en) | Optoelectronic device and laser diode | |
US6224667B1 (en) | Method for fabricating semiconductor light integrated circuit | |
JPH09318918A (en) | Semiconductor optical modulator | |
JP2814906B2 (en) | Optical semiconductor device and method of manufacturing the same | |
US5519721A (en) | Multi-quantum well (MQW) structure laser diode/modulator integrated light source | |
JPH04303982A (en) | Manufacture of optical semiconductor element | |
US5756373A (en) | Method for fabricating optical semiconductor device | |
JPH01319986A (en) | Semiconductor laser device | |
JPS63299186A (en) | Light emitting element | |
JPH05158085A (en) | Optical modulation device and its manufacture | |
JPH0389579A (en) | Semiconductor optical integrated element and manufacture thereof | |
JP2763090B2 (en) | Semiconductor laser device, manufacturing method thereof, and crystal growth method | |
JP2771276B2 (en) | Semiconductor optical integrated device and manufacturing method thereof | |
JP2000137126A (en) | Optical function element | |
JP3215477B2 (en) | Semiconductor distributed feedback laser device | |
JP3204969B2 (en) | Semiconductor laser and optical communication system | |
JPH01179487A (en) | Distributed feedback-type semiconductor laser | |
JPH05335551A (en) | Optical semiconductor device | |
JPH03192788A (en) | Integrated optical modulator | |
CN116235100A (en) | High-speed modulation laser | |
JPH03295289A (en) | Integrated optical semiconductor device and driving method thereof |