CN116235100A - High-speed modulation laser - Google Patents
High-speed modulation laser Download PDFInfo
- Publication number
- CN116235100A CN116235100A CN202080103897.4A CN202080103897A CN116235100A CN 116235100 A CN116235100 A CN 116235100A CN 202080103897 A CN202080103897 A CN 202080103897A CN 116235100 A CN116235100 A CN 116235100A
- Authority
- CN
- China
- Prior art keywords
- modulator
- modulated laser
- layer
- laser according
- intrinsic region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0265—Intensity modulators
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/017—Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
- G02F1/01708—Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells in an optical wavequide structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/028—Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
- H01S5/0287—Facet reflectivity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/125—Distributed Bragg reflector [DBR] lasers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Nonlinear Science (AREA)
- Semiconductor Lasers (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
Description
技术领域technical field
本发明涉及激光器,例如涉及改进调制激光器的速度。The present invention relates to lasers, for example to improving the speed of modulating lasers.
背景技术Background technique
在外部调制激光器(modulated laser,ML)中,可能需要在高速和低偏置要求之间进行权衡。In externally modulated lasers (ML), there may be a trade-off between high speed and low bias requirements.
解决这个问题的标准方法是使用PIN结构,其中,半导体材料的本征层夹在调制器中的p型半导体层与n型半导体层之间。为了满足高速要求,调制器应具有低电容。这意味着,对于标准PIN结构,本征区应该相对厚。A standard approach to this problem is to use a PIN structure, where an intrinsic layer of semiconductor material is sandwiched between a p-type semiconductor layer and an n-type semiconductor layer in the modulator. To meet high speed requirements, the modulator should have low capacitance. This means that, for a standard PIN structure, the intrinsic region should be relatively thick.
但是,更大的本征厚度意味着穿过本征区的电场更弱。因此,对于给定的外部偏置,调制器可能具有较低的消光比。However, a larger intrinsic thickness means a weaker electric field across the intrinsic region. Therefore, for a given external bias, the modulator may have a lower extinction ratio.
图1(a)和图1(b)分别示意性地示出了包括分布式反馈(distributed feedback,DFB)激光器部分10和马赫-曾德尔(Mach-Zehnder,MZ)调制器部分21的标准ML的顶视图和侧视图。DFB部分和MZ部分通常使用对接耦合方法光学耦合,在它们之间具有隔离区。该设备具有光进入该设备的后表面13和光从该设备发射的前表面14。后表面13可以涂覆高反射(high-reflection,HR)涂层,前表面14可以涂覆抗反射(anti-reflection,AR)涂层。电偏置可以通过电极20a、20b和20c施加到设备的部分。Figure 1(a) and Figure 1(b) schematically show a standard ML including a distributed feedback (distributed feedback, DFB)
M-Z本征区(MQW2)的多量子阱(multiple quantum well,MQW)材料19与DFB本征区(MQW1)的MQW材料16对接耦合生长。在该示例中,MQW1层16在其上方具有p型半导体层15,在其下方具有n型半导体层17。MQW2层19在其上方具有p型半导体层18,在其下方具有n型半导体层17。DFB部分与MZ部分之间的深蚀刻用于实现电气隔离。The multiple quantum well (multiple quantum well, MQW)
多模干涉仪(multi-mode interferometer,MMI)22将输入到调制器21a、21b的两个臂的光分割。第二MMI 24重新组合来自两个臂的光。马赫-曾德尔调制器(MQW2)的MQW材料19与DFB(MQW1)的MQW材料16对接耦合生长。激光器也可以是可调DBR激光器。激光器和马赫-曾德尔调制器可以单片集成或光学耦合。引导光的MMI芯可以具有与MQW2区相同的组成,或者可以包括单独过度生长材料。A multi-mode interferometer (MMI) 22 splits the light input to the two arms of the
图1(c)示出了调制器中MQW2区19的电场分布。电场高于本征区任一侧的n型层和p型层中的电场,并且近似恒定。调制器的带宽也主要由PIN结构的电容决定。Figure 1(c) shows the electric field distribution of the
为了实现可靠的ML,对接耦合的制备和生长条件是非常关键的。为了提高输出功率,DFB通常采用HR涂覆。DFB的波导通常设计为只有基模,波导通常具有均匀的宽度,但根据激光器设计,波导宽度也可以是可变的。调制器本征区上的场近似恒定。To achieve reliable ML, the preparation and growth conditions of the docking coupling are very critical. In order to increase the output power, DFB is usually coated with HR. The waveguide of a DFB is usually designed with only the fundamental mode, and the waveguide usually has a uniform width, but depending on the laser design, the waveguide width can also be variable. The field over the modulator eigenregion is approximately constant.
在传统的电吸收调制激光器(electroabsorption modulated laser,EML)中,也需要在电吸收调制器(electroabsorption modulator,EAM)上的带宽与施加的外部偏置之间进行权衡,因为本征区中的带宽和电场都取决于PIN本征区的厚度。In conventional electroabsorption modulated lasers (EML), there is also a trade-off between the bandwidth on the electroabsorption modulator (EAM) and the applied external bias, because the bandwidth in the intrinsic region and the electric field depend on the thickness of the PIN intrinsic region.
希望开发一种具有改进性能的调制激光器。It would be desirable to develop a modulated laser with improved properties.
发明内容Contents of the invention
根据一个方面,提供了一种调制激光器,包括光学耦合到调制器的激光器,所述调制器具有本征区域,所述本征区域包括:多量子阱材料;场控制层,具有掺杂密度,以增强所述多量子阱材料中的电场;收集层,具有比所述多量子阱材料的带隙更高的带隙。According to one aspect, there is provided a modulated laser comprising a laser optically coupled to a modulator having an intrinsic region comprising: a multiple quantum well material; a field control layer having a doping density, to enhance the electric field in the multiple quantum well material; the collection layer has a higher bandgap than the multiple quantum well material.
调制激光器可以是外部调制激光器。调制器可以调制激光器发射的光。调制器可以具有PIN结构或NIP结构。该结构包括在p型半导体材料层与n型半导体材料层之间的本征区。这种结构可以方便地通过半导体沉积和/或生长技术制成。The modulated laser may be an externally modulated laser. The modulator can modulate the light emitted by the laser. The modulator can have a PIN structure or a NIP structure. The structure includes an intrinsic region between the layer of p-type semiconductor material and the layer of n-type semiconductor material. Such structures can be conveniently fabricated by semiconductor deposition and/or growth techniques.
本征区可以由半导体材料制成,包括但不限于InP、InGaAsP、InGaAlAs、InGaAlAsSb、GaAs、AlGaAs、GaN、AlGaN Ge或Si。因此,该结构与一系列半导体材料兼容,所述半导体材料可以根据调制激光器的应用选择。The intrinsic region may be made of a semiconductor material including but not limited to InP, InGaAsP, InGaAlAs, InGaAlAsSb, GaAs, AlGaAs, GaN, AlGaN Ge or Si. Therefore, the structure is compatible with a range of semiconductor materials, which can be selected according to the application of the modulated laser.
激光器可以是分布式反馈激光器、分布式布拉格反射激光器或可调激光器。因此,该设备可以根据其期望的应用来调整。调制激光器还可以具有光学耦合到调制器的半导体光放大器(semiconductor optical amplifier,SOA)。SOA可以接收调制器发射的光。相位部分也可以光学耦合到激光器和调制器。The lasers can be distributed feedback lasers, distributed Bragg reflection lasers or tunable lasers. Thus, the device can be adjusted according to its desired application. A modulated laser may also have a semiconductor optical amplifier (SOA) optically coupled to the modulator. The SOA can receive the light emitted by the modulator. The phase section can also be optically coupled to the laser and modulator.
调制器可以是马赫-曾德尔调制器或电吸收调制器。这种调制器通常用于电信应用。The modulator can be a Mach-Zehnder modulator or an electroabsorption modulator. Such modulators are commonly used in telecommunication applications.
可以在设备部分的相对顶侧和底侧上的电极或触点上施加电压,以控制激光器和调制器部分。这可以使调制激光器的不同部分被独立控制。当调制器是马赫-曾德尔调制器时,电极可以是集总电极或行波电极,或电容负载的分段行波电极。当调制器是电吸收调制器时,电极可以是集总电极或行波电极。Voltages can be applied across electrodes or contacts on opposing top and bottom sides of the device sections to control the laser and modulator sections. This allows different parts of the modulated laser to be controlled independently. When the modulator is a Mach-Zehnder modulator, the electrodes may be lumped electrodes or traveling wave electrodes, or capacitively loaded segmented traveling wave electrodes. When the modulator is an electroabsorption modulator, the electrodes may be lumped electrodes or traveling wave electrodes.
调制器可以是马赫-曾德尔调制器,调制激光器还可以包括分光器。这可以使离开激光器的光被光学分割成两个波导干涉仪臂。如果在马赫-曾德尔调制器中的一个臂上施加电压,则通过调制器的该臂的光会引起相移。当来自两个臂中每一个臂的光被重组时,相位差被转换为振幅调制。The modulator can be a Mach-Zehnder modulator, and the modulated laser can also include a beam splitter. This allows the light leaving the laser to be optically split into two waveguide interferometer arms. If a voltage is applied to one arm in a Mach-Zehnder modulator, light passing through that arm of the modulator causes a phase shift. When the light from each of the two arms is recombined, the phase difference is converted into amplitude modulation.
收集层的掺杂密度可以在1.0e15/cm3与8e17/cm3之间。这可以实现控制收集层的行为。掺杂密度可以取决于收集层的厚度。收集层的引入可以降低结构的总电容。同时,它还可以使载流子(主要是电子)移动到PIN结构的n侧。The doping density of the collection layer may be between 1.0e15/cm 3 and 8e17/cm 3 . This enables control over the behavior of the collection layer. The doping density can depend on the thickness of the collection layer. The introduction of the collection layer can reduce the overall capacitance of the structure. At the same time, it can also make carriers (mainly electrons) move to the n side of the PIN structure.
收集层可以是p掺杂或n掺杂的。这可以实现调制器结构的多功能性。The collection layer can be p-doped or n-doped. This enables versatility in the modulator structure.
收集层的带隙可以是恒定的或分级的。恒定的带隙可以使该层容易地制造。The bandgap of the collection layer can be constant or graded. A constant bandgap allows for easy fabrication of this layer.
收集层的厚度可以在20nm与1000nm之间。场控制层的厚度可以在10nm与500nm之间。The thickness of the collection layer may be between 20 nm and 1000 nm. The thickness of the field control layer may be between 10 nm and 500 nm.
场控制层可以具有比多量子阱材料的带隙更高的带隙。场控制层的掺杂密度可以在1e17/cm3与1e19/cm3之间,使得它不会引入额外的吸收,并且使得穿过MQW材料的电场更大。The field control layer may have a bandgap higher than that of the multiple quantum well material. The doping density of the field control layer can be between 1e17/cm 3 and 1e19/cm 3 so that it does not introduce additional absorption and makes the electric field across the MQW material larger.
当调制器是电吸收调制器时,在收集层中,电荷可以主要由电子携带。在调制器为EAM的工作条件下,EAM吸收入射光。因此,电荷载流子在本征区的MQW材料中产生:MQW材料的导带中的电子和价带中的空穴。在反向偏置下,孔移动到p-InP侧,类似于传统的PIN结构。电子移动到收集层和n-InP层。因此,在收集层中,电子是有效的电荷载流子。When the modulator is an electroabsorption modulator, in the collection layer the charge may be carried mainly by electrons. Under the condition that the modulator is an EAM, the EAM absorbs the incident light. Thus, charge carriers are generated in the MQW material in the intrinsic region: electrons in the conduction band and holes in the valence band of the MQW material. Under reverse bias, the hole moves to the p-InP side, similar to a conventional PIN structure. Electrons move to the collection layer and n-InP layer. Therefore, in the collecting layer, electrons are effective charge carriers.
调制器可以包括前表面,所述前表面是调制激光器的发射面,并且所述前表面涂覆有抗反射涂层。抗反射涂层可以防止在前表面处离开设备的光的反射。这可以提高调制激光器的效率。The modulator may include a front surface, which is the emitting surface of the modulating laser, and which is coated with an anti-reflection coating. Anti-reflective coatings can prevent the reflection of light leaving the device at the front surface. This can improve the efficiency of modulating the laser.
激光器可以包括涂覆有高反射涂层的后反射器。这可以增加功率并提高激光器的效率。后反射器可以是后端面,而前表面可以是前端面。前端面和后端面可以是劈裂面。这是制造调制激光器的方便方法。后反射器和前表面也可以通过其它方便的方法形成。The laser may include a back reflector coated with a highly reflective coating. This can increase the power and increase the efficiency of the laser. The rear reflector may be the rear end face and the front surface may be the front face. The front end face and the rear end face may be cleavage faces. This is a convenient way to make modulated lasers. The rear reflector and front surface can also be formed by other convenient methods.
调制激光器可以包括用于沿着设备引导光的波导,该波导可以是脊波导或埋入式异质结构波导。这可以实现设备结构的多功能性。The modulated laser may include a waveguide, which may be a ridge waveguide or a buried heterostructure waveguide, for guiding light along the device. This enables versatility in device construction.
调制激光器可以与其它光学功能结构集成,并可以用于各种应用,例如电信系统。Modulated lasers can be integrated with other optically functional structures and can be used in various applications, such as telecommunication systems.
附图说明Description of drawings
现结合附图通过示例的方式对本发明进行描述。The present invention will now be described by way of example with reference to the accompanying drawings.
在附图中:In the attached picture:
图1(a)和1(b)分别示出了包括光学耦合到马赫-曾德尔调制器的激光器的标准ML的顶视图和侧视图。Figures 1(a) and 1(b) show top and side views, respectively, of a standard ML comprising a laser optically coupled to a Mach-Zehnder modulator.
图1(c)示出了具有马赫-曾德尔调制器的标准ML的本征区的结构和电场分布(沿着图1(b)的B-B截面)。Figure 1(c) shows the structure and electric field distribution (along the B-B section of Figure 1(b)) of the intrinsic region of a standard ML with a Mach-Zehnder modulator.
图2(a)和2(b)分别示出了光学耦合到马赫-曾德尔调制器的ML的实施例的顶视图和侧视图。Figures 2(a) and 2(b) show top and side views, respectively, of an embodiment of an ML optically coupled to a Mach-Zehnder modulator.
图3(a)示意性地示出了马赫-曾德尔调制器的本征区的结构的示例。Fig. 3(a) schematically shows an example of the structure of the intrinsic region of the Mach-Zehnder modulator.
图3(b)示出了图3(a)所示的本征区的电场分布。Fig. 3(b) shows the electric field distribution in the intrinsic region shown in Fig. 3(a).
具体实施方式Detailed ways
如图2(a)和2(b)所示,本文描述的ML的一个示例包括光学耦合到马赫-曾德尔调制器的DFB激光器。在本示例中,该设备具有PIN结构,本征区在其上方具有p掺杂半导体层,在其下方具有n掺杂半导体层。但是,该设备也可以具有NIP结构,在其上方具有n掺杂半导体层,在其下方具有p掺杂半导体层。One example of the ML described herein includes a DFB laser optically coupled to a Mach-Zehnder modulator, as shown in Figures 2(a) and 2(b). In this example, the device has a PIN structure with the intrinsic region having a p-doped semiconductor layer above it and an n-doped semiconductor layer below it. However, the device can also have a NIP structure with an n-doped semiconductor layer above it and a p-doped semiconductor layer below it.
如图2(a)和图2(b)所示,DFB激光器30通常包括半导体块,该半导体块一端具有ML的后表面或后端面33。DFB激光器具有包括MQW材料(MQW3)35的本征区。沿C-C的侧视图如图2(b)所示。As shown in FIGS. 2( a ) and 2 ( b ), a
本征区35在其上方具有p-InP半导体层36,在其下方具有n-InP半导体层37。因此,在本示例中,激光器具有PIN结构。激光器也可以具有NIP结构,本征区在其上方具有n掺杂半导体层,在其下方具有p掺杂半导体层。The
该设备使用多模干涉仪(multi-mode interferometer,MMI)51或其它分光器,以将离开DFB激光器30的光分成两个波导干涉仪臂50a、50b。如果在马赫-曾德尔调制器中的一个臂上施加电压50,则通过调制器的该臂的光会引起相移。当来自两个臂中每一个臂的光被重组时,相位差被转换为振幅调制。The device uses a multi-mode interferometer (MMI) 51 or other beam splitter to split the light exiting the
调制器50具有本征区,如52所示(MQW FCL)。在本示例中,调制器的本征区在其上方具有p-InP半导体层39,在其下方具有n-InP半导体层37,即调制器具有PIN结构。或者,调制器可以具有NIP结构。本征区52的组成如图3(a)所示。
在p掺杂层39与n掺杂层37之间的马赫-曾德尔调制器的本征区52包括MQW(或块体)材料41、场控制层(field control layer,FCL)42和收集层43,如图3(a)所示。The
场控制层42具有掺杂密度,以增强多量子阱材料中的电场。场控制层通常被掺杂,使得电场主要集中在本征MQW(intrinsic MQW,i-MQW)区41中。因此,相对于传统的本征区域,增加了MQW材料中的电场。掺杂密度可以取决于MQW本征区的厚度和所需的电场。场控制层的厚度可以在10nm与500nm之间,掺杂密度可以在1e17/cm3与1e19/cm3之间,这取决于调制器的结构。场控制层可以方便地对NIP结构进行p掺杂,或者对PIN结构进行n掺杂。场控制层42优选具有比多量子阱材料41的带隙能量更高的带隙能量。场控制层在耗尽吸收层中产生比在传统的耗尽层中更高的电场。The
收集层43优选具有比多量子阱材料的带隙更高的带隙,以避免额外的吸收。收集层可以不被掺杂,或者可以具有低掺杂浓度(低于收集层的掺杂浓度)。收集层的带隙能量可以是恒定的,以便易于制造,或者可以是分级的。收集层可以是p掺杂或n掺杂的,这取决于结构。收集层由具有低掺杂或无掺杂的较高带隙材料形成,使调制器的总电容较低,而不利于额外吸收。在收集层中,电荷主要由电子携带。由于只有电子是有效的载流子,因此可以利用快速的电子渡越时间。收集层用于降低调制器的电容。The
因此,收集层的引入可以降低调制激光器结构的总电容。同时,它还可以使载流子(主要是电子)移动到PIN结构的n侧。Therefore, the introduction of the collection layer can reduce the overall capacitance of the modulated laser structure. At the same time, it can also make carriers (mainly electrons) move to the n side of the PIN structure.
在ML包括马赫-曾德尔调制器的情况下,收集层可以具有与本征区的MQW材料相同的带隙能量或更大的带隙能量。图3(b)示出了图3(a)所示的MQW FCL区(即沿着图2(b)中的D-D截面)的电场分布。In case the ML comprises a Mach-Zehnder modulator, the collection layer may have the same bandgap energy or a larger bandgap energy than the MQW material of the intrinsic region. Figure 3(b) shows the electric field distribution in the MQW FCL region shown in Figure 3(a) (ie along the D-D section in Figure 2(b)).
穿过马赫-曾德尔调制器50的每个臂50a、50b的光在第二MMI 53处重新组合,然后在前表面34处从调制激光器发射。Light passing through each
因此,调制器通常包括第一掺杂类型的第一半导体层、与第一类型相反的第二掺杂类型的第二半导体层和本征区。形成设备的材料可以选择性地掺杂在p型层和n型层的区中。第一半导体层和第二半导体层以及本征区在设备的后表面33与前表面34之间延伸的方向上伸长。Thus, the modulator generally comprises a first semiconductor layer of a first doping type, a second semiconductor layer of a second doping type opposite to the first type, and an intrinsic region. The material forming the device can be selectively doped in regions of the p-type and n-type layers. The first and second semiconductor layers and the intrinsic region are elongated in a direction extending between the
ML设备的长度限定在后表面或后端面33与前表面或前端面34之间。具有HR涂层的后端面用作后反射器。优选地,前端面和后端面彼此平行对齐。优选地,前端面正交于设备的长度。优选地,后端面正交于设备的长度。设备的一个或多个前表面和/或后表面可以通过劈裂形成。激光器和调制器部分的波导的宽度优选垂直于设备的长度,并且波导优选在沿着ML设备的长度的方向上引导光。半导体层35、36、37、39和52在后表面33与前表面34之间延伸的方向上伸长。The length of the ML device is defined between a rear surface or end
可以在空腔的相对顶侧和底侧上的电极或触点40a、40b和40c上施加电压,以控制设备的激光器和调制器部分。这可以使ML的不同部分被独立控制。Voltages can be applied across electrodes or
光在前表面34处从波导离开设备,即,前表面是ML的发射面。Light exits the device from the waveguide at the
在上述布置中,调制器是马赫-曾德尔调制器。在另一个实施例中,ML的调制器可以是电吸收调制器(electroabsorption modulator,EAM)。In the above arrangement the modulator is a Mach-Zehnder modulator. In another embodiment, the modulator of the ML may be an electroabsorption modulator (EAM).
当调制器是马赫-曾德尔调制器时,电极可以是集总电极或行波电极,或电容负载的分段行波电极。当调制器是电吸收调制器时,电极可以是集总电极或行波电极。When the modulator is a Mach-Zehnder modulator, the electrodes may be lumped electrodes or traveling wave electrodes, or capacitively loaded segmented traveling wave electrodes. When the modulator is an electroabsorption modulator, the electrodes may be lumped electrodes or traveling wave electrodes.
由于场控制层,调制器的MQW材料中的电场变化导致上述M-Z调制器实现的折射率变化,或导致在反向偏置下调制器包括EAM的实现的吸收变化。Due to the field control layer, changes in the electric field in the MQW material of the modulator lead to changes in the refractive index achieved by the M-Z modulators described above, or in absorption changes achieved by modulators including EAMs under reverse bias.
在上述示例中,激光器是DFB激光器。但是,激光器可以是任何其它方便类型的激光器,例如分布式布拉格反射激光器或可调激光器。In the above example, the laser is a DFB laser. However, the laser may be any other convenient type of laser, such as a distributed Bragg reflection laser or a tunable laser.
在本发明的实施例中,半导体可以是InP、InGaAsP、InGaAlAs、InGaAlAsSb、GaAs、AlGaAs、GaN、AlGaN、Ge、Si或其它合适的半导体材料。半导体材料可以根据调制激光器的应用来选择。In an embodiment of the present invention, the semiconductor may be InP, InGaAsP, InGaAlAs, InGaAlAsSb, GaAs, AlGaAs, GaN, AlGaN, Ge, Si or other suitable semiconductor materials. The semiconductor material can be selected according to the application of the modulated laser.
如上所述,调制器的本征区包括MQW材料、场控制层和收集层。在调制激光器的所述调制器的所述本征区中结合场控制层和收集层可以无需在调制激光器的高速与低外部偏置之间进行权衡。在这样的ML中,高速运行和较低的外部偏置可以同时实现。As mentioned above, the intrinsic region of the modulator includes the MQW material, the field control layer and the collection layer. Incorporating a field control layer and a collection layer in the intrinsic region of the modulator of a modulated laser eliminates the need for a trade-off between high speed and low external bias of the modulated laser. In such ML, high-speed operation and lower external bias can be achieved simultaneously.
由于场控制层,与标准EAM或马赫-曾德尔调制器相比,i-MQW区中的电场更强。因此,调制器需要较低的外部偏置。由于存在收集层,调制器的总电容也低于传统设备。这可以实现更高的速度、更大的带宽和更好的功率处理。Due to the field control layer, the electric field is stronger in the i-MQW region compared to standard EAM or Mach-Zehnder modulators. Therefore, the modulator requires low external bias. The total capacitance of the modulator is also lower than conventional devices due to the presence of the collection layer. This enables higher speeds, greater bandwidth and better power handling.
因此,本文描述的调制激光器在操作中可能需要较低的外部偏置,这可能会降低功耗。所提出的调制激光器可以具有更大的带宽,而不损害偏置电压。Therefore, the modulated lasers described herein may require lower external bias in operation, which may reduce power consumption. The proposed modulated laser can have a larger bandwidth without compromising the bias voltage.
所提出的设备特别适合高速运行,并可能具有更好的线性调频和功率处理。The proposed device is particularly suitable for high-speed operation and may have better chirp and power handling.
申请人在此单独公开本文描述的每一个别特征及两个或两个以上此类特征的任意组合。以本领域技术人员的普通知识,能够根据本说明书将此类特征或组合作为整体实现,而不考虑此类特征或特征的组合是否能解决本文所公开的任何问题;且不对权利要求书的范围造成限制。申请人指出,本发明的方面可以包括任何这样的单独特征或特征的组合。鉴于上述描述,本领域技术人员将明显地看到,在本发明的范围内可以进行各种修改。Applicants hereby disclose individually each individual feature described herein and any combination of two or more such features. With the common knowledge of those skilled in the art, such features or combinations can be realized as a whole according to the specification, regardless of whether such features or combinations of features can solve any problems disclosed herein; cause restrictions. The applicant indicates that aspects of the invention may comprise any such individual feature or combination of features. In view of the foregoing description it will be apparent to a person skilled in the art that various modifications may be made within the scope of the invention.
Claims (15)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2020/072729 WO2022033684A1 (en) | 2020-08-13 | 2020-08-13 | High speed modulated laser |
Publications (1)
Publication Number | Publication Date |
---|---|
CN116235100A true CN116235100A (en) | 2023-06-06 |
Family
ID=72139590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080103897.4A Pending CN116235100A (en) | 2020-08-13 | 2020-08-13 | High-speed modulation laser |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116235100A (en) |
WO (1) | WO2022033684A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040240025A1 (en) * | 2003-06-02 | 2004-12-02 | Bour David P. | Electroabsorption modulator |
US20070189344A1 (en) * | 2004-02-20 | 2007-08-16 | Nec Corporation | Modulator-integrated light source and its manufacturing method |
CN103956652A (en) * | 2014-04-25 | 2014-07-30 | 南京威宁锐克信息技术有限公司 | Low-cost tunable DFB semiconductor laser device of integrated modulator and manufacturing method |
JP2019007997A (en) * | 2017-06-20 | 2019-01-17 | 日本電信電話株式会社 | Semiconductor optical device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100362060B1 (en) * | 2000-03-23 | 2002-11-22 | 삼성전자 주식회사 | Electro-absorption typed optical modulator |
US20050018732A1 (en) * | 2002-12-19 | 2005-01-27 | Aaron Bond | Uncooled and high temperature long reach transmitters, and high power short reach transmitters |
US10923879B2 (en) * | 2016-11-17 | 2021-02-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for fabricating an elctro-absorption modulated laser and electro-absorption modulated laser |
-
2020
- 2020-08-13 CN CN202080103897.4A patent/CN116235100A/en active Pending
- 2020-08-13 WO PCT/EP2020/072729 patent/WO2022033684A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040240025A1 (en) * | 2003-06-02 | 2004-12-02 | Bour David P. | Electroabsorption modulator |
US20070189344A1 (en) * | 2004-02-20 | 2007-08-16 | Nec Corporation | Modulator-integrated light source and its manufacturing method |
CN103956652A (en) * | 2014-04-25 | 2014-07-30 | 南京威宁锐克信息技术有限公司 | Low-cost tunable DFB semiconductor laser device of integrated modulator and manufacturing method |
JP2019007997A (en) * | 2017-06-20 | 2019-01-17 | 日本電信電話株式会社 | Semiconductor optical device |
Non-Patent Citations (1)
Title |
---|
J.-W. SHI, C.-A. HSIEH, A.-C. SHIAO, Y.-S. WU, F.-H. HUANG, S.-H. CHEN, Y.-T. TSAI, AND J.-I. CHYI: "Demonstration of a Dual-Depletion-Region Electroabsorption Modulator at 1.55-μm Wavelength for High-Speed and Low-Driving-Voltage Performance", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 17, no. 10, 31 October 2005 (2005-10-31), pages 2068 - 2070, XP011139591, DOI: 10.1109/LPT.2005.854402 * |
Also Published As
Publication number | Publication date |
---|---|
WO2022033684A1 (en) | 2022-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2809124B2 (en) | Optical semiconductor integrated device and method of manufacturing the same | |
Aoki et al. | InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective area MOCVD | |
JP5858997B2 (en) | Loss-modulated silicon evanescent laser | |
US5680411A (en) | Integrated monolithic laser-modulator component with multiple quantum well structure | |
US6122414A (en) | Semiconductor Mach-Zehnder modulator | |
JP4505470B2 (en) | Optical waveguide device and semiconductor device | |
JP5170236B2 (en) | Waveguide type semiconductor optical modulator and manufacturing method thereof | |
US4743087A (en) | Optical external modulation semiconductor element | |
JPH0715093A (en) | Optical semiconductor element | |
JP2019008179A (en) | Semiconductor optical device | |
US5519721A (en) | Multi-quantum well (MQW) structure laser diode/modulator integrated light source | |
JPH0732279B2 (en) | Semiconductor light emitting element | |
JP2827411B2 (en) | Optical semiconductor device and method of manufacturing the same | |
JPH01319986A (en) | Semiconductor laser device | |
Tanbun-Ek et al. | DFB lasers integrated with Mach-Zehnder optical modulator fabricated by selective area growth MOVPE technique | |
US20230035055A1 (en) | Electroabsorption Modulated Laser | |
JP2011181789A (en) | Semiconductor light source | |
CN116235100A (en) | High-speed modulation laser | |
Dai et al. | Uncooled 1.55 μm electro-absorption modulated laser at 28Gb/s with high power and low V pp for datacom | |
US7064881B2 (en) | InP-based phase modulators and methods for making and using same | |
JP2760276B2 (en) | Selectively grown waveguide type optical control device | |
KR100523080B1 (en) | Apparatus for Modulation using Dynamic Single Mode Laser Diode Integrated with an Deflector | |
Knodl et al. | Integrated 1.3-µm InGaAlAs-InP laser-modulator with double-stack MQW layer structure | |
JP2508332B2 (en) | Integrated optical modulator | |
JPS6373585A (en) | Frequency tunable distributed bragg reflection-type semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |