JPH0389412A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH0389412A
JPH0389412A JP22716689A JP22716689A JPH0389412A JP H0389412 A JPH0389412 A JP H0389412A JP 22716689 A JP22716689 A JP 22716689A JP 22716689 A JP22716689 A JP 22716689A JP H0389412 A JPH0389412 A JP H0389412A
Authority
JP
Japan
Prior art keywords
film
thin film
transparent
layer
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22716689A
Other languages
Japanese (ja)
Inventor
Shozo Kawazoe
昭造 河添
Hideo Sugawara
英男 菅原
Masahide Toyooka
豊岡 正英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP22716689A priority Critical patent/JPH0389412A/en
Publication of JPH0389412A publication Critical patent/JPH0389412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To improve the wettability of various laminates on the surfaces of a transparent thin film and a transparent base by laminating the transparent thin film and a hydrophilic-processed transparent layer in this order on one of the faces of the transparent film base, and forming the same king of hydrophilic layer on the other face. CONSTITUTION:On one of the faces of a transparent film base 1, a transparent conductive thin film 2 and a hydraulically-processed transparent layer 3 are laminated in order, while on the other face a layer 4 which is similarly hydraulically processed is formed. The thickness of the film 2 is made 50Angstrom or more. The level of wettability of these hydrophilic layers is made so that the contact angle of water on both faces of film is 20 degrees or less. As the layer 4 is used a thin film of silicon oxide comprising SiO, SiO2, and their intermediate oxides, wherein the thickness is made 20Angstrom or more.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は親水化処理層を有する透明導電性フィルムに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention relates to a transparent conductive film having a hydrophilic treatment layer.

〔従来の技術〕[Conventional technology]

一般に、可視光線領域で透明であり、かつ導電性を有す
る薄膜は、液晶デイスプレィ(LCD)、エレクトロル
ミネッセンスデイスプレィ (ELD〉、エレクトロク
ロミックデイスプレィ゛(ECD)などの新しいデイス
プレィ方式における透明電極のほか、透明物品の帯電防
止や電磁波遮断、タッチパネル、透明タブレット、面状
発熱体などの用途に用いられている。
In general, thin films that are transparent in the visible light range and have conductivity are used as transparent electrodes in new display systems such as liquid crystal displays (LCDs), electroluminescent displays (ELDs), and electrochromic displays (ECDs). It is used in applications such as antistatic and electromagnetic wave shielding for transparent articles, touch panels, transparent tablets, and planar heating elements.

従来、このような透明導電性薄膜として、ガラス上に酸
化インジウム薄膜を形成した、いわゆる導電性ガラスが
よく知られているが、基材がガラスであるために、可撓
性、加工性に劣り、用途によっては好ましくない場合が
ある。
Conventionally, so-called conductive glass, in which an indium oxide thin film is formed on glass, is well known as such a transparent conductive thin film, but because the base material is glass, it has poor flexibility and processability. , which may be undesirable depending on the application.

このため、近年では、可撓性、加工性に加えて、耐衝撃
性にすぐれ、軽量であるなどの利点から、ポリエチレン
テレフタレートフィルムをはじめとする各種の合成樹脂
フィルムを基材とした透明導電性薄膜が賞月されている
For this reason, in recent years, transparent conductive films based on various synthetic resin films, including polyethylene terephthalate film, have been developed due to their flexibility, processability, excellent impact resistance, and light weight. Thin films have been praised.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、このようなフィルム基材を用いた従来の透明
導電性薄膜は、薄膜表面および基材表面の耐擦傷性に劣
り、使用中に薄膜表面に傷がつぃて電気抵抗が増大した
り、断線を生しるおそれがあり、また使用中に基材表面
にキズがついてフィルム全体の透明性が低下するなどの
問題があった。
However, conventional transparent conductive thin films using such film base materials have poor scratch resistance on the thin film surface and the base material surface, and the thin film surface is scratched during use, resulting in increased electrical resistance. There is a risk of wire breakage, and there are also problems such as scratches on the surface of the substrate during use, reducing the transparency of the entire film.

また、フィルム基材の耐熱性に劣るため、高温使用時に
フィルム基材中の低分子物質が基材表面に滲出するなど
の不都合をきたして、フィルム全体の透明性がやはり悪
くなる問題があるほか、薄膜表面および基材表面に設け
られる種々の積層物の濡れ性に劣り、その密着性が充分
に得られないために下記の如き問題をも招いていた。
In addition, because the film base material has poor heat resistance, low molecular weight substances in the film base material ooze out onto the surface of the base material when used at high temperatures, resulting in problems such as poor transparency of the film as a whole. However, the wettability of various laminates provided on the surface of the thin film and the surface of the base material is poor, and the adhesion thereof cannot be obtained sufficiently, leading to the following problems.

たとえば、LCD、EL、ECDなどの各種デイスプレ
ィ方式における表示層(発光層)を導電性薄膜上に塗布
形成する場合に、各表示層の導電性薄膜に対する密着性
が悪くて、ハジキや剥離を生じ、動作時の表示ムラや発
光ムラなどを生じる問題があった。
For example, when forming a display layer (light-emitting layer) in various display systems such as LCD, EL, and ECD on a conductive thin film, the adhesion of each display layer to the conductive thin film is poor, resulting in cissing and peeling. However, there were problems such as uneven display and uneven light emission during operation.

また、タッチパネル、透明タブレット、面状発熱体など
の用途にあっては、導電性薄膜のパターン形成に際しこ
の薄膜上にレジストを塗布するが、このレジストの濡れ
性が悪くて、ハジキや剥離を生じ、パターン切れやパタ
ーン精度の劣化などを引き起こす問題があった。
In addition, for applications such as touch panels, transparent tablets, and sheet heating elements, a resist is applied to the conductive thin film to form a pattern, but the wettability of this resist is poor, causing repellency and peeling. However, there were problems such as pattern breakage and deterioration of pattern accuracy.

さらに、上述の如き種々の用途において、電極の取り出
しとして、Cu、Agなどの導電性ペーストを使用する
が、このペーストの導電性薄膜への濡れ性が悪くて、ハ
ジキや剥離を生じ、電極としての信頼性が悪くなる問題
もあった。
Furthermore, in the various applications mentioned above, conductive pastes such as Cu and Ag are used to take out the electrodes, but this paste has poor wettability to the conductive thin film, causing repellency and peeling, making it difficult to use as an electrode. There was also the problem of poor reliability.

また、このような導電性薄膜表面への積層形成とは異な
り、その裏面側であるフィルム基材表面に対して文字、
記号、紋様などの印刷層や化粧用の塗布層などを積層形
成することがよく行われているが、この場合でもこれら
積層物の基材表面に対する濡れ性が悪くて、ハジキや剥
離を生じる問題があった。
In addition, unlike such lamination formation on the surface of a conductive thin film, letters and
It is common practice to laminate printing layers such as symbols and patterns, coating layers for cosmetics, etc., but even in this case, the wettability of these laminates to the base material surface is poor, causing problems such as repelling and peeling. was there.

この発明は、上記の如き従来の問題点に鑑み、導電性薄
膜表面およびフィルム基材表面に設けられる種々の積層
物の下地に対する濡れ性にすぐれ、しかも上記両表面に
おける良好な耐擦傷性を有するとともに、この種のフィ
ルムに望まれる高い透明性および耐熱性をも備えた透明
導電性フィルムを提供することを目的としている。
In view of the above-mentioned conventional problems, this invention has excellent wettability to the base of various laminates provided on the surface of a conductive thin film and the surface of a film base material, and has good scratch resistance on both surfaces. It is also an object of the present invention to provide a transparent conductive film that also has the high transparency and heat resistance desired for this type of film.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記の目的を達成するために鋭意検討
した結果、フィルム基材の一方の面に設けられる導電性
薄膜の上に特定の処理層を形成するとともに、フィルム
基材の他方の面にも上記と同じ特定の処理層を形成する
ことにより、上記薄膜表面およびフィルム基材表面に設
けられる各種の表示層、レジスト、Agペースト、印刷
層などの種々の積層物の濡れ性を大幅に向上でき、しか
も上記薄膜表面およびフィルム基材表面の耐擦傷性とフ
ィルム全体の透明性や耐熱性の面でも好結果が得られる
ことを知り、この発明を完成するに至った。
As a result of intensive studies to achieve the above object, the inventors formed a specific treatment layer on the conductive thin film provided on one side of the film base material, and By forming the same specific treatment layer on the surface as above, the wettability of various laminates such as various display layers, resists, Ag pastes, printing layers, etc. provided on the surface of the thin film and film base material can be greatly improved. The present invention was completed based on the knowledge that good results could be obtained in terms of the scratch resistance of the thin film surface and the film base material surface, and the transparency and heat resistance of the entire film.

すなわち、この発明は、透明なフィルム基材の一方の面
に透明な導電性薄膜と透明の親水化処理層とがこの順に
積層形成され、かつ他方の面に上記同様の親水化処理層
が形成されていることを特徴とする透明導電性フィルム
に係るものである。
That is, the present invention provides a transparent film base material, in which a transparent conductive thin film and a transparent hydrophilic treatment layer are laminated in this order on one side, and a hydrophilic treatment layer similar to the above is formed on the other side. The present invention relates to a transparent conductive film characterized by:

〔発明の構成・作用〕[Structure and operation of the invention]

この発明において使用するフィルム基材としては、透明
性を有する各種の合成樹脂フィルムを使用でき、具体的
にはポリエチレンテレフタレート、ポリイミド、ポリエ
ーテルサルフオン、ポリエテルエーテルケトン、ポリカ
ーボネート、ポリプロピレン、ポリアミド、ポリアクリ
ル、セルロースプロピオネートなどが挙げられる。これ
らフィルム基材の厚みは、特に限定されないが、通常は
2〜300μm程度であるのがよい。
As the film base material used in this invention, various transparent synthetic resin films can be used, and specifically, polyethylene terephthalate, polyimide, polyether sulfone, polyether ether ketone, polycarbonate, polypropylene, polyamide, polyester, etc. Examples include acrylic and cellulose propionate. Although the thickness of these film base materials is not particularly limited, it is usually good to be about 2 to 300 μm.

このフィルム基材はその表面に予めスパッタリング、コ
ロナ放電、火炎、紫外線照射、電子線照射、化成、酸化
などのエツチング処理や下塗り処理を施して、この上に
設けられる導電性薄膜や親水化処理層の上記基材に対す
る密着性を向上させるようにしてもよい。また、上記の
薄膜や処理層を設ける前に、必要に応じて溶剤洗浄や超
音波洗浄などにより除塵、清浄化してもよい。
The surface of this film base material has been subjected to etching treatments such as sputtering, corona discharge, flame, ultraviolet irradiation, electron beam irradiation, chemical conversion, oxidation, etc., and undercoating treatments beforehand, and a conductive thin film and a hydrophilic treatment layer are provided on the surface. The adhesion to the above-mentioned base material may be improved. Further, before providing the above-mentioned thin film or treated layer, dust removal and cleaning may be performed by solvent cleaning, ultrasonic cleaning, etc. as necessary.

この発明においては、このようなフィルム基材の一方の
面に透明な導電性薄膜を形成する。この薄膜の形成は、
真空蒸着法、スパッタリング法、イオンブレーティング
法などの従来公知の技術を採用して行うことができる。
In this invention, a transparent conductive thin film is formed on one side of such a film base material. The formation of this thin film is
This can be done by employing conventionally known techniques such as vacuum evaporation, sputtering, and ion blating.

また、薄膜材料も限定されず、たとえば酸化スズを含有
する酸化インジウム、アンチモンを含有する酸化スズ、
さらにAg5Au、、Cu、Nix Tis Pdなど
の金属または合金などが用いられる。
Further, the thin film material is not limited, for example, indium oxide containing tin oxide, tin oxide containing antimony,
Further, metals or alloys such as Ag5Au, Cu, Nix Tis Pd, etc. are used.

導電性薄膜の厚さは、50Å以上とするのが好ましく、
これより薄いと表面抵抗が109Ω/口以下となる良好
な導電性を示す連続被膜となりにくい。一方、厚くしす
ぎると透明性の低下などをきたすため、特に好適な厚さ
としては、100〜4.000人程度とするのがよい。
The thickness of the conductive thin film is preferably 50 Å or more,
If it is thinner than this, it is difficult to form a continuous film showing good conductivity with a surface resistance of 10 9 Ω/hole or less. On the other hand, if the thickness is too thick, the transparency will be reduced, so a particularly suitable thickness is about 100 to 4,000.

この発明においては、上記の如くして透明な導電性薄膜
を形威したのち、この薄膜上に透明な親水化処理層を形
威し、さらにこのフィルム基材の他方の面にも′上記同
様の親水化処理層を形成することを特徴としている。こ
のような親水化処理層の形式によって、前記した各種の
表示層、レジスト、印刷層など種々の積層物の濡れ性が
大幅に改善され、さらに導電性薄膜表面およびフィルム
基材表面の耐擦傷性が改善され、またフィルム全体の耐
熱性や透明性の面でも好結果が得られる。
In this invention, after forming a transparent conductive thin film as described above, a transparent hydrophilic treatment layer is formed on this thin film, and the other side of this film base material is also formed in the same manner as described above. It is characterized by forming a hydrophilic treated layer. This type of hydrophilic treatment layer greatly improves the wettability of various laminates such as the various display layers, resists, and printing layers described above, and also improves the scratch resistance of the conductive thin film surface and the film base material surface. is improved, and good results can also be obtained in terms of the heat resistance and transparency of the entire film.

ここで、上記処理層によってもたらされる濡れ性の程度
は、この処理層を設ける前のフィルム両面の水の接触角
〔θ〕が通常80度以上であるのに対し、フィルム両面
共最高でも50度以下、通常は20度以下、特に好適に
は10度以下の接触角まで低下する。なお、この接触角
〔θ〕は、たとえば協和界面科学■製のCNTACT−
ANGLE  METER(形式CA−DT)を用いて
測定できる。
Here, the degree of wettability brought about by the above-mentioned treatment layer is such that, while the contact angle [θ] of water on both sides of the film is usually 80 degrees or more before this treatment layer is provided, the contact angle [θ] of water on both sides of the film is at most 50 degrees. Thereafter, the contact angle is usually reduced to 20 degrees or less, particularly preferably 10 degrees or less. Note that this contact angle [θ] is, for example, CNTACT-
It can be measured using ANGLE METER (format CA-DT).

この親水化処理層として特に適したものとしては、S 
iO% S i Ot 、これらの中間酸化状態の酸化
珪素などからなる酸化珪素薄膜が挙げられる。
Particularly suitable as this hydrophilic treatment layer is S
Examples include a silicon oxide thin film made of iO% S i Ot and silicon oxide in an intermediate oxidation state.

この薄膜の厚さは、20Å以上とするのがよく、通常で
は50〜3.000人、特に好適には100〜2.00
0人の範囲とするのがよい。薄すぎると連続被膜となり
にくく、濡れ性、耐擦傷性、耐熱性および透明性の向上
をあまり期待できず、逆に厚くなりすぎると導電性や透
明性が悪くなったり、クラックを生じるおそれがあり、
いずれも好ましくない。
The thickness of this thin film is preferably 20 Å or more, usually 50 to 3,000, particularly preferably 100 to 2,000.
It is best to set the number to 0. If it is too thin, it will be difficult to form a continuous film, and you will not be able to expect much improvement in wettability, scratch resistance, heat resistance, or transparency.On the other hand, if it is too thick, conductivity and transparency may deteriorate, or cracks may occur. ,
Neither is preferable.

このような親水化処理層の形式方法としては、たとえば
真空蒸着法、スパッタリング法、イオンブレーティング
法、塗工法などがあり、用いる材料の種類および必要と
する膜厚に応じて適宜の方法を採用することができる。
Formal methods for forming such a hydrophilic treatment layer include, for example, vacuum evaporation, sputtering, ion blating, coating, etc., and an appropriate method is adopted depending on the type of material used and the required film thickness. can do.

第1図はこの発明の透明導電性フィルムの一例を示した
もので、図中、1は透明なフィルム基材、2はこのフィ
ルム基材1の一方の面に形威された透明な導電性薄膜、
3はこの薄膜2上に積層形成された透明な親水化処理層
、4は上記フィルム基材1の他方の面に形威された上記
同様の親水化処理層である。
FIG. 1 shows an example of the transparent conductive film of the present invention. In the figure, 1 is a transparent film base material, and 2 is a transparent conductive film formed on one side of this film base material 1. thin film,
Reference numeral 3 designates a transparent hydrophilic treatment layer laminated on this thin film 2, and 4 designates a hydrophilic treatment layer similar to the above formed on the other surface of the film base material 1.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、フィルム基材の一方の面に
設けられる透明な導電性薄膜の上に透明な親水化処理層
を形威し、さらにこのフィルム基材の他方の面にも上記
同様の親水化処理層を形式するようにしたことにより、
上記薄膜表面および基材表面に設けられる種々の積層物
の濡れ性を大幅に向上でき、しかも上記薄膜表面および
基材表面の耐擦傷性とさらに耐熱性や透明性の改善をも
図りうる透明導電性フィルムを提供することができる。
As described above, the present invention forms a transparent hydrophilic treatment layer on the transparent conductive thin film provided on one side of the film base material, and furthermore forms the above-mentioned transparent layer on the other side of the film base material. By using a similar hydrophilic treatment layer,
A transparent conductive material that can significantly improve the wettability of various laminates provided on the surface of the thin film and base material, and also improve the scratch resistance, heat resistance, and transparency of the surface of the thin film and base material. can provide a sex film.

この発明の透明導電性フィルムは、前記したような種々
の用途への利用に際し、オフセット、グラビア、スクリ
ーン、凸版などの印、刷塗工方式における油性や水性の
種々のインクの超高精度の印刷塗工を可能とする。また
、導電性薄膜による帯電防止効果による印刷時の重送防
止、高速印刷化、フィルムへの付着物防止などの各種の
改良をも図れ、カード用、ラベル用、OHP用などの情
報関連分野のフィルムにも利用できる。
The transparent conductive film of the present invention can be used for various purposes such as offset, gravure, screen, and letterpress printing, as well as ultra-high precision printing using various oil-based and water-based inks in printing methods. Enables coating. In addition, the antistatic effect of the conductive thin film enables various improvements such as preventing double feeding during printing, increasing printing speed, and preventing deposits on the film, and is useful in information related fields such as cards, labels, and OHP. It can also be used for film.

〔実施例〕〔Example〕

以下に、この発明の実施例を記載してより具体的に説明
する。
EXAMPLES Below, examples of the present invention will be described in more detail.

実施例1 厚さが75μmのポリエチレンテレフタレート(以下、
PETという)フィルムの両面を、アルボンガス80%
と酸素ガス20%とからなる4×10−3To r r
の雰囲気中で、放電処理量3W・秒/−にて高周波スパ
ッタエツチング処理した。
Example 1 Polyethylene terephthalate (hereinafter referred to as
Both sides of the PET film are coated with 80% arbon gas.
and 20% oxygen gas.
High frequency sputter etching treatment was performed in an atmosphere of 3 W·sec/- in a discharge treatment amount.

その後、この処理面の一方の面に、インジウム−スズ合
金を用いた反応性スパッタリング法により・厚さ400
人の酸化インジウムと酸化スズとの複合酸化物薄膜(以
下、ITO薄膜という)からなる透明な導電性薄膜を形
式した。
After that, one side of this treated surface was coated with a 400mm thick layer by reactive sputtering using an indium-tin alloy.
We created a transparent conductive thin film made of a composite oxide thin film of human indium oxide and tin oxide (hereinafter referred to as an ITO thin film).

つぎに、この導電性薄膜上に、Sighを電子ビーム加
熱法により、(1〜2) X 10−’To rrの真
空度で真空蒸着して、厚さ約900人の810、薄膜か
らなる透明な親水化処理層を形式した。その後、このP
ET基材の他方の面に、上記と同一条件にて5iOz薄
膜からなる親水化処理層を同一厚みに形式し、図に示す
構造の透明導電性フィルムとした。
Next, on this conductive thin film, Sigh was vacuum-deposited using an electron beam heating method at a vacuum degree of (1 to 2) A hydrophilic treatment layer was used. Then this P
On the other side of the ET base material, a hydrophilic treatment layer consisting of a 5iOz thin film was formed to the same thickness under the same conditions as above to obtain a transparent conductive film having the structure shown in the figure.

実施例2 透明な親水化処理層であるS i O,薄膜の厚さを両
面共に100人に変更した以外は、実施例1と同様にし
て、図に示す構造の透明導電性フィルムを作製した。
Example 2 A transparent conductive film having the structure shown in the figure was produced in the same manner as in Example 1, except that the transparent hydrophilic treatment layer S i O and the thickness of the thin film were changed to 100 on both sides. .

実施例3 ITO薄膜上およびPET基材表面上に、SiOを電子
ビーム加熱法により(2〜5)XIO−’Torrの真
空度で真空蒸着して、厚さ約800人のSiO薄膜から
なる透明な親水化処理層を形式した以外は、実施例1と
同様にして透明導電性フィルムを作製した。
Example 3 SiO was vacuum-deposited on the ITO thin film and on the surface of the PET substrate by electron beam heating at a vacuum degree of (2 to 5) A transparent conductive film was produced in the same manner as in Example 1, except that a hydrophilic treatment layer was used.

実施例4 ITO薄膜に代えて、スパッタリング法により厚さ約1
20人のAg薄膜からなる透明な導電性薄膜を形式した
以外は、実施例1と同様にして透明導電性フィルムを作
製した。
Example 4 Instead of making an ITO thin film, a thickness of about 1
A transparent conductive film was produced in the same manner as in Example 1, except that a transparent conductive thin film consisting of 20 Ag thin films was used.

比較例1 透明な親水化処理層であるSiO□薄膜の形成を省いた
以外は、実施例1と同様にして透明導電性フィルムを作
製した。
Comparative Example 1 A transparent conductive film was produced in the same manner as in Example 1, except that the formation of the SiO□ thin film as the transparent hydrophilic treatment layer was omitted.

比較例2 透明な親水化処理層であるS i Oz薄膜の形式を省
いた以外は、実施例4と同様にして透明導電性フィルム
を作製した。
Comparative Example 2 A transparent conductive film was produced in the same manner as in Example 4, except that the S i Oz thin film as the transparent hydrophilic treatment layer was omitted.

つぎに、以上の実施例および比較例の各透明導電性フィ
ルムにつき、フィルム抵抗、透過率、耐熱性、耐擦傷性
、水の接触角、表面濡れ性、Agペーストの密着性、レ
ジストの密着性、EL層の密着性、ECD層の密着性を
、下記の要領で測定評価した。その結果を、後記の第1
表に示す。
Next, for each transparent conductive film of the above Examples and Comparative Examples, film resistance, transmittance, heat resistance, scratch resistance, water contact angle, surface wettability, Ag paste adhesion, and resist adhesion. , the adhesion of the EL layer, and the adhesion of the ECD layer were measured and evaluated in the following manner. The results are shown in the first section below.
Shown in the table.

〈フィルム抵抗〉 四端子法を用いて、フィルムの表面電気抵抗(Ω/口〉
を測定した。
<Film resistance> Using the four-probe method, calculate the surface electrical resistance of the film (Ω/mouth).
was measured.

〈透過率〉 島津製作所製の分光分析装置UV−240を用いて、光
波長550nmにおける可視光線透過率を測定した。
<Transmittance> Visible light transmittance at a light wavelength of 550 nm was measured using a spectroscopic analyzer UV-240 manufactured by Shimadzu Corporation.

〈耐熱性〉 乾燥器を用いて、120℃の雰囲気中に500時間放置
したのちの透過率を上記同様に測定した。
<Heat resistance> The transmittance was measured in the same manner as above after being left in an atmosphere at 120° C. for 500 hours using a dryer.

く耐擦傷性〉 新来科学社製のヘイトン表面性測定機TYPE−HEI
DON14を用いて、■擦傷子:ガーゼ(日本薬局方タ
イプ■−)、■荷重:100g/cj、■擦傷速度:3
0cm/分、■擦傷回数:100回(往復50回)の条
件で、導電性薄膜表面を擦ったのちにフィルム抵抗(R
s)を測定し、初期のフィルム抵抗(Ro)に対する変
化率(Rs/RO)を求めて、耐擦傷性を評価した。
Scratch resistance〉 Hayton surface property measuring machine TYPE-HEI manufactured by Shinraikagakusha
Using DON14, ■Abrasion: Gauze (Japanese Pharmacopoeia type■-), ■Load: 100g/cj, ■Abrasion speed: 3
After rubbing the surface of the conductive thin film under the conditions of 0cm/min, Number of scratches: 100 times (50 round trips), the film resistance (R
The scratch resistance was evaluated by measuring the change rate (Rs/RO) with respect to the initial film resistance (Ro).

また、上記導電性薄膜表面とは反対側の基材表面を上記
と同じ条件で擦ったのち、表面傷の状態を目視により観
察し、つぎの評価を行った。
Further, after rubbing the surface of the base material opposite to the surface of the conductive thin film under the same conditions as above, the state of surface scratches was visually observed, and the following evaluation was performed.

O:表面傷が全くみられない △:表面傷がごく僅かみられる ×:表面傷が非常に多くみられる く水の接触角〉 協和界面科学■製のCNTACT−ANGLEMETE
R(形式CA−DT)を用いて、導電性薄膜表面および
その反対側の基材表面の接触角〔θ〕を測定した。
O: No surface scratches are seen △: Very few surface scratches are seen ×: Very many surface scratches are seen Water contact angle〉 CNTACT-ANGLEMETE manufactured by Kyowa Interface Science ■
The contact angle [θ] between the conductive thin film surface and the opposite substrate surface was measured using R (type CA-DT).

く表面濡れ性〉 和光純薬工業■製の濡れ指数標準液を使用して、導電性
薄膜表面およびその反対側の基材表面の濡れ指数(表面
エネルギー:dyne/cm)を測定した。
Surface Wettability> The wettability index (surface energy: dyne/cm) of the surface of the conductive thin film and the surface of the substrate on the opposite side was measured using a standard wettability index solution manufactured by Wako Pure Chemical Industries, Ltd.

< A gペーストの密着性〉 デメトロン製のAgペースト62901 0275を導
電性薄膜の表面に約25μmの厚さにスクリーン印刷し
、120℃で50分間キュアー後、Agペースト膜に1
fi角のクロスカットを入れ、これに日東電工■製の粘
着テープNa31Bを貼着し、強く剥離したときのクロ
スカット100個中の残り個数を調べた。
<Adhesion of Ag Paste> Ag paste 62901 0275 manufactured by Demetron was screen printed on the surface of the conductive thin film to a thickness of about 25 μm, and after curing at 120°C for 50 minutes, 1 was applied to the Ag paste film.
A crosscut with an angle of fi was made, an adhesive tape Na31B manufactured by Nitto Denko ■ was adhered thereto, and the number of remaining crosscuts among 100 crosscuts when strongly peeled off was determined.

〈レジストの密着性〉 吉川加工■製のNAZ−BAR231を、導電性薄膜の
表面にスクリーン印刷し、120℃で2〜3分間キュア
ー後、その表面状態を目視により観察し、つぎのように
評価した。
<Resist adhesion> NAZ-BAR231 manufactured by Yoshikawa Kako ■ was screen printed on the surface of the conductive thin film, and after curing at 120°C for 2 to 3 minutes, the surface condition was visually observed and evaluated as follows. did.

Δニレジスト層の一部にハジキがみられる<EL層の密
着性〉 硫化亜鉛およびマンガン粉末をシアノエチル化セルロー
ス中に分散させてなる塗工液を、導電性薄膜の表面に塗
布、乾燥して、厚さが数十μmのEL発光層を形威し、
つぎの評価を行った。
Repellency is observed in a part of the Δni resist layer <Adhesion of EL layer> A coating liquid made by dispersing zinc sulfide and manganese powder in cyanoethylated cellulose is applied to the surface of the conductive thin film, dried, Embodying an EL light-emitting layer with a thickness of several tens of micrometers,
The following evaluation was performed.

○:導電性薄膜との濡れ性が良好 Δ:EL発光層の一部にハジキがみられるX:EL発光
層にハジキが多くみられる<ECD層の密着性〉 ビピリジンの誘導体であるバソフェナンドロリンスリホ
ン酸と高分子4級アンモニウム塩とのポリイオンコンプ
レックスを、導電性薄膜の表面に塗布したのち、前記の
EL層の場合と同様の評価を行った。
○: Good wettability with the conductive thin film Δ: Repellency is observed in a part of the EL light-emitting layer After applying a polyion complex of lolinsulfonic acid and a polymeric quaternary ammonium salt to the surface of the conductive thin film, the same evaluation as in the case of the EL layer described above was performed.

上記第1表の結果から明らかなように、この発明の透明
導電性フィルムは、導電性薄膜表面および基材表面の濡
れ性が良好であって、この上への各種積層物の密着性に
すぐれており、しかも導電性薄膜表面および基材表面の
耐擦傷性も改善されており、そのうえ耐熱性や透明性の
面でも満足できるものであることが判る。
As is clear from the results in Table 1 above, the transparent conductive film of the present invention has good wettability on the surface of the conductive thin film and the surface of the base material, and has excellent adhesion of various laminates thereon. Moreover, the scratch resistance of the surface of the conductive thin film and the surface of the base material is also improved, and it can be seen that the heat resistance and transparency are also satisfactory.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の透明導電性フィルムの一例を示す断
面図である。 ■・・・フィルム基材、2・・・導電性薄膜、3.4・
・・親水化処理層
FIG. 1 is a sectional view showing an example of the transparent conductive film of the present invention. ■... Film base material, 2... Conductive thin film, 3.4.
・Hydrophilic treatment layer

Claims (3)

【特許請求の範囲】[Claims] (1)透明なフィルム基材の一方の面に透明な導電性薄
膜と透明な親水化処理層とがこの順に積層形成され、か
つ他方の面に上記同様の親水化処理層が形成されている
ことを特徴とする透明導電性フィルム。
(1) A transparent conductive thin film and a transparent hydrophilic treatment layer are laminated in this order on one side of a transparent film base material, and a hydrophilic treatment layer similar to the above is formed on the other side. A transparent conductive film characterized by:
(2)フィルム両面の水の接触角〔θ〕が20度以下で
ある請求項(1)に記載の透明導電性フィルム。
(2) The transparent conductive film according to claim 1, wherein the contact angle [θ] of water on both surfaces of the film is 20 degrees or less.
(3)親水化処理層が酸化珪素薄膜からなる請求項(1
)または(2)に記載の透明導電性フィルム。
(3) Claim (1) wherein the hydrophilic treatment layer comprises a silicon oxide thin film.
) or the transparent conductive film described in (2).
JP22716689A 1989-09-01 1989-09-01 Transparent conductive film Pending JPH0389412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22716689A JPH0389412A (en) 1989-09-01 1989-09-01 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22716689A JPH0389412A (en) 1989-09-01 1989-09-01 Transparent conductive film

Publications (1)

Publication Number Publication Date
JPH0389412A true JPH0389412A (en) 1991-04-15

Family

ID=16856525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22716689A Pending JPH0389412A (en) 1989-09-01 1989-09-01 Transparent conductive film

Country Status (1)

Country Link
JP (1) JPH0389412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271561A2 (en) * 2001-06-27 2003-01-02 Fuji Photo Film Co., Ltd. Conductive film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922033A (en) * 1982-07-28 1984-02-04 Toshiba Corp Electrochromic display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922033A (en) * 1982-07-28 1984-02-04 Toshiba Corp Electrochromic display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1271561A2 (en) * 2001-06-27 2003-01-02 Fuji Photo Film Co., Ltd. Conductive film
EP1271561A3 (en) * 2001-06-27 2007-08-29 FUJIFILM Corporation Conductive film

Similar Documents

Publication Publication Date Title
US9860981B2 (en) Transparent conductive film and method for producing same
US6040056A (en) Transparent electrically conductive film-attached substrate and display element using it
US6355125B1 (en) Method for making an electric or electronic module comprising a glass laminate
JP2667680B2 (en) Transparent conductive laminate
EP1038663B1 (en) Method of making an electronic module comprising a glass laminate
JP2763472B2 (en) Transparent conductive laminate and touch panel
JP2667686B2 (en) Transparent conductive laminate
WO2017010521A1 (en) Transparent electrode film, dimming element, and method for manufacturing transparent electrode film
JP2846887B2 (en) Transparent conductive laminate
JP4665263B2 (en) Transparent conductive film and touch panel using the same
JP2624930B2 (en) Transparent conductive laminate and touch panel
JPH0389412A (en) Transparent conductive film
JPH02299106A (en) Transparent conducting film
JPH1165771A (en) Electrode substrate for touch panel and manufacture of the same
JP2000082335A (en) Transparent conductive film, transparent touch panel, and liquid crystal display element
JP2000214330A (en) Transparent conductive polarizing film, touch panel and liquid crystal display device
JP2002163932A (en) Transparent electrically conductive film, transparent electrically conductive sheet and touch panel
JP2829003B2 (en) Transparent conductive laminate
JP4085295B2 (en) Method for producing transparent conductive film for pen input touch panel, pen input transparent touch panel and liquid crystal display element
JP4675060B2 (en) Electrophoretic display medium
JP2003098339A (en) Method for manufacturing filter for display
JPS6174838A (en) Transparent conductive laminate
JPH09237159A (en) Resistor film type transparent touch panel
US6801280B2 (en) Reflective liquid crystal displays having multilayer rear substrates
JPS62154413A (en) Manufacture of resin for transparent electrode with uneven surface