JPH0387576A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0387576A
JPH0387576A JP1224226A JP22422689A JPH0387576A JP H0387576 A JPH0387576 A JP H0387576A JP 1224226 A JP1224226 A JP 1224226A JP 22422689 A JP22422689 A JP 22422689A JP H0387576 A JPH0387576 A JP H0387576A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
heat storage
solenoid valve
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1224226A
Other languages
Japanese (ja)
Inventor
Kenji Matsuda
松田 謙治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1224226A priority Critical patent/JPH0387576A/en
Publication of JPH0387576A publication Critical patent/JPH0387576A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a defrosting operation time by arranging a bypass refrigerant circuit between the outlet side of an indoor side heat exchanger and the inlet side of an outdoor side heat exchanger, accumulating heat with first and second solenoid valves opened and closed and defrosting with the first and second solenoid valves closed and opened, respectively. CONSTITUTION:When first and second solenoid valves 23 and 25 are set to be opened and closed, respectively, in a bypass refrigerant circuit 26, a refrigerant which has passed an indoor side heat exchanger 3 is accumulated in a heat accumulator 24 via the first solenoid valve 23 and a suction tube 27 in the same condition as that of the refrigerant outputted from the indoor side heat exchanger 3. That is, the refrigerant is accumulated at a point A in the condition of a liquid phase refrigerant. The liquid refrigerant at the point A moves on an isotherm represented by a dashed line to be changed to a condition represented in a point B. At this time, a refrigerant gas 1a discharged in a refrigerant circuit and a circuit condition as represented by a full line in a room heating operation is changed to that as represented by a dotted line in a defrosting, operation, a refrigerant gas pressure in a low pressure refrigerant circuit portion being raised. As a result, a low pressure at a temperature below 0 deg.C is increased to the pressure at a temperature above 0 deg.C and frost attached to an outdoor heat exchanger 5 is molten to be removed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は空気調和機に関し、特に蓄熱器を備えたヒー
トポンプ方式による空気調和機に関するものである。
The present invention relates to an air conditioner, and more particularly to a heat pump type air conditioner equipped with a heat storage device.

【従来技術】[Prior art]

第4図〜第5図は、例えば特開昭61−165560号
公報に示された従来の空気調和機を示す冷媒回路、除霜
時の電気制御回路及び蓄熱形態交換器の断面図を示すも
のである。第4図において、lは冷媒を圧縮して排出す
る圧縮機、2は圧縮機1の吸入・吐出系を切り替える四
方弁、3は室内側熱交換器、4は減圧装置としての機械
式膨張弁、5は室外側熱交換器である。そして、これら
圧縮if、四方弁2.室内側熱交換器39機械式膨張弁
4.室外側熱交換器5は、冷媒配管6により環状に連結
されて冷媒が流されることにより冷媒回路7を構成して
いる。8は室内側熱交換器3に強制送風して熱交換を行
なわせる室内ファン、9は室外側熱交換器5に強制送風
することにより熱交換を行なわせる室外ファン、10は
室外側熱交換器5の入口側部分に感温部分が装着された
除霜条件検出器、11は圧縮機1の吸入部における冷媒
温度を検出する感温筒、12は圧81機lの吸入部にお
ける冷媒圧力を検出する均圧管である。そして、この感
温筒11および均圧管12は、機械式膨張弁4の絞りを
制御することにより、該部分における加熱度を一定に制
御している。また、この感温筒11および均圧管12は
、圧縮機lの停止時および吸入冷媒の液化時に、前記機
械式膨張弁4を全閉に制御する。13は霜取時に必要と
する熱を蓄える蓄熱最熱交換器、14は第1の電磁弁、
15は第2の電磁弁、16は圧縮機1の冷媒吐出口1a
から蓄熱最熱交換器13及び第1の電磁弁14を介して
、室外側熱交換器5の入口に連結された第1のバイパス
回路、17はこの第1のバイパス回路16における一部
の冷媒配管であって、この冷媒配管17の周囲を取り巻
くようにに蓄熱最熱交換器13が配置された構造となっ
ている。 つまり、蓄熱最熱交換器13は第5図にその断面図を示
すように、冷媒配管17の周囲に熱交換を良くするため
のフィン18が固定されている。そして、このフィン1
8の外周を外殻19が機密状態に覆って、その内部に蓄
熱材料20が充填された構造となっている。21は蓄熱
最熱交換器13の出口側から第2の電磁弁15を介して
室内側熱交換器3の出口側に至る第2のバイパス回路、
22は第5図に示すように、蓄熱最熱交換器13の外殻
部分に接触固定された蓄熱条件検出器であって、蓄熱最
熱交換器13が設定温度以上に上昇すると開く接点を有
している。 次に、上記構成による空気調和機の動作を説明する。先
ず、暖房運転の開始に際しては、四方弁2を図示状態の
暖房サイク運転モードに切り換える。一方、暖房開始時
においては、除霜条件検出器10及び蓄熱条件検出器2
2は共に検出信号を出力していないことから、図示しな
い制御回路は第2のt磁弁15のみを開状態に設定する
。 次に、圧m機lが運転されると、この圧縮機1の冷媒吐
出口1aから吐き出される高温高圧の冷媒ガスは、第4
図に矢印で示すように四方弁2を介して室内側熱交換器
3に供給される。室内側熱交換器3においては、室内フ
ァン8から供給される強制通風によって冷却されること
から、前記高温高圧の冷媒ガスはこの室内側熱交換器3
内において熱交換されて冷却されることにより凝縮液と
なる。このようにして凝縮された冷媒液は・機械式膨張
弁4を通過する際に断熱膨張されて低圧冷媒となり、室
外側熱交換器5において室外ファン9による強制通風に
より加熱されて蒸発することにより低圧冷媒ガスとなる
。そして、この低圧冷媒ガスは四方弁2を介して圧縮機
1に吸入されることにより、再び圧縮されて高温高圧冷
媒として吐き出されることになる。 一方、蓄熱最熱交換器13と第2の11を磁弁15とに
よって第2のバイパス回路21を構成していることから
、圧縮機1から吐き出される高温高圧冷媒の一部が、こ
の第2のバイパス回路21を構成する冷媒配管17を介
して流れることになる。 冷媒配管17に高温高圧冷媒が流れると、この高温高圧
冷媒が有する熱が、蓄熱最熱交換器13を構成するフィ
ン18を介して蓄熱材料20に熱交換されることから、
蓄熱最熱交換器13の内部に蓄熱されることになる。そ
して、この蓄熱最熱交換器13において熱交換された冷
媒は、第2の電磁弁工5を介して室内側熱交換器3の出
口側に供給されることにより、主冷媒配管6に合流し、
その後は主冷媒回路7を介して圧縮機1に戻されること
になる。 ここで、蓄熱最熱交換器13への蓄熱が進み、外殻19
の温度が設定温度に達すると、蓄熱条件検出器22はそ
の内部に設けられている接点を開くことにより、検出信
号を図示しない制御部に供給する。制御部は蓄熱条件検
出器22から検出信号が供給されると、第2の電磁弁1
5を閉じることにより、第2のバイパス冷媒回路21を
閉止させる。よって、蓄熱最熱交換器13の蓄熱が完了
すると、主冷媒回路7のみに冷媒が流れて暖房運転が行
われることになる。 次に、外気温度が下がって、室外側熱交換器5に着氷が
始まると、外気から熱を吸収する能力が減少することか
ら、室外側熱交換器5の入力配管温度が低下する。これ
を除霜条件検出器10が検出して、図示しない制御部に
供給する。制御部は除霜条件検出器10から供給される
除霜条件検出信号の供給を受けると、除霜運転モードに
切り換える。この除霜運転モードにおいては、第1の電
磁弁14が開かれることから、第1のバイパス冷媒回路
16が形成される。すると、圧縮機1から吐き出された
高温高圧の冷媒ガスは、この第1のバイパス冷媒回路1
6を介して室外側熱交換器5に流れることにより、この
室外側熱交換器5に付着している霜を解かす。 ここで、係る除霜運転モードが進行すると、室外側熱交
換器5における熱交換量が極めて多いことから、圧縮機
1に吸入される冷媒ガスの温度が低くなる。吸入される
冷媒ガスの温度が低くなると、これに伴って圧縮機1か
ら吐き出されて第1のバイパス冷媒回路16に流れ込む
冷媒ガスの温度も低くなる。しかし、蓄熱形態交換器1
3は暖房運転時に蓄熱した熱エネルギーを、係る蓄熱形
態交換器13の内部を通過する冷媒ガスに熱交換により
与えることから、室外側熱交換器5には高温の冷媒ガス
が供給され続けられて、効果的な除霜が行われることに
なる。
Figures 4 and 5 are cross-sectional views of a refrigerant circuit, an electric control circuit during defrosting, and a heat storage type exchanger of a conventional air conditioner disclosed in, for example, Japanese Unexamined Patent Publication No. 61-165560. It is. In Fig. 4, l is a compressor that compresses and discharges refrigerant, 2 is a four-way valve that switches the suction/discharge system of compressor 1, 3 is an indoor heat exchanger, and 4 is a mechanical expansion valve as a pressure reducing device. , 5 is an outdoor heat exchanger. And these compression if, four-way valve 2. Indoor heat exchanger 39 mechanical expansion valve 4. The outdoor heat exchanger 5 constitutes a refrigerant circuit 7 by being connected in an annular manner by a refrigerant pipe 6 and through which refrigerant flows. 8 is an indoor fan that performs heat exchange by forcing air into the indoor heat exchanger 3; 9 is an outdoor fan that performs heat exchange by forcing air into the outdoor heat exchanger 5; 10 is an outdoor heat exchanger 5 is a defrosting condition detector equipped with a temperature-sensing part on the inlet side; 11 is a temperature-sensing cylinder for detecting the refrigerant temperature at the suction part of the compressor 1; and 12 is a defrosting condition detector for detecting the refrigerant pressure at the suction part of the compressor 1. This is a pressure equalizing tube for detection. By controlling the throttle of the mechanical expansion valve 4, the temperature sensing tube 11 and the pressure equalizing tube 12 control the degree of heating in these portions to a constant value. Further, the temperature sensing cylinder 11 and the pressure equalizing pipe 12 control the mechanical expansion valve 4 to be fully closed when the compressor 1 is stopped and when the suction refrigerant is liquefied. 13 is a heat storage maximum heat exchanger that stores the heat required during defrosting, 14 is a first solenoid valve,
15 is a second solenoid valve; 16 is a refrigerant discharge port 1a of the compressor 1;
A first bypass circuit connected to the inlet of the outdoor heat exchanger 5 through the heat storage maximum heat exchanger 13 and the first solenoid valve 14; 17 is a part of the refrigerant in the first bypass circuit 16; The refrigerant pipe 17 has a structure in which a heat storage maximum heat exchanger 13 is disposed surrounding the refrigerant pipe 17. That is, as shown in the cross-sectional view of FIG. 5, the heat storage maximum heat exchanger 13 has fins 18 fixed around the refrigerant pipe 17 to improve heat exchange. And this fin 1
The outer periphery of the outer shell 8 is covered with an outer shell 19 in a airtight state, and the inside thereof is filled with a heat storage material 20. 21 is a second bypass circuit extending from the outlet side of the heat storage maximum heat exchanger 13 to the outlet side of the indoor heat exchanger 3 via the second solenoid valve 15;
As shown in FIG. 5, 22 is a heat storage condition detector that is fixed in contact with the outer shell of the heat storage heat exchanger 13, and has a contact that opens when the temperature of the heat storage heat exchanger 13 rises above a set temperature. are doing. Next, the operation of the air conditioner with the above configuration will be explained. First, when starting the heating operation, the four-way valve 2 is switched to the illustrated heating cycle operation mode. On the other hand, at the start of heating, the defrosting condition detector 10 and the heat storage condition detector 2
Since both of the valves 1 and 2 do not output a detection signal, a control circuit (not shown) sets only the second magnetic valve 15 to an open state. Next, when the compressor m machine 1 is operated, the high temperature and high pressure refrigerant gas discharged from the refrigerant discharge port 1a of the compressor 1 is
It is supplied to the indoor heat exchanger 3 via the four-way valve 2 as shown by the arrow in the figure. In the indoor heat exchanger 3, the high temperature and high pressure refrigerant gas is cooled by forced ventilation supplied from the indoor fan 8.
It becomes a condensate by being cooled through heat exchange within the tank. The refrigerant liquid condensed in this way is adiabatically expanded when passing through the mechanical expansion valve 4 and becomes a low-pressure refrigerant, and is heated and evaporated by forced ventilation by the outdoor fan 9 in the outdoor heat exchanger 5. It becomes low pressure refrigerant gas. This low-pressure refrigerant gas is sucked into the compressor 1 via the four-way valve 2, where it is compressed again and discharged as high-temperature and high-pressure refrigerant. On the other hand, since the second bypass circuit 21 is configured by the heat storage maximum heat exchanger 13 and the second 11 and the magnetic valve 15, a part of the high temperature and high pressure refrigerant discharged from the compressor 1 is transferred to the second bypass circuit 21. The refrigerant flows through the refrigerant piping 17 that constitutes the bypass circuit 21 . When the high-temperature, high-pressure refrigerant flows through the refrigerant pipe 17, the heat of this high-temperature, high-pressure refrigerant is exchanged with the heat storage material 20 via the fins 18 that constitute the heat storage maximum heat exchanger 13.
Heat is stored inside the heat storage maximum heat exchanger 13. The refrigerant heat-exchanged in this heat storage heat exchanger 13 is supplied to the outlet side of the indoor heat exchanger 3 via the second solenoid valve 5, thereby joining the main refrigerant pipe 6. ,
Thereafter, it is returned to the compressor 1 via the main refrigerant circuit 7. Here, heat storage in the heat storage maximum heat exchanger 13 progresses, and the outer shell 19
When the temperature reaches the set temperature, the heat storage condition detector 22 opens a contact provided therein to supply a detection signal to a control section (not shown). When the control unit receives the detection signal from the heat storage condition detector 22, it controls the second solenoid valve 1.
By closing 5, the second bypass refrigerant circuit 21 is closed. Therefore, when the heat storage in the heat storage maximum heat exchanger 13 is completed, the refrigerant flows only through the main refrigerant circuit 7, and heating operation is performed. Next, when the outside air temperature decreases and icing begins to form on the outdoor heat exchanger 5, the ability to absorb heat from the outside air decreases, so the input pipe temperature of the outdoor heat exchanger 5 decreases. The defrosting condition detector 10 detects this and supplies it to a control section (not shown). When the control unit receives the defrosting condition detection signal supplied from the defrosting condition detector 10, it switches to the defrosting operation mode. In this defrosting operation mode, the first solenoid valve 14 is opened, so a first bypass refrigerant circuit 16 is formed. Then, the high temperature and high pressure refrigerant gas discharged from the compressor 1 flows through this first bypass refrigerant circuit 1.
6 to the outdoor heat exchanger 5, the frost adhering to the outdoor heat exchanger 5 is thawed. Here, when the defrosting operation mode proceeds, the temperature of the refrigerant gas sucked into the compressor 1 becomes low because the amount of heat exchanged in the outdoor heat exchanger 5 is extremely large. As the temperature of the refrigerant gas being sucked decreases, the temperature of the refrigerant gas discharged from the compressor 1 and flowing into the first bypass refrigerant circuit 16 also decreases accordingly. However, heat storage form exchanger 1
3 provides thermal energy stored during heating operation to the refrigerant gas passing through the inside of the heat storage type exchanger 13 through heat exchange, so that the outdoor heat exchanger 5 is continuously supplied with high-temperature refrigerant gas. , effective defrosting will be performed.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の空気調和機は以上のように構成されているので、
第1.第2の冷媒バイパス回路が必要になることから、
冷媒回路が複雑で高価なものとなってしまう。また、上
記構成においては、熱交換によって蓄熱材に間接的に蓄
熱するものであることから、蓄熱効率が低いものとなっ
て除霜運転時間が長くなってしまう、更に、上記構成に
おいては、除霜運転時に冷媒ガスが室内側熱交換器3に
流れなくなることから、暖房が中断されて不快感を与え
る等の問題点があった。 この発明は、上記のような問題点を解消するためになさ
れたもので、冷媒回路の構成が簡単でありながら、除霜
運転時間を短くすることが出来ると共に、除霜運転時に
不快感を与えない空気調和機を提供することである。
Conventional air conditioners are configured as described above.
1st. Since a second refrigerant bypass circuit is required,
The refrigerant circuit becomes complicated and expensive. In addition, in the above configuration, heat is stored indirectly in the heat storage material through heat exchange, so the heat storage efficiency is low and the defrosting operation time becomes long. Since refrigerant gas no longer flows to the indoor heat exchanger 3 during frost operation, heating is interrupted, causing discomfort. This invention was made to solve the above-mentioned problems, and while the configuration of the refrigerant circuit is simple, the defrosting operation time can be shortened, and the defrosting operation does not cause discomfort. There is no air conditioner provided.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る空気調和機は、第1の電磁弁と、冷媒を
液状態で溜める蓄熱器と、第2の電磁弁とを直列に接続
することによりバイパス冷媒回路を構成し、このバイパ
ス冷媒回路を室内側熱交換器の出口側と室外側熱交換器
の入口側との間に配置し、第1の電磁弁を開、第2のt
磁弁を閉として蓄熱を行い、第1の電磁弁を閉、第2の
電磁弁を開として除霜を行うものである。
The air conditioner according to the present invention configures a bypass refrigerant circuit by connecting in series a first solenoid valve, a heat storage device that stores refrigerant in a liquid state, and a second solenoid valve. is placed between the outlet side of the indoor heat exchanger and the inlet side of the outdoor heat exchanger, the first solenoid valve is opened, and the second t
Heat is stored by closing the magnetic valve, and defrosting is performed by closing the first solenoid valve and opening the second solenoid valve.

【作用】[Effect]

この発明における空気調和機においては、蓄熱器に高温
高圧の液状態で溜められている冷媒を、室外熱交換器に
供給することにより、暖房運転状を中断すること無く除
霜が行えることになる。
In the air conditioner according to the present invention, defrosting can be performed without interrupting heating operation by supplying the refrigerant stored in the heat storage device in a high temperature, high pressure liquid state to the outdoor heat exchanger. .

【発明の実施例】[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第1
図はこの発明による空気調和機の一実施例を示す冷媒回
路であって、1〜9は第4図と同一であるため、その詳
細説明を省略する。23は第1の電磁弁、24は高温高
圧の冷媒を液状で溜めることにより蓄熱を行う蓄熱器、
25は第2の電磁弁であって、これられ直列に接続され
ることによりバイパス冷媒回路26を構成して、室内側
熱交換器3の出口側と、室外@熱交換器50入口側との
間に接続されている。第2図は蓄熱器24の断面図であ
って、外殻24aの内部には蓄熱剤24bが収納されて
、冷媒との間において直接的に熱交換することが出来る
ようになっている。ここで、蓄熱剤24bは冷媒と混じ
り合わないように樹脂等で被服されている。また、この
蓄熱器24の内部には、第1の電磁弁23に連結されて
底近くまで延在する吸入管27と、第2の電磁弁25に
連結されて天井部分で終端する吐出管28が設けられて
いる。 次に、このように構成された空気[r機の動作を説明す
る。第1図に示す冷媒回路において、暖房運転時に圧縮
機1から吐き出され、冷媒回路を介して再び圧縮機1に
吸入される冷媒の流れは、矢印で示すように従来の場合
と同じ流れとなる。 この時、バイパス冷媒回路26における第1の電磁弁2
3を開、第2の電磁弁25を閉に設定すると、室内側熱
交換器3を通過した冷媒が第1の電磁弁23及び吸入管
27を介して蓄熱器24の内部に、室内側熱交換器3か
らの出力冷媒と同一条件のままで溜められることになる
。つまり、第3図に示すモリエル線図上のA点において
、液冷媒の状態で溜められることになる。 次に、除霜運転を行うには、第1の電磁弁23を閉に、
また第2の電磁弁25を開に設定する。 すると、蓄熱器24内の圧力は、吐出管28.第2の電
磁弁25を介して、室外熱交換器5の出口と同一の圧力
となる。この結果、蓄熱器24内に溜められている液状
の冷媒は、低圧となるので蒸発して冷媒ガスとなる。 ここで、蓄熱剤24bの融点を第3図に示すように、モ
リエル線図上のA点に設定すると、除霜時に蓄熱器24
内の液冷媒が冷媒ガスに変化する際に蓄熱剤24bから
蒸発潜熱を奪うことから、液冷媒が冷媒ガスに変化して
も、温度変化が生じなくなる。これは、冷媒が液からガ
スに変化する時に必要となる蒸発潜熱を蓄熱剤24bか
ら奪うからであり、蓄熱剤24bは冷媒が液からガスに
変化する時、液体から固体に変化して保有する熱を冷媒
ガスへ移行させるためである。つまり、第3図に示すモ
リエル線図において、A点にあった液冷媒は、−点鎖線
上における等温線上を移動してB点へ状態が変化する。 この時、冷媒回路中に冷媒ガスが放出され、暖房運転時
に実線で示す回路状態であったのが、除霜運転時には点
線で示す回路状態となって、低圧冷媒回路部分における
冷媒ガス圧が上昇する。この結果、0°C以下(2点鎖
線より下)にあった低圧(実線上)がO′C以上(2点
鎖線より上)となり、室外熱交換器5に付着している霜
が溶かされて除去されることになる。 一方、第1の電磁弁23の閉によって、高圧冷媒回路部
分を流れる冷媒が、蓄熱器24内に流れ込むのが防止さ
れることから、係る除霜動作中における高圧冷媒回路内
の冷媒圧力は何ら変化することはなく、これに伴って暖
房運転動作はそのまま継続されることになる。つまり、
暖房運転を続けながら、除霜が行えることになる。 なお、蓄熱剤24bの融点(液体から固体に変化する点
)は、室内側熱交換器3の出口側における冷媒の温度よ
りも少し低めの温度に設定すれば良い。具体的には、融
点が20〜50°Cのものを選定すれば良いころになる
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a refrigerant circuit showing an embodiment of the air conditioner according to the present invention, and since 1 to 9 are the same as those in FIG. 4, detailed explanation thereof will be omitted. 23 is a first electromagnetic valve; 24 is a heat storage device that stores heat by storing high-temperature, high-pressure refrigerant in liquid form;
Reference numeral 25 denotes a second solenoid valve, which constitutes a bypass refrigerant circuit 26 by being connected in series, and connects the outlet side of the indoor heat exchanger 3 and the outdoor @ heat exchanger 50 inlet side. connected between. FIG. 2 is a sectional view of the heat storage device 24, in which a heat storage agent 24b is housed inside the outer shell 24a so that heat can be exchanged directly with the refrigerant. Here, the heat storage agent 24b is covered with resin or the like so as not to mix with the refrigerant. Also, inside this heat storage device 24, there is a suction pipe 27 connected to the first solenoid valve 23 and extending to near the bottom, and a discharge pipe 28 connected to the second solenoid valve 25 and terminating at the ceiling. is provided. Next, the operation of the air machine configured as described above will be explained. In the refrigerant circuit shown in Fig. 1, the flow of refrigerant discharged from the compressor 1 during heating operation and sucked into the compressor 1 again via the refrigerant circuit is the same flow as in the conventional case, as shown by the arrow. . At this time, the first solenoid valve 2 in the bypass refrigerant circuit 26
3 is opened and the second solenoid valve 25 is set to close, the refrigerant that has passed through the indoor heat exchanger 3 enters the heat storage device 24 via the first solenoid valve 23 and the suction pipe 27, and generates indoor heat. The refrigerant is stored under the same conditions as the refrigerant output from the exchanger 3. In other words, the refrigerant is stored in a liquid state at point A on the Mollier diagram shown in FIG. Next, to perform defrosting operation, close the first solenoid valve 23,
Also, the second solenoid valve 25 is set to open. Then, the pressure inside the heat storage device 24 is reduced to the discharge pipe 28. The pressure becomes the same as that at the outlet of the outdoor heat exchanger 5 via the second solenoid valve 25 . As a result, the liquid refrigerant stored in the heat storage device 24 has a low pressure and evaporates into refrigerant gas. Here, if the melting point of the heat storage agent 24b is set at point A on the Mollier diagram as shown in FIG.
When the liquid refrigerant inside changes into refrigerant gas, it takes away the latent heat of vaporization from the heat storage agent 24b, so even if the liquid refrigerant changes into refrigerant gas, no temperature change occurs. This is because the latent heat of vaporization required when the refrigerant changes from liquid to gas is taken away from the heat storage agent 24b, and when the refrigerant changes from liquid to gas, the heat storage agent 24b changes from liquid to solid and retains it. This is to transfer heat to the refrigerant gas. That is, in the Mollier diagram shown in FIG. 3, the liquid refrigerant that was at point A moves on the isothermal line on the - dotted chain line and changes its state to point B. At this time, refrigerant gas is released into the refrigerant circuit, and the circuit state shown by the solid line during heating operation changes to the circuit state shown by the dotted line during defrosting operation, and the refrigerant gas pressure in the low-pressure refrigerant circuit increases. do. As a result, the low pressure (above the solid line), which was below 0°C (below the two-dot chain line), becomes more than O'C (above the two-dot chain line), and the frost adhering to the outdoor heat exchanger 5 is melted. will be removed. On the other hand, by closing the first electromagnetic valve 23, the refrigerant flowing through the high-pressure refrigerant circuit is prevented from flowing into the heat storage device 24, so the refrigerant pressure within the high-pressure refrigerant circuit during the defrosting operation does not change at all. There is no change, and the heating operation continues as is. In other words,
Defrosting can be performed while heating operation continues. The melting point (the point at which it changes from liquid to solid) of the heat storage agent 24b may be set to a temperature slightly lower than the temperature of the refrigerant at the outlet side of the indoor heat exchanger 3. Specifically, it is best to select one with a melting point of 20 to 50°C.

【発明の効果】【Effect of the invention】

以上説明したように、この発明によれば、第1の電磁弁
と、冷媒を蓄熱剤と共に液状態で溜める蓄熱器と、第2
の電磁弁とを直列に接続することによりバイパス冷媒回
路を構成し、このバイパス冷媒回路を室内側熱交換器の
出口側と室外側熱交換器の入口側との間に配置し、第1
の電磁弁を開。 第2の、電磁弁を閉として蓄熱を行い、第1の電磁弁を
閉、第2の電磁弁を開として除霜を行うものであること
から、暖房運転を継続した状態のままで、除霜が行える
ことから、従来生じていた除霜時に暖房運転が中断され
る不快感を与えることが防止される。また、バイパス冷
媒回路を室内側熱交換器の出口側と室外側熱交換器の入
口側との間に設けるのみであることから、冷媒回路が従
来に比較して大幅に簡略化される等の種々効果を有する
As explained above, according to the present invention, the first electromagnetic valve, the heat storage device that stores the refrigerant in a liquid state together with the heat storage agent, and the second
A bypass refrigerant circuit is constructed by connecting the solenoid valves in series, and this bypass refrigerant circuit is arranged between the outlet side of the indoor heat exchanger and the inlet side of the outdoor heat exchanger.
Open the solenoid valve. Since the second solenoid valve is closed to store heat, the first solenoid valve is closed, and the second solenoid valve is opened to defrost the defrost. Since frosting is possible, the unpleasant feeling of interruption of heating operation during defrosting, which conventionally occurs, can be prevented. In addition, since the bypass refrigerant circuit is only provided between the outlet side of the indoor heat exchanger and the inlet side of the outdoor heat exchanger, the refrigerant circuit is significantly simplified compared to conventional methods. It has various effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による空気調和機を示す冷
媒回路図、第2図は第1図に示す蓄熱器の断面図、第3
図はモリエル線図、第4図は従来の空気調和機を示す冷
媒回路図、第5図は第4図に示す蓄熱器の断面図である
。 l・・・圧縮機、2・・・四方弁、3・・・室内側熱交
換器、4・・・減圧装置(機械式膨張弁)、5・・・室
外側熱交換器、7・・・冷媒回路、23・・・第1の電
磁弁、24・・・蓄熱器、25・・・第1の11t磁弁
、26・・・バイパス冷媒回路。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a refrigerant circuit diagram showing an air conditioner according to an embodiment of the present invention, FIG. 2 is a sectional view of the heat storage device shown in FIG. 1, and FIG.
The figure is a Mollier diagram, FIG. 4 is a refrigerant circuit diagram showing a conventional air conditioner, and FIG. 5 is a sectional view of the heat storage device shown in FIG. 4. 1... Compressor, 2... Four-way valve, 3... Indoor heat exchanger, 4... Pressure reducing device (mechanical expansion valve), 5... Outdoor heat exchanger, 7... - Refrigerant circuit, 23... First solenoid valve, 24... Regenerator, 25... First 11t solenoid valve, 26... Bypass refrigerant circuit. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  圧縮機、四方弁、室内熱交換器、減圧装置、室外熱交
換器を備えた空気調和機において、第1の電磁弁を有す
る吸入管と、蓄熱剤を収納した蓄熱器と、第2の電磁弁
を有する吐出管を直列に接続した蓄熱回路を、暖房運転
時液冷媒貯留可能に前記減圧装置に並列に接続し、前記
第1の電磁弁を開、前記第2の電磁弁を閉として暖房蓄
熱運転を行い、前記第1の電磁弁を閉、前記第2の電磁
弁を開として暖房運転を行いながら除霜運転を行うこと
を特徴とする空気調和機。
In an air conditioner equipped with a compressor, a four-way valve, an indoor heat exchanger, a pressure reduction device, and an outdoor heat exchanger, an inlet pipe having a first electromagnetic valve, a heat storage device containing a heat storage agent, and a second electromagnetic valve are provided. A heat storage circuit in which discharge pipes each having a valve are connected in series is connected in parallel to the pressure reducing device so as to store liquid refrigerant during heating operation, and heating is performed by opening the first solenoid valve and closing the second solenoid valve. An air conditioner characterized in that a heat storage operation is performed, the first solenoid valve is closed, and the second solenoid valve is opened to perform a defrosting operation while performing a heating operation.
JP1224226A 1989-08-30 1989-08-30 Air conditioner Pending JPH0387576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224226A JPH0387576A (en) 1989-08-30 1989-08-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1224226A JPH0387576A (en) 1989-08-30 1989-08-30 Air conditioner

Publications (1)

Publication Number Publication Date
JPH0387576A true JPH0387576A (en) 1991-04-12

Family

ID=16810481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224226A Pending JPH0387576A (en) 1989-08-30 1989-08-30 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0387576A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505230A (en) * 2011-02-11 2014-02-27 フリジェスコ リミテッド Flash (frost) defrost system
CN104422193A (en) * 2013-09-05 2015-03-18 珠海格力电器股份有限公司 Refrigeration and heating liquid accumulation methods, refrigeration and heating frost prevention methods and air conditioning system
WO2016170616A1 (en) * 2015-04-22 2016-10-27 三菱電機株式会社 Air conditioner
CN108731294A (en) * 2018-06-06 2018-11-02 青岛海尔空调电子有限公司 Multi-gang air-conditioner and its control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014505230A (en) * 2011-02-11 2014-02-27 フリジェスコ リミテッド Flash (frost) defrost system
CN104422193A (en) * 2013-09-05 2015-03-18 珠海格力电器股份有限公司 Refrigeration and heating liquid accumulation methods, refrigeration and heating frost prevention methods and air conditioning system
WO2016170616A1 (en) * 2015-04-22 2016-10-27 三菱電機株式会社 Air conditioner
JPWO2016170616A1 (en) * 2015-04-22 2017-11-02 三菱電機株式会社 Air conditioner
CN108731294A (en) * 2018-06-06 2018-11-02 青岛海尔空调电子有限公司 Multi-gang air-conditioner and its control method
WO2019232943A1 (en) * 2018-06-06 2019-12-12 青岛海尔空调电子有限公司 Multiple-unit air conditioner and control method therefor
US11480344B2 (en) 2018-06-06 2022-10-25 Qingdao Haier Air-Conditioning Electronic Co., Ltd. Multi-split air conditioner and control method therefor

Similar Documents

Publication Publication Date Title
KR930002429B1 (en) Refrigerating cycle apparatus
KR100997284B1 (en) Air conditioner and control method thereof
EP2792973B1 (en) Method for controlling an air conditioner
US20060150667A1 (en) Heat exchanger and air conditioner using the same
CN212538209U (en) Heat pump system, heat pump air conditioner comprising same and heat pump water heater
JP2003240391A (en) Air conditioner
JP2002372320A (en) Refrigerating device
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
JPH0387576A (en) Air conditioner
JPH04366369A (en) Air conditioning apparatus
JPH0452469A (en) Air conditioner
JPH01155153A (en) Air conditioner
JPH0212339B2 (en)
JPH08313096A (en) Air conditioner
JPH0367964A (en) Air conditioner
JP2003028525A (en) Multiroom type air conditioner
JPH024148A (en) Air-conditioner
JP2005037003A (en) Air-conditioner
JPS6346350B2 (en)
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JPH01306782A (en) Heat pump type air-conditioner
JP2507400B2 (en) Refrigerant heating type air conditioner
JPH0334614Y2 (en)
JPH0526520A (en) Air conditioner