JPWO2016170616A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JPWO2016170616A1
JPWO2016170616A1 JP2015062238A JP2017513879A JPWO2016170616A1 JP WO2016170616 A1 JPWO2016170616 A1 JP WO2016170616A1 JP 2015062238 A JP2015062238 A JP 2015062238A JP 2017513879 A JP2017513879 A JP 2017513879A JP WO2016170616 A1 JPWO2016170616 A1 JP WO2016170616A1
Authority
JP
Japan
Prior art keywords
heat
heating
heat storage
cooling
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015062238A
Other languages
Japanese (ja)
Other versions
JP6415702B2 (en
Inventor
貴之 辻
貴之 辻
和田 誠
誠 和田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/062238 priority Critical patent/WO2016170616A1/en
Publication of JPWO2016170616A1 publication Critical patent/JPWO2016170616A1/en
Application granted granted Critical
Publication of JP6415702B2 publication Critical patent/JP6415702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Abstract

冷凍サイクル内の排熱を蓄熱し、熱移動による運転能力の確保を可能とする空気調和装置を提供する。従来の空気調和装置では、冷房運転中に蓄冷する方式と、暖房運転中に蓄熱する方式が存在するが、両者ともその間は運転能力が低下する。また、蓄熱、蓄冷する分の電力を余分に消費してしまう。この発明に係る空気調和装置は、排熱部から蓄熱する手段に加え、放熱(冷却)する手段と、熱移動の有効/無効を切り替える手段を備えることで、暖房時に蓄熱槽に高温状態で溜められている冷媒を、室外熱交換器に供給することにより、暖房運転状態を中断することなく除霜が行え、また、冷房時には蓄熱槽に低温状態で溜められている冷媒を、発熱部に対して供給することにより、冷房運転状態を制限することがない。Provided is an air conditioner that accumulates exhaust heat in a refrigeration cycle and that can ensure operating capability by heat transfer. In the conventional air conditioner, there are a method of storing cold during the cooling operation and a method of storing heat during the heating operation, and both of them have a lower operating capacity. Moreover, the electric power for heat storage and cold storage will be consumed extra. The air conditioner according to the present invention is provided with a means for storing heat from the exhaust heat section, a means for radiating (cooling), and a means for switching between valid / invalid of heat transfer, so that it is stored in a heat storage tank in a high temperature state during heating. By supplying the stored refrigerant to the outdoor heat exchanger, defrosting can be performed without interrupting the heating operation state, and during cooling, the refrigerant stored in a low temperature state in the heat storage tank is supplied to the heat generating part. Therefore, the cooling operation state is not limited.

Description

この発明は空気調和装置に関し、特に、蓄熱槽を備えたヒートポンプ方式の空気調和装置に関する。   The present invention relates to an air conditioner, and more particularly, to a heat pump type air conditioner including a heat storage tank.
特許文献1に記載されているような、蓄熱槽を備えたヒートポンプ方式の空気調和装置が存在する。以下、図6〜図9を参照して、特許文献1に記載された従来の空気調和装置の動作を説明する。   There is a heat pump type air conditioner equipped with a heat storage tank as described in Patent Document 1. Hereinafter, with reference to FIGS. 6 to 9, the operation of the conventional air conditioner described in Patent Document 1 will be described.
従来の空気調和装置は、圧縮機2、冷暖切替用または蓄熱運転切替用の四方弁1、負荷側熱交換器7、負荷側膨張機構6、室外側切替弁9、室外熱交換器8、アキュムレータ15を環状に接続して媒回路を構成し、四方弁1と負荷側熱交換器8の間の冷媒ガスが流れるガス配管から分岐され、四方弁3、蓄熱槽4、蓄熱量調整用の膨張弁5を接続して液側配管に接続される。   A conventional air conditioner includes a compressor 2, a cooling / heating switching four-way valve 1, a heat storage switching, a load-side heat exchanger 7, a load-side expansion mechanism 6, an outdoor switching valve 9, an outdoor heat exchanger 8, and an accumulator. 15 is connected in an annular shape to form a medium circuit, branched from a gas pipe through which refrigerant gas flows between the four-way valve 1 and the load-side heat exchanger 8, and expanded to adjust the four-way valve 3, the heat storage tank 4, and the amount of stored heat. The valve 5 is connected and connected to the liquid side piping.
上述した従来の空気調和装置の動作を説明する。最初に、図6を用いて暖房蓄熱制御について説明する。負荷側熱交換器7に流入する流量を蓄熱槽4にバイパスして、蓄熱槽4に蓄熱し、通常の暖房運転を行う。そして膨張弁5の開度を調整し,蓄熱量を制御する。負荷側熱交換器7を循環した冷媒と蓄熱槽4を循環した冷媒を合流させて室外熱交換器8に流す。   The operation of the above-described conventional air conditioner will be described. First, heating heat storage control will be described with reference to FIG. The flow rate flowing into the load-side heat exchanger 7 is bypassed to the heat storage tank 4 to store heat in the heat storage tank 4, and a normal heating operation is performed. And the opening degree of the expansion valve 5 is adjusted, and the heat storage amount is controlled. The refrigerant that has circulated through the load-side heat exchanger 7 and the refrigerant that has circulated through the heat storage tank 4 are merged and flow into the outdoor heat exchanger 8.
次に、図7を用いて暖房放熱制御について説明する。圧縮機2からの吐出ホットガスを室外熱交換器8の上流にバイパスし、除霜する。そして通常の暖房運転を行う。次に、圧縮機2の吐出側と切替弁10を介して室外熱交換器8の液側配管を接続したホットガスバイパス回路により、除霜中の暖房能力と除霜能力を調整する。また負荷側熱交換器7を循環した冷媒を蓄熱槽4に流し、室外熱交換器8を出た冷媒とアキュームレータ15の前で合流させ圧縮機2に吸入する。   Next, heating heat dissipation control will be described with reference to FIG. The hot gas discharged from the compressor 2 is bypassed upstream of the outdoor heat exchanger 8 and defrosted. And normal heating operation is performed. Next, the heating capacity and the defrosting capacity during defrosting are adjusted by a hot gas bypass circuit in which the discharge side of the compressor 2 and the liquid side pipe of the outdoor heat exchanger 8 are connected via the switching valve 10. In addition, the refrigerant circulated through the load-side heat exchanger 7 flows into the heat storage tank 4, merges with the refrigerant exiting the outdoor heat exchanger 8 in front of the accumulator 15, and is sucked into the compressor 2.
次に、図8を用いて冷房蓄熱制御について説明する。室外熱交換器8で凝縮された液冷媒をバイパスして膨張弁5に流し、膨張弁5の開度を調整し,蒸発温度を下げて蓄熱する。この時、負荷側熱交換器7の膨張弁6は閉止する。更に蓄熱槽4を循環した冷媒は、負荷側熱交換器7で蒸発されたガス冷媒と合流してアキュームレータ15へ流す。   Next, the cooling heat storage control will be described with reference to FIG. The liquid refrigerant condensed in the outdoor heat exchanger 8 is bypassed and flows to the expansion valve 5, the opening degree of the expansion valve 5 is adjusted, and the evaporation temperature is lowered to store heat. At this time, the expansion valve 6 of the load side heat exchanger 7 is closed. Further, the refrigerant circulating in the heat storage tank 4 joins the gas refrigerant evaporated in the load side heat exchanger 7 and flows to the accumulator 15.
次に、図9を用いて冷房放熱制御について説明する。室外熱交換器8で凝縮した冷媒を閉止した弁14の手前でバイパスし、蓄熱槽4で更に凝縮する。また室外熱交換器8の負荷を軽減するため、蓄熱槽4を循環した冷媒を負荷側熱交換器7に流し、冷媒を蒸発させる。負荷側熱交換器7を循環した冷媒を通常の冷房と同様にアキュームレータ15へ流す。   Next, cooling heat radiation control will be described with reference to FIG. The refrigerant condensed in the outdoor heat exchanger 8 is bypassed in front of the closed valve 14 and further condensed in the heat storage tank 4. Further, in order to reduce the load on the outdoor heat exchanger 8, the refrigerant circulating in the heat storage tank 4 is caused to flow to the load side heat exchanger 7 to evaporate the refrigerant. The refrigerant that has circulated through the load-side heat exchanger 7 is caused to flow to the accumulator 15 as in normal cooling.
特開平03−87576号公報Japanese Patent Laid-Open No. 03-87576
上述した従来の空気調和装置においては、冷房運転中に蓄冷する方式と、暖房運転中に蓄熱する方式が存在するが、両者ともその間は運転能力が低下する。また、蓄熱、蓄冷する分の電力を余分に消費してしまう。   In the conventional air-conditioning apparatus described above, there are a method of storing cold during the cooling operation and a method of storing heat during the heating operation. Moreover, the electric power for heat storage and cold storage will be consumed excessively.
この発明は、かかる問題点を解決するためになされたもので、第1の目的は、空気調和装置内の排熱部(制御ボックスや圧縮機を構成するモータ巻線部など)が持つエネルギーを、必要に応じて蓄熱槽に蓄熱しておき、暖房運転時に室外熱交換器に供給(放熱)することで、暖房時の運転能力を確保することである。   The present invention has been made in order to solve such problems, and a first object is to provide energy of an exhaust heat unit (such as a control box and a motor winding unit constituting a compressor) in the air conditioner. In addition, heat is stored in a heat storage tank as necessary, and is supplied (radiated) to the outdoor heat exchanger during heating operation, thereby ensuring operating capacity during heating.
また、第2の目的は、冷房時において、従来の手法で蓄熱槽に蓄冷しておき、運転中、上記の発熱部が高温になった際に、結露点に達しない範囲で蓄冷熱を供給(冷却)することにより、冷房能力を確保することである。   The second purpose is to cool the heat storage tank in a conventional manner during cooling, and supply cold storage heat within the range that does not reach the dew point when the heat generating part becomes hot during operation. (Cooling) is to secure the cooling capacity.
前記従来の課題を解決するために、この発明に係る空気調和装置は、圧縮機、四方弁、負荷側熱交換器、減圧装置、室外熱交換器を、液冷媒を循環させる配管で連結した第1の冷媒回路を備え、
第1の電磁弁を有する吸入管と、蓄熱剤を収納した蓄熱槽と、第2の電磁弁を有する吐出管を直列に接続したバイパス回路を、暖房運転時液冷媒貯留可能に前記減圧装置に並列に接続し、前記第1の電磁弁を開、前記第2の電磁弁を閉として暖房蓄熱運転を行い、前記第1の電磁弁を閉、前記第2の電磁弁を開として暖房運転を行う際、装置内の排熱を蓄熱し、熱移動による運転能力の確保を可能とする空気調和装置において、
前記蓄熱槽と装置の発熱部との間を結ぶ第2の冷媒回路を設け、ポンプを用いて当該第2の冷媒回路の冷媒を循環させることを特徴とする。
In order to solve the above-described conventional problems, an air conditioner according to the present invention includes a compressor, a four-way valve, a load-side heat exchanger, a decompression device, and an outdoor heat exchanger connected by a pipe that circulates liquid refrigerant. 1 refrigerant circuit,
A bypass circuit in which a suction pipe having a first electromagnetic valve, a heat storage tank containing a heat storage agent, and a discharge pipe having a second electromagnetic valve are connected in series is provided in the pressure reducing device so that liquid refrigerant can be stored during heating operation. Connected in parallel, opens the first solenoid valve, closes the second solenoid valve to perform heating heat storage operation, closes the first solenoid valve, and opens the second solenoid valve to perform heating operation. When performing, in the air conditioner that stores the exhaust heat in the device and enables the operation capability by heat transfer,
A second refrigerant circuit connecting between the heat storage tank and the heat generating part of the apparatus is provided, and the refrigerant of the second refrigerant circuit is circulated using a pump.
この発明における空気調和装置を用いれば、暖房時に蓄熱槽に高温状態で溜められている冷媒を、室外熱交換器に供給することにより、暖房運転状態を中断することなく除霜を行うことができる。一方、冷房時には蓄熱槽に低温状態で溜められている冷媒を、発熱部に対して供給することにより、冷房運転状態を制限することがない。   If the air conditioner in this invention is used, it can defrost without interrupting a heating operation state by supplying the refrigerant | coolant currently stored by the heat storage tank at the high temperature state at the time of heating to an outdoor heat exchanger. . On the other hand, the cooling operation state is not limited by supplying the refrigerant stored in the heat storage tank in a low temperature state to the heat generating portion during cooling.
この発明の実施の形態における暖房蓄熱制御の構成と動作を示す図である。It is a figure which shows the structure and operation | movement of heating heat storage control in embodiment of this invention. 同実施の形態における暖房蓄熱制御の制御を示すフローチャートである。It is a flowchart which shows control of the heating heat storage control in the embodiment. 同実施の形態における暖房放熱制御の制御を示すフローチャートである。It is a flowchart which shows control of the heating radiation control in the same embodiment. この発明の実施の形態における冷房蓄熱制御の構成と動作を示す図である。It is a figure which shows the structure and operation | movement of the cooling heat storage control in embodiment of this invention. 同実施の形態における冷房放熱制御の制御を示すフローチャートである。It is a flowchart which shows the control of the cooling heat radiation control in the embodiment. 従来の暖房蓄熱制御の構成と動作を示す図である。It is a figure which shows the structure and operation | movement of the conventional heating heat storage control. 従来の暖房放熱制御の構成と動作を示す図である。It is a figure which shows the structure and operation | movement of the conventional heating radiation control. 従来の冷房蓄熱制御の構成と動作を示す図である。It is a figure which shows the structure and operation | movement of the conventional cooling heat storage control. 従来の冷房放熱制御の構成と動作を示す図である。It is a figure which shows the structure and operation | movement of the conventional cooling heat radiation control.
以下、この発明の実施の形態に係る空気調和装置について、図面を参照して説明する。
最初に、図1を用いて本実施の形態における空気調和装置の構成を説明する。空気調和装置は、冷暖切替のための四方弁1、圧縮機2、蓄熱切替のための四方弁3、蓄熱槽4、蓄熱量調整膨張弁5、負荷側膨張弁6、負荷側熱交換器7、室外熱交換器8、室外側切替弁9、10、蓄熱側切替弁11〜14、アキュームレータ15、制御ボックス25内に配置されたヒートシンク16およびリアクトル17で構成されている。
Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to the drawings.
Initially, the structure of the air conditioning apparatus in this Embodiment is demonstrated using FIG. The air conditioner includes a four-way valve 1 for switching between cooling and heating, a compressor 2, a four-way valve 3 for switching heat storage, a heat storage tank 4, a heat storage amount adjusting expansion valve 5, a load side expansion valve 6, and a load side heat exchanger 7. , An outdoor heat exchanger 8, outdoor switching valves 9 and 10, heat storage switching valves 11 to 14, an accumulator 15, a heat sink 16 and a reactor 17 disposed in the control box 25.
次に、図1を用いて、本実施の形態における暖房蓄熱制御について説明する。図1に、暖房蓄熱制御における空気調和装置の構成と冷媒の流れを示す。本実施の形態では、第1の暖房蓄熱制御と、第2の暖房蓄熱制御を有する。なお、冷媒は矢印で示す方向に流れる。   Next, the heating heat storage control in this Embodiment is demonstrated using FIG. In FIG. 1, the structure of the air conditioning apparatus and the flow of a refrigerant | coolant in heating thermal storage control are shown. In this Embodiment, it has 1st heating heat storage control and 2nd heating heat storage control. The refrigerant flows in the direction indicated by the arrow.
第2の暖房蓄熱制御は、ユニット内の発熱部からの熱を蓄熱する制御であり、第1の暖房蓄熱制御(系統1)とは別冷媒系(系統2)とする。系統2は、ヒートシンク16やリアクトル17を含む発熱部と蓄熱槽(タンク)4を冷媒用の配管で結び、ポンプ18を用いて冷媒を循環させる第2の冷媒回路を設けている。   The second heating heat storage control is a control for storing heat from the heat generating part in the unit, and is a refrigerant system (system 2) different from the first heating heat storage control (system 1). The system 2 is provided with a second refrigerant circuit that connects the heat generating unit including the heat sink 16 and the reactor 17 and the heat storage tank (tank) 4 with refrigerant piping and circulates the refrigerant using the pump 18.
図1において、ヒートシンク16、リアクトル17、圧縮機2および蓄熱槽(タンク)4には、それぞれの温度を測定する温度センサ21〜24が設置されている。空気調和装置の運転中、これらの温度センサを用いてヒートシンク16の表面温度(T1)、リアクトル17の表面温度(T2)、圧縮機2のモータ巻き線の温度(T3)の温度を監視する。なお、以下の説明では、代表としてヒートシンク16の温度(T1)のみを測定するケースを記載している。   In FIG. 1, temperature sensors 21 to 24 for measuring respective temperatures are installed in a heat sink 16, a reactor 17, a compressor 2, and a heat storage tank (tank) 4. During the operation of the air conditioner, these temperature sensors are used to monitor the surface temperature (T1) of the heat sink 16, the surface temperature (T2) of the reactor 17, and the temperature of the motor winding (T3) of the compressor 2. In the following description, a case where only the temperature (T1) of the heat sink 16 is measured is described as a representative.
図2および図3のフローチャートに、本発明の暖房蓄熱制御における制御の内容を示す。図2に示すように、ヒートシンク16の温度T1が蓄熱槽(タンク)4の温度Ttを上回る場合、系統1においては蓄熱運転切替弁3が切り替わり、系統2においては、ポンプ18が動作開始することで蓄熱槽(タンク)4に熱が供給(蓄熱)される。ヒートシンク16の温度T1が蓄熱槽(タンク)4の温度Ttを下回った場合は暖房蓄熱制御を終了し、通常の暖房運転に戻る。   The flowchart of FIG.2 and FIG.3 shows the content of the control in the heating heat storage control of this invention. As shown in FIG. 2, when the temperature T1 of the heat sink 16 exceeds the temperature Tt of the heat storage tank (tank) 4, the heat storage operation switching valve 3 is switched in the system 1, and the pump 18 starts operating in the system 2. Thus, heat is supplied (heat storage) to the heat storage tank (tank) 4. When the temperature T1 of the heat sink 16 falls below the temperature Tt of the heat storage tank (tank) 4, the heating heat storage control is terminated and the normal heating operation is resumed.
また、図3に示すように、室外熱交換器8の入口温度T4が蓄熱槽(タンク)4の温度Ttを下回る場合、系統1において蓄熱運転切替弁3が切替わることで、蓄熱槽(タンク)4から室外熱交換器8側に熱が供給(放熱)される。室外熱交換器8の入口温度T4が蓄熱槽(タンク)4の温度Ttを上回った場合は暖房蓄熱制御を終了し、通常の暖房運転に戻る。   In addition, as shown in FIG. 3, when the inlet temperature T4 of the outdoor heat exchanger 8 is lower than the temperature Tt of the heat storage tank (tank) 4, the heat storage tank (tank) is switched by switching the heat storage operation switching valve 3 in the system 1. ) Heat is supplied (dissipated) from 4 to the outdoor heat exchanger 8 side. When the inlet temperature T4 of the outdoor heat exchanger 8 exceeds the temperature Tt of the heat storage tank (tank) 4, the heating heat storage control is terminated and the normal heating operation is resumed.
このように構成された空気調和装置により、熱移動による運転能力の最適化が図れる。そして制御ボックスや圧縮機モータの排熱を必要に応じて抑制することで、暖房時の運転能力を最大限確保できる。   With the air conditioner configured as described above, it is possible to optimize the driving ability by heat transfer. And by suppressing the exhaust heat of a control box and a compressor motor as needed, the driving capability at the time of heating can be secured to the maximum extent.
たとえば、暖房時は制御ボックス25(発熱部)から蓄熱槽(タンク)4への供給(蓄熱)が可能である。暖房時はさらに、上記の蓄熱を必要に応じ、室外熱交換器8に供給することで、暖房能力を確保させる。   For example, during heating, supply (heat storage) from the control box 25 (heating unit) to the heat storage tank (tank) 4 is possible. During heating, the above heat storage is further supplied to the outdoor heat exchanger 8 as necessary to ensure the heating capacity.
暖房能力としては、暖房時、空気調和装置内の排熱(制御ボックス25の発熱、圧縮機2のモータの発熱)を蓄熱し、必要時に室外熱交換器8に熱を供給することで、暖房能力を最大限確保することが可能である。霜取中でも制御ボックス25の熱は常に蓄熱として働くので冷媒蓄熱量を抑制できる。   As heating capacity, during heating, exhaust heat in the air conditioner (heat generation of the control box 25, heat generation of the motor of the compressor 2) is stored, and heat is supplied to the outdoor heat exchanger 8 when necessary. It is possible to secure the maximum capacity. Since the heat of the control box 25 always acts as heat storage even during defrosting, the amount of heat stored in the refrigerant can be suppressed.
このように、暖房運転時に、不要な排熱を、必要な時に熱移動(蓄熱、放熱)させて利用することで、運転効率を向上させることが可能となる。冷暖同時機種で暖房が強い場合や、夜間に蓄熱しておき、昼間利用することによる省電力化も可能である。また、暖房運転時は、系統2の冷媒回路を用いて、熱交換器に付着した霜の除霜を行う放熱回路を構成することにより、暖房運転能力を確保する。   As described above, it is possible to improve the operation efficiency by using unnecessary exhaust heat by transferring heat (accumulating heat and releasing heat) when necessary during heating operation. It is possible to save power by using the same model for cooling and heating when heating is strong, or by storing heat at night and using it in the daytime. Moreover, at the time of heating operation, heating operation capability is ensured by comprising the thermal radiation circuit which defrosts the frost adhering to the heat exchanger using the refrigerant circuit of the system | strain 2. FIG.
次に、図4を用いて、本実施の形態における冷房蓄熱制御について説明する。図4に、冷房蓄熱制御における空気調和装置の構成と冷媒の流れを示す。本実施の形態では、第1の冷房蓄熱制御と、第2の冷房蓄熱制御を有する。図4において、蓄冷利用により、制御ボックスへの熱供給(冷却)が可能である。   Next, the cooling heat storage control in this Embodiment is demonstrated using FIG. FIG. 4 shows the configuration of the air-conditioning apparatus and the refrigerant flow in the cooling and heat storage control. In the present embodiment, the first cooling heat storage control and the second cooling heat storage control are provided. In FIG. 4, heat supply (cooling) to the control box is possible by using cold storage.
図5のフローチャートに、本発明の冷房蓄熱制御における制御の内容を示す。図5に示すように、ヒートシンク16の温度T1が蓄熱槽(タンク)4の温度Ttを上回る場合、系統1では蓄熱運転切替弁18が切り替わり、系統2ではポンプ18が動作開始し、制御ボックス25に熱が供給(冷却)される。T1が結露温度Tkを下回るとポンプ18を停止して冷房蓄熱制御を終了し、Tkを上回ると結露温度Tkを上回っている間は蓄熱運転を継続する。   The flowchart of FIG. 5 shows the contents of the control in the cooling heat storage control of the present invention. As shown in FIG. 5, when the temperature T1 of the heat sink 16 exceeds the temperature Tt of the heat storage tank (tank) 4, the heat storage operation switching valve 18 is switched in the system 1, and the pump 18 starts operating in the system 2, and the control box 25 Heat is supplied to (cooled). When T1 falls below the dew condensation temperature Tk, the pump 18 is stopped and the cooling heat storage control is terminated. When T1 exceeds Tk, the heat storage operation is continued while the dew temperature exceeds the dew condensation temperature Tk.
このように構成された空気調和装置により、熱移動による運転能力の最適化が図れる。また制御ボックス25や圧縮機2のモータの排熱を必要に応じて抑制することで、冷房時の運転能力を最大限確保できる。   With the air conditioner configured as described above, it is possible to optimize the driving ability by heat transfer. Further, by suppressing the exhaust heat of the motor of the control box 25 and the compressor 2 as necessary, it is possible to secure the maximum operating capacity during cooling.
冷房能力としては、冷房時、蓄冷を行い、空気調和装置内の発熱部(制御ボックス25、圧縮機2のモータ)を冷却することで、冷房能力を最大限確保することが可能である。蓄熱槽(タンク)4を介在させることによって、冷やしたいその時に冷媒の熱を使うことができ、圧縮機2の効率が良くなるように制御しながら蓄冷するなど、負荷平準化・効率化が図れる。   As the cooling capacity, it is possible to ensure the maximum cooling capacity by performing cold storage during cooling and cooling the heat generating part (control box 25, motor of the compressor 2) in the air conditioner. By interposing the heat storage tank (tank) 4, it is possible to use the heat of the refrigerant at the time of cooling, and load leveling and efficiency can be achieved, such as cold storage while controlling the efficiency of the compressor 2 to be improved. .
このように、冷房運転時に、不要な排熱を、必要な時に熱移動(蓄熱、放熱)させて利用することで、運転効率を向上させることが可能となる。冷暖同時機種で暖房が強い場合や、ファンを回さない領域における冷却や、ファンの回転数を下げることによる運転効率向上、省電力化も可能である。また、冷房運転時は、系統2の冷媒回路を用いて、前記蓄熱槽の蓄冷熱を発熱部に対して供給する冷却回路を構成することにより、制御部の発熱による能力の低下を抑制し、冷房運転能力を確保する。   As described above, it is possible to improve the operation efficiency by using unnecessary exhaust heat by transferring heat (accumulating heat and releasing heat) when necessary during cooling operation. It is possible to improve the operating efficiency and save power by cooling in the simultaneous cooling and heating model, when the heating is strong, cooling in the area where the fan is not rotating, and lowering the fan rotation speed. Moreover, at the time of air_conditionaing | cooling operation, the fall of the capability by the heat_generation | fever of a control part is suppressed by comprising the cooling circuit which supplies the cold storage heat of the said thermal storage tank with respect to a heat generating part using the refrigerant circuit of the system | strain 2, Ensure cooling operation capacity.
また、放熱性が改善するため、ファンやヒートシンクの小型化による原低や、ICや部品で高温部品に対する冷却も可能である。更に、夜間に蓄熱しておき、昼間利用することによる省電力化も可能である。   In addition, since heat dissipation is improved, it is possible to reduce the size of fans and heat sinks, and to cool high-temperature components with ICs and components. Furthermore, it is possible to save power by storing heat at night and using it in the daytime.
1 四方弁
2 圧縮機
3 四方弁
4 蓄熱槽
5 蓄熱量調整膨張弁
6 負荷側膨張弁
7 負荷側熱交換器
8 室外熱交換器
9、10 室外側切替弁
11、12、13、14 蓄熱側切替弁
15 アキュームレータ
16 ヒートシンク
17 リアクトル
18 ポンプ
20、21、22、23、24 温度センサ
25 制御ボックス
DESCRIPTION OF SYMBOLS 1 Four-way valve 2 Compressor 3 Four-way valve 4 Heat storage tank 5 Heat storage amount adjustment expansion valve 6 Load side expansion valve 7 Load side heat exchanger 8 Outdoor heat exchanger 9, 10 Outdoor switching valve 11, 12, 13, 14 Heat storage side Switching valve 15 Accumulator 16 Heat sink 17 Reactor 18 Pump 20, 21, 22, 23, 24 Temperature sensor 25 Control box

Claims (3)

  1. 圧縮機、四方弁、負荷側熱交換器、減圧装置、室外熱交換器を、液冷媒を移送する配管で連結した第1の冷媒回路を備え、
    第1の電磁弁を有する吸入管と、蓄熱剤を収納した蓄熱槽と、第2の電磁弁を有する吐出管を直列に接続したバイパス回路を、暖房運転時液冷媒貯留可能に前記減圧装置に並列に接続し、前記第1の電磁弁を開、前記第2の電磁弁を閉として暖房蓄熱運転を行い、前記第1の電磁弁を閉、前記第2の電磁弁を開として暖房運転を行う際、装置内の排熱を蓄熱する空気調和装置において、
    前記蓄熱槽と装置内の発熱部との間を結ぶ第2の冷媒回路を設け、ポンプを用いて当該第2の冷媒回路の冷媒を循環させることを特徴とする空気調和装置。
    A compressor, a four-way valve, a load-side heat exchanger, a decompressor, and an outdoor heat exchanger, each having a first refrigerant circuit connected by a pipe for transferring liquid refrigerant;
    A bypass circuit in which a suction pipe having a first electromagnetic valve, a heat storage tank containing a heat storage agent, and a discharge pipe having a second electromagnetic valve are connected in series is provided in the pressure reducing device so that liquid refrigerant can be stored during heating operation. Connected in parallel, opens the first solenoid valve, closes the second solenoid valve to perform heating heat storage operation, closes the first solenoid valve, and opens the second solenoid valve to perform heating operation. When performing, in an air conditioner that stores exhaust heat in the device,
    An air conditioner characterized in that a second refrigerant circuit connecting the heat storage tank and a heat generating part in the apparatus is provided, and the refrigerant of the second refrigerant circuit is circulated using a pump.
  2. 暖房運転時は、前記第2の冷媒回路を用いて、除霜を行う放熱回路を構成する請求項1に記載の空気調和装置。   2. The air conditioner according to claim 1, wherein during the heating operation, the second refrigerant circuit is used to configure a heat dissipation circuit that performs defrosting.
  3. 冷房運転時は、前記第2の冷媒回路を用いて、前記蓄熱槽の蓄冷熱を前記発熱部に対して供給する冷却回路を構成する請求項1に記載の空気調和装置。   2. The air conditioner according to claim 1, wherein a cooling circuit that supplies cold storage heat of the heat storage tank to the heat generating unit is configured using the second refrigerant circuit during cooling operation.
JP2017513879A 2015-04-22 2015-04-22 Air conditioner Active JP6415702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062238 WO2016170616A1 (en) 2015-04-22 2015-04-22 Air conditioner

Publications (2)

Publication Number Publication Date
JPWO2016170616A1 true JPWO2016170616A1 (en) 2017-11-02
JP6415702B2 JP6415702B2 (en) 2018-10-31

Family

ID=57142942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017513879A Active JP6415702B2 (en) 2015-04-22 2015-04-22 Air conditioner

Country Status (2)

Country Link
JP (1) JP6415702B2 (en)
WO (1) WO2016170616A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106288565A (en) * 2016-10-31 2017-01-04 广东美的制冷设备有限公司 Air-conditioning does not shut down defrosting system and method and air-conditioning
TWI665412B (en) * 2017-08-30 2019-07-11 潤弘精密工程事業股份有限公司 Housing system for heat balance and air conditioning system for energy-saving using the same
CN109737631A (en) * 2018-08-28 2019-05-10 广东志高暖通设备股份有限公司 Defrost air-conditioning system is not shut down

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156981A (en) * 1986-12-19 1988-06-30 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPS63286645A (en) * 1987-05-20 1988-11-24 Matsushita Seiko Co Ltd Controller for power source apparatus
JPH0387576A (en) * 1989-08-30 1991-04-12 Mitsubishi Electric Corp Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5860360B2 (en) * 2012-08-13 2016-02-16 カルソニックカンセイ株式会社 Thermal management system for electric vehicles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63156981A (en) * 1986-12-19 1988-06-30 Matsushita Electric Ind Co Ltd Heat pump type air conditioner
JPS63286645A (en) * 1987-05-20 1988-11-24 Matsushita Seiko Co Ltd Controller for power source apparatus
JPH0387576A (en) * 1989-08-30 1991-04-12 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JP6415702B2 (en) 2018-10-31
WO2016170616A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
JP5396246B2 (en) Air conditioner for vehicles
US20170184314A1 (en) Heat pump heating system
JP4782462B2 (en) Geothermal heat pump device, geothermal heat device equipped with the same, and control method for geothermal heat pump device
US20080302113A1 (en) Refrigeration system having heat pump and multiple modes of operation
CN110325804B (en) System and method for controlling a refrigeration system
US10562371B2 (en) Air conditioning system
JP2008185245A (en) Compression type heat pump device, operation method of the same, and cogeneration system
JP6301684B2 (en) CO2 water heater
JP2008014563A (en) Cold storage type air conditioning system
JP2010175136A (en) Geothermal heat pump device
JP6415702B2 (en) Air conditioner
JP2007051841A (en) Refrigeration cycle device
JP6538290B1 (en) Air conditioner
KR101316355B1 (en) Heating system for electric car using heat pump system
JP2010085009A (en) Air conditioning method, air conditioning system and method of controlling air conditioning system
JP2006017440A (en) Heat pump air conditioner
JP4275570B2 (en) Heating tower defrosting method and water-cooled heat pump system
JP6910210B2 (en) Air conditioner
KR100367176B1 (en) Heat pump type air conditioning apparatus
JP5098046B2 (en) Temperature control system
JP2008051369A (en) Refrigerating system and cold storage comprising the same
JP2019148417A (en) Air conditioner
JP2020185829A (en) On-vehicle temperature control device
US11052722B2 (en) Air-conditioning system
JP6854892B2 (en) Heat exchange unit and air conditioner

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6415702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250